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This paper proposed an iterative learning control (ILC) with a feedback
regulator based on proportional integral ammonium-based aeration control
(Pl ABAC) to improve dissolved oxygen control through data learning of
iteration data. The proposed controller's performance is evaluated using
benchmark simulation model no. 1. (BSM1). The assessments focused on

four main areas: effluent violation, effluent quality, aeration energy, and

overall cost index. The proposed ILC PI ABAC controller's effectiveness is
evaluated by comparing the performance of the activated sludge process to
the BSM1 Pl and feedback PI ABAC under three different weather
. conditions: dry, rain, and storm. The improvement of the proposed method
control activated sludge over BSM1 Pl is demonstrated by a reduction in aeration energy of up to
Benchmark simulation model 24%. In conclusion, if the proposed ILC PI ABAC controller is given
no.1 enough information, it can be quite successful in achieving energy
Dissolved oxygen efficiency.
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1. INTRODUCTION

Access to clean water is a necessity for both humans and the environment. Maintaining water
supplies and guarding the nature for a sustainable future is the most important contribution of wastewater
treatment plants (WWTPs) to protecting public health. To achieve this, more stringent effluent regulations
have been established for WWTPs. These stricter requirements force WWTP operators to improve their
control strategies. The main issue for WWTP operators is to reduce operating costs, especially energy for
aeration while maintaining high effluent quality. Aeration is an energy-intensive process where energy
consumption can be as high as 67.2% [1]-[3]. Wastewater quality discharged into rivers from treatment
plants that do not meet standards is subject to a fine.

Advanced control systems have proven to be a practical solution to the above problem to improve
wastewater quality discharged and minimize energy use compared to traditional proportional, integral and
derivative (PID) controllers. However, advanced control systems like model predictive control (MPC), need a
strong predictive model to forecast the plant’s future response. It is challenging to develop good predictive
control because the biological process of wastewater treatment is extremely complex, confusing, and
unexpected. Modelling the activated sludge process is also complicated by issues of nonlinearity, fluctuations
in influent flow, and significant disturbances [4]-[7].
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Proportional-integral (P1) controls are the traditional controls that are still routinely employed to
control the activated sludge process in WWTPs. This is primarily due to the significant expense of upgrading
the control system of the existing WWTPs. The use of PI controllers in most WWTPs has been due to their
simplicity, durability, and near-perfect control. However, with the introduction of new wastewater standards,
the conventional PI controller is no longer capable of adapting to changing operational conditions in the
WWTP. When using the Pl controller, a compromise must always be made between aeration energy and
effluent quality. If the aim is rather to improve the quality of the wastewater, the cost of aeration energy is
high [8]-[11]. Moreover, a typical Pl controller is not able to cope with the problems of nonlinearity,
fluctuation of influent and severe disturbance in the treatment plant [12]-[15].

Several studies have been conducted over the last decade to assess the effectiveness of various
control methods that use dissolved oxygen (DO) to reduce aeration expenses. The feature of this control
system is the availability of a DO sensor probe that can continuously measure the DO levels in the tank. The
primary concept behind employing the DO sensor probe is to regulate the DO supply based on the oxygen
requirement of the microorganisms in the tank. However, this technique has flaws because it is impossible to
identify the exact value of the microorganism's actual oxygen consumption at any given time. As a result, the
majority of the proposed DO control schemes have increased the DO set point to avoid nitrification failure.
However, even with the DO control technique, aeration costs remain an issue because DO control
necessitates aerators and turbines powered by electric motors, which add to the system's costs. This
necessitates a paradigm shift in the methods used to address the issues of energy consumption and aeration
control costs. This issue has been investigated, and a solution is provided in which the aeration process can
be regulated by modifying the DO set point based on the ammonium nitrogen (SNH) concentration in the
wastewater [16]-[18].

Ammonium-based aeration control (ABAC) is a control strategy that uses SNH as a response
variable in addition to or instead of DO. ABAC is a method that helps improve effluent quality while keeping
aeration energy low by using real ammonium measurement [19]-[24]. The study shows that the neural
network ABAC reduced aeration energy by up to 23% while improving wastewater quality by 1.9% [19],
[21]. Up to 43% of the aeration cost can be saved in [22]. The impact of ABAC on energy consumption is
observed after a comprehensive implementation of ABAC at a regional water treatment plant, which
achieved an average energy savings of 5%, equivalent to an average savings of 10% in total electricity costs
per month [23].

Despite the fact that ABAC has been on the market for a number of years, most pilot or real-world
plants employ the PI controller in their ABAC configurations. The Pl controllers used are set up to be
disseminated. This arrangement is advantageous because the coupling problem in a multiple-input multiple-
output (MIMO) system is avoided. A PI controller, on the other hand, is infamous for being prone to
interference and/or operational state variations. On the other hand, several investigations have demonstrated
that sophisticated control systems outperform Pl controllers. MPC, for example, is known to be
computationally demanding [25]-[27]. As a result, a leaner control method with less complexity is
preferable, particularly if the controller will be utilized in a real or pilot plant.

To increase the effectiveness of the control system by providing an adjustment system that helps to
deal with the nonlinearity of the wastewater inflow, an iterative learning control (ILC) is introduced in this
study. ILC is a type of tracking control that allows the system to operate in a recurrent mode. There are very
few published results on the implementation of ILC in WWTPs [5], [28]-[30]. The data-driven indirect ILC
scheme was suitable for the case where no mechanistic model of the complex system was available [30]. The
learning control algorithm can gradually enhance the performance of the tracking control for the next runs by
applying ILC, which effectively uses the data from past iterations, surpassing conventional control systems
such as feedback controllers and model predictive control [5]. The proportional iterative learning control
(P-1LC) algorithm is employed in the aeration basin of oxygen input connection with consideration of data
producing omission by altering the algorithm to totally regulate the aeration tank of oxygen, obtaining the
best wastewater treatment efficiency [29].

In this study, a combination of ILC and Pl ABAC is proposed with the aim that the proposed
controller can better adapt to the changes in the inflow. To verify the efficiency of the proposed controller, its
performance is evaluated with two other control configurations, namely the standard benchmark simulation
model no. 1 (BSM1) PI [31] and the feedback controller PI ABAC [8].

2. METHOD

BSM1 consists of 5 activated sludge reactors with two anoxic basins and three aerobic basins. A
secondary clarifier follows the active sludge reactor. Figure 1 depicts an in-depth diagram of the BSM1 plant.
The basic control technique for BSM1 is to first manipulate the internal recycling flow rate to control nitrate
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levels in the anoxic final tank, and second, the oxygen transfer coefficient to regulate DO levels in the
aerobic final tank. The primary control objectives for the standard BSM1 PI controller are to regulate the
nitrate concentration in the second anoxic tank at a preset setpoint of 1 g.m and the DO concentration in the
final aerobic tank at a preset setpoint of 2 g(-COD).m.

The BSML1 is designed for an average biodegradable chemical oxygen demand (COD) in the
influent of 300 g.m™ and an average dry weather influent of 18446 m.d. The hydraulic retention time is
14.4 hours. Both the biological reactor and the settler have a volume of 6000 m®. The age of the biomass
sludge is about nine days, as the discharge rate is 385 m3.d*. Three files representing dry, rain and storm
weather are used to determine the dynamics of the inflow. The performance of the suggested controller is
evaluated in terms of the impact of the control strategy on the plant process. The limit shown in Table 1
should be met by the flow-weighted average effluent concentrations across the three evaluation periods.

To river
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Figure 1. General overview of the BSM1 plant

Table 1. The effluent limit

Variable Value
Total nitrogen (Ntot) 18 g.N.m?3
coD 100 g.COD.m?3
Ammonium nitrogen (SNH) 4g.N.m3
Total suspended solids (TSS) 309.5S.m

Biological oxygen demand (BOD) 10 g.BOD.m™®

2.1. Feedback PI ABAC

Single-input-single-output (SISO) Pl ABAC feedback is used for comparison. In Pl ABAC
feedback, the PI controller is cascaded with the existing PI controller to manipulate the DO setpoint, as
shown in Figure 2. This configuration is used in most pilot or real plants. In this control structure, a SISO
configuration is used where the SNH concentration at the end of the vented section is determined and
evaluated to the desired SNH setpoint. Based on the error values between these two measurements, the first
Pl controller calculates the DO setpoint for the second PI controller. The second SISO PI controller then
calculates the required airflow rate based on the DO setpoint calculated by the first Pl controller.

WWTP (BSM1)

Figure 2. Feedback PI ABAC control system

2.2. ILCPI ABAC

A combination of PI-ABAC with ILC is proposed to create an adaptive control system and achieve
new results in the control performance of DO. ILC is a learning system whose purpose is to enhance the
operation of the control system by repeatedly analyzing and calculating the results of previous iterations to
improve the data when generating the new iteration. Figure 3 shows the basic control system of iterative
learning control.
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Figure 3. Block diagram of ILC

Based on Figure 3, the ILC system store both the input signal Uj(s) and the error signal Ej(s) in
memory. Uj(s) is the previous iteration result meanwhile E;(s) is the output or error signal between the system
output Y;(s) and the reference trajectory Ya(s). Both data stored in memory will be used in the generation of
the next output iteration signal. ILC mathematical expression is given as (1):

uj+1(5) = U](S) + Lo (S)E;(s) 1)

where L, (s) is a learning function.

The implementation of the ILC PI ABAC control system was designed using MATLAB/Simulink.
The design included a Simulink module consisting of a MATLAB function and a feedback system. The ILC
Simulink model involves the use of MATLAB functions that consist of the mathematical equations required
to process the iteration data. The main input to the system is the iteration data. The main output is the
reference trajectory. The unit delay acts as a storage system that manages the iteration data. The Simulink
model of the ILC is shown in Figure 4.
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Figure 4. Simulink model of ILC

As AU;(s) = 0, only the PI ABAC controller is active during the first iteration. As a new iterative
signal is generated, the ILC in conjunction with the PI ABAC regulator is activated and used for the next
iteration. The iteration signal U; ¢, as well as the measured outputs DO and SNH, are sent to the MATLAB
workspace as input for ILC control. The updated iteration signal is then calculated based on the data provided
and returned to the Simulink model as an input terminal E; , which is then used to improve the next iteration.

3. RESULTS AND DISCUSSION

This section explained the outcomes of the suggested control method on wastewater discharged
quality and cost elements for operations such as aeration energy (AE) and overall cost index (OCI). The
discussion has been made into several sub-sections.
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3.1. Effect on the plant process in terms of effluent violations

The numbers of wastewater discharged quality violations under all three weather conditions are
monitored and are evaluated to the default benchmark PI controller and are indicated in Tables 2-4
respectively. ILC Pl ABAC has been shown to perform better in reducing SNH violations in all weather
conditions. The time of SNH violation during dry, rain and storm inflow reduced by 0.9%, 3.7%, and 2.35%,
respectively, compared to the controller PI. This shows that the proposed ILC Pl ABAC successfully
improved the nitrification process, which means that there is enough oxygen for the bacteria in the tank.
Compared to the Pl controller, where DO is set to a higher level just to avoid nitrification failure, the
combination of PI ABAC and ILC shows that nitrification is further improved without simply setting the
level high all the time.

Table 2. The number of violations under dry weather

Pl PI ABAC ILC Pl ABAC
Ntot % 17.86% 15.77% 15.8%
Occasion 7 7 6
SNH % 16.82% 16.82% 15.9%
Occasion 5 5 5

Table 3. The number of violations under rain weather

Pl Pl ABAC ILC PI ABAC
Ntot % 11.01% 9.82% 9.97%
Occasion 5 5 5
SNH % 25.59% 31.10% 21.9%
Occasion 8 11 8

Table 4. The number of violations under storm weather

Pl Pl ABAC ILC PI ABAC
Ntot % 15.48 13.24% 13.7%
Occasion 7 6 6
SNH % 26.34% 27.83% 23.95%
Occasion 7 7 7

Pl ABAC indicates the best outcomes in terms of Ntot violations in all weather conditions.
However, the improvement is only slightly better than ILC PI ABAC. On the other hand, PI ABAC
unfortunately has the worst results on SNH violations. This is particularly noticeable for rain weather, where
there were 11 SNH violations, representing 31.1%. This is to be expected because better Qa manipulation
was required for the Ntot violations, which means that the Pl controller for the second tank must also be
modified to produce better results. Qa is raised when the input SNH is elevated to reduce the output SNH.
The simulation findings show that the proposed ILC PlI ABAC control has enhanced plant performance by
lowering Ntot and SNH effluent violations.

3.2. The effluent quality and cost index

Effluent quality (EQ) needs to be maintained at particular standards, not just to avoid paying further
penalties or levies, but also to ensure that the environment is safe and clean for all. The average energy use
per day should be restrained to reduce the WWTP's operating costs. Tables 5-7 compare effluent quality and
average energy use under three different weather conditions.

The EQ index (kg pollution unit d-1), according to BSML1, is defined as the average across the
evaluation period established on a weighting of the wastewater released quality loads of chemicals that have
a substantial impact on the river’s trait. The value of levies or fines that must be paid as a result of releasing
pollution into receiving water bodies is reflected in the EQ index, which is a measure of standard quality. To
put it another way, high effluent quality raises levies.

Table 5. Comparative of EQ and average energy usage in dry weather

PI PIABAC ILCPIABAC
Influent quality (1Q) index kg poll.units/d  52081.3952  52081.3952 52081.3952
EQ index kg poll.units/d 6096.1317 6081.46 6006.832
Average aeration energy per day (kwh/d)  3697.7019 3641.69 2827.4923
Total OCI 16385.8552  16317.85 15667.60
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In the simulation of the weekly time scale, the ILC PI ABAC control strategy surpassed both Pl and
Pl ABAC in terms of EQ index performance, as shown in Tables 5-7. ILC PI ABAC controller produced an
EQ index of 6006.83 kg poll.units/d for dry weather (reduced by 1.47%), 8021.218 kg poll. units/d for rain
weather (reduced by 1.54%) and 7075.189 kg poll.units/d for storm weather (reduced by 1.57%) when
compared to PI controller. 1Q defined the water quality incoming to the plant while EQ is the water quality
leaving the plant. It can be seen that the quality of incoming water before discharge into the river has greatly
improved using the proposed ILC PI ABAC control, from the original 52081.3952 kg poll.units per day.

Table 6. Comparative of EQ and average energy usage in rain weather

PI PIABAC ILCPIABAC
1Q index kg poll.units/d 52081.3952 52081.3952  52081.3952
EQ index kg poll.units/d 8146.2177 8219.54 8021.218
Average aeration energy per day (kWh/d)  3671.8674 3565.74 2827.4923
Total OCI 15977.3599 ~ 15873.11 15302.88

Table 7. Comparative of EQ and average energy usage in storm weather

Pl PI ABAC ILCPIABAC
1Q index kg poll.units/d 54061.497  54061.497 54061.497
EQ index kg poll.units/d 7187.2151 724473 7075.189
Average aeration energy per day (kWh/d)  3720.9099 3615.32 2827.4923
Total OCI 17248.7678  17140.22 16522.75

The average AE results indicate that the ILC PI ABAC control method is effective at lowering the
energy use of WWTPs. The average AE value of the ILC PI ABAC controller as determined by simulation is
the same for all weather conditions at 2827.4923 kWh/d. For dry, rain, and storm weather, the ILC Pl ABAC
contributed reductions of 23.5%, 23%, and 24%, respectively when compared to PI. As mentioned earlier,
AE is the most important factor in the operating costs of a wastewater treatment plant. Thus, reducing AE
helps to reduce the overall cost of the WWTP. ILC Pl ABAC control strategies significantly improve the
results of the comparison by lowering the total operational cost index. A reduction of 4.3%, 4.2%, and 4.2%
for the corresponding dry, rainy, and storm weather is shown by the percentage difference between the
proposed ILC PI ABAC controller and PI controller. PI controller reported the greatest total OCI index in all
weather conditions. The total OCI index is calculated by taking into account all other variables of operating
costs for WWTPs, such as those for pumping power, aeration power, sludge treatment and disposal, chemical
usage, and effluent quality.

4. CONCLUSION

In terms of energy efficiency and performance, the obtained findings demonstrate the advantages of
the suggested ILC PI ABAC controller over a traditional Pl and PI ABAC controller. The operation of the
plant in terms of effluent violations shows fewer effluent violations in all three weather scenarios, especially
in SNH violations. In addition, the plant performance in terms of EQ and overall OCI has improved
significantly. For all weather scenarios, there is a significant improvement in daily energy consumption. ILC
Pl ABAC has helped to reduce energy consumption by about 24% and improve effluent quality by up to
1.57% compared to the BSM1 PI controller. The advantages of ILC show that it can be a promising way to
control DO in a WWTP. However, it ought to be verified in a real or a pilot WWTP. Since the proposed
controller was only applied to tank 5, we can extend the applicability of the method to other tanks in future
work to further reduce the OCI and EQ.
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