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 This paper proposed an iterative learning control (ILC) with a feedback 

regulator based on proportional integral ammonium-based aeration control 

(PI ABAC) to improve dissolved oxygen control through data learning of 

iteration data. The proposed controller's performance is evaluated using 

benchmark simulation model no. 1. (BSM1). The assessments focused on 

four main areas: effluent violation, effluent quality, aeration energy, and 

overall cost index. The proposed ILC PI ABAC controller's effectiveness is 

evaluated by comparing the performance of the activated sludge process to 

the BSM1 PI and feedback PI ABAC under three different weather 

conditions: dry, rain, and storm. The improvement of the proposed method 

over BSM1 PI is demonstrated by a reduction in aeration energy of up to 

24%. In conclusion, if the proposed ILC PI ABAC controller is given 

enough information, it can be quite successful in achieving energy 

efficiency. 
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1. INTRODUCTION 

Access to clean water is a necessity for both humans and the environment. Maintaining water 

supplies and guarding the nature for a sustainable future is the most important contribution of wastewater 

treatment plants (WWTPs) to protecting public health. To achieve this, more stringent effluent regulations 

have been established for WWTPs. These stricter requirements force WWTP operators to improve their 

control strategies. The main issue for WWTP operators is to reduce operating costs, especially energy for 

aeration while maintaining high effluent quality. Aeration is an energy-intensive process where energy 

consumption can be as high as 67.2% [1]–[3]. Wastewater quality discharged into rivers from treatment 

plants that do not meet standards is subject to a fine. 

Advanced control systems have proven to be a practical solution to the above problem to improve 

wastewater quality discharged and minimize energy use compared to traditional proportional, integral and 

derivative (PID) controllers. However, advanced control systems like model predictive control (MPC), need a 

strong predictive model to forecast the plant’s future response. It is challenging to develop good predictive 

control because the biological process of wastewater treatment is extremely complex, confusing, and 

unexpected. Modelling the activated sludge process is also complicated by issues of nonlinearity, fluctuations 

in influent flow, and significant disturbances [4]–[7].  

https://creativecommons.org/licenses/by-sa/4.0/
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Proportional-integral (PI) controls are the traditional controls that are still routinely employed to 

control the activated sludge process in WWTPs. This is primarily due to the significant expense of upgrading 

the control system of the existing WWTPs. The use of PI controllers in most WWTPs has been due to their 

simplicity, durability, and near-perfect control. However, with the introduction of new wastewater standards, 

the conventional PI controller is no longer capable of adapting to changing operational conditions in the 

WWTP. When using the PI controller, a compromise must always be made between aeration energy and 

effluent quality. If the aim is rather to improve the quality of the wastewater, the cost of aeration energy is 

high [8]–[11]. Moreover, a typical PI controller is not able to cope with the problems of nonlinearity, 

fluctuation of influent and severe disturbance in the treatment plant [12]–[15]. 

Several studies have been conducted over the last decade to assess the effectiveness of various 

control methods that use dissolved oxygen (DO) to reduce aeration expenses. The feature of this control 

system is the availability of a DO sensor probe that can continuously measure the DO levels in the tank. The 

primary concept behind employing the DO sensor probe is to regulate the DO supply based on the oxygen 

requirement of the microorganisms in the tank. However, this technique has flaws because it is impossible to 

identify the exact value of the microorganism's actual oxygen consumption at any given time. As a result, the 

majority of the proposed DO control schemes have increased the DO set point to avoid nitrification failure. 

However, even with the DO control technique, aeration costs remain an issue because DO control 

necessitates aerators and turbines powered by electric motors, which add to the system's costs. This 

necessitates a paradigm shift in the methods used to address the issues of energy consumption and aeration 

control costs. This issue has been investigated, and a solution is provided in which the aeration process can 

be regulated by modifying the DO set point based on the ammonium nitrogen (SNH) concentration in the 

wastewater [16]–[18]. 

Ammonium-based aeration control (ABAC) is a control strategy that uses SNH as a response 

variable in addition to or instead of DO. ABAC is a method that helps improve effluent quality while keeping 

aeration energy low by using real ammonium measurement [19]–[24]. The study shows that the neural 

network ABAC reduced aeration energy by up to 23% while improving wastewater quality by 1.9% [19], 

[21]. Up to 43% of the aeration cost can be saved in [22]. The impact of ABAC on energy consumption is 

observed after a comprehensive implementation of ABAC at a regional water treatment plant, which 

achieved an average energy savings of 5%, equivalent to an average savings of 10% in total electricity costs 

per month [23]. 

Despite the fact that ABAC has been on the market for a number of years, most pilot or real-world 

plants employ the PI controller in their ABAC configurations. The PI controllers used are set up to be 

disseminated. This arrangement is advantageous because the coupling problem in a multiple-input multiple-

output (MIMO) system is avoided. A PI controller, on the other hand, is infamous for being prone to 

interference and/or operational state variations. On the other hand, several investigations have demonstrated 

that sophisticated control systems outperform PI controllers. MPC, for example, is known to be 

computationally demanding [25]–[27]. As a result, a leaner control method with less complexity is 

preferable, particularly if the controller will be utilized in a real or pilot plant. 

To increase the effectiveness of the control system by providing an adjustment system that helps to 

deal with the nonlinearity of the wastewater inflow, an iterative learning control (ILC) is introduced in this 

study. ILC is a type of tracking control that allows the system to operate in a recurrent mode. There are very 

few published results on the implementation of ILC in WWTPs [5], [28]–[30]. The data-driven indirect ILC 

scheme was suitable for the case where no mechanistic model of the complex system was available [30]. The 

learning control algorithm can gradually enhance the performance of the tracking control for the next runs by 

applying ILC, which effectively uses the data from past iterations, surpassing conventional control systems 

such as feedback controllers and model predictive control [5]. The proportional iterative learning control  

(P-ILC) algorithm is employed in the aeration basin of oxygen input connection with consideration of data 

producing omission by altering the algorithm to totally regulate the aeration tank of oxygen, obtaining the 

best wastewater treatment efficiency [29]. 

In this study, a combination of ILC and PI ABAC is proposed with the aim that the proposed 

controller can better adapt to the changes in the inflow. To verify the efficiency of the proposed controller, its 

performance is evaluated with two other control configurations, namely the standard benchmark simulation 

model no. 1 (BSM1) PI [31] and the feedback controller PI ABAC [8]. 

 

 

2. METHOD 

BSM1 consists of 5 activated sludge reactors with two anoxic basins and three aerobic basins. A 

secondary clarifier follows the active sludge reactor. Figure 1 depicts an in-depth diagram of the BSM1 plant. 

The basic control technique for BSM1 is to first manipulate the internal recycling flow rate to control nitrate 
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levels in the anoxic final tank, and second, the oxygen transfer coefficient to regulate DO levels in the 

aerobic final tank. The primary control objectives for the standard BSM1 PI controller are to regulate the 

nitrate concentration in the second anoxic tank at a preset setpoint of 1 g.m-3 and the DO concentration in the 

final aerobic tank at a preset setpoint of 2 g(-COD).m-3. 

The BSM1 is designed for an average biodegradable chemical oxygen demand (COD) in the 

influent of 300 g.m-3 and an average dry weather influent of 18446 m3.d-1. The hydraulic retention time is 

14.4 hours. Both the biological reactor and the settler have a volume of 6000 m3. The age of the biomass 

sludge is about nine days, as the discharge rate is 385 m3.d-1. Three files representing dry, rain and storm 

weather are used to determine the dynamics of the inflow. The performance of the suggested controller is 

evaluated in terms of the impact of the control strategy on the plant process. The limit shown in Table 1 

should be met by the flow-weighted average effluent concentrations across the three evaluation periods.  
 

 

 
 

Figure 1. General overview of the BSM1 plant 
 
 

Table 1. The effluent limit 
Variable Value 

Total nitrogen (Ntot) 18 g.N.m-3 
COD 100 g.COD.m-3 

Ammonium nitrogen (SNH) 4 g.N.m-3 

Total suspended solids (TSS) 30 g.SS.m-3 
Biological oxygen demand (BOD) 10 g.BOD.m-3 

 

 

2.1.  Feedback PI ABAC 

Single-input-single-output (SISO) PI ABAC feedback is used for comparison. In PI ABAC 

feedback, the PI controller is cascaded with the existing PI controller to manipulate the DO setpoint, as 

shown in Figure 2. This configuration is used in most pilot or real plants. In this control structure, a SISO 

configuration is used where the SNH concentration at the end of the vented section is determined and 

evaluated to the desired SNH setpoint. Based on the error values between these two measurements, the first 

PI controller calculates the DO setpoint for the second PI controller. The second SISO PI controller then 

calculates the required airflow rate based on the DO setpoint calculated by the first PI controller. 
 

 

 
 

Figure 2. Feedback PI ABAC control system 

 

 

2.2.  ILC PI ABAC 

A combination of PI-ABAC with ILC is proposed to create an adaptive control system and achieve 

new results in the control performance of DO. ILC is a learning system whose purpose is to enhance the 

operation of the control system by repeatedly analyzing and calculating the results of previous iterations to 

improve the data when generating the new iteration. Figure 3 shows the basic control system of iterative 

learning control. 
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Figure 3. Block diagram of ILC 

 

 

Based on Figure 3, the ILC system store both the input signal 𝑈𝑗(s) and the error signal 𝐸𝑗(s) in 

memory. 𝑈𝑗(s) is the previous iteration result meanwhile 𝐸𝑗(s) is the output or error signal between the system 

output 𝑌𝑗(s) and the reference trajectory 𝑌𝑑(s). Both data stored in memory will be used in the generation of 

the next output iteration signal. ILC mathematical expression is given as (1): 
 

𝑢𝑗+1(𝑠) = 𝑈𝑗(𝑠) + 𝐿𝑒(𝑠)𝐸𝑗(𝑠)  (1) 
 

where 𝐿𝑒(𝑠) is a learning function. 

The implementation of the ILC PI ABAC control system was designed using MATLAB/Simulink. 

The design included a Simulink module consisting of a MATLAB function and a feedback system. The ILC 

Simulink model involves the use of MATLAB functions that consist of the mathematical equations required 

to process the iteration data. The main input to the system is the iteration data. The main output is the 

reference trajectory. The unit delay acts as a storage system that manages the iteration data. The Simulink 

model of the ILC is shown in Figure 4. 
 

 

 
 

Figure 4. Simulink model of ILC 
 

 

As ∆𝑈𝑗(𝑠) = 0, only the PI ABAC controller is active during the first iteration. As a new iterative 

signal is generated, the ILC in conjunction with the PI ABAC regulator is activated and used for the next 

iteration. The iteration signal 𝑈𝑗_𝑠, as well as the measured outputs DO and SNH, are sent to the MATLAB 

workspace as input for ILC control. The updated iteration signal is then calculated based on the data provided 

and returned to the Simulink model as an input terminal 𝐸𝑗_𝑠, which is then used to improve the next iteration. 

 

 

3. RESULTS AND DISCUSSION 

This section explained the outcomes of the suggested control method on wastewater discharged 

quality and cost elements for operations such as aeration energy (AE) and overall cost index (OCI). The 

discussion has been made into several sub-sections. 
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3.1.  Effect on the plant process in terms of effluent violations 

The numbers of wastewater discharged quality violations under all three weather conditions are 

monitored and are evaluated to the default benchmark PI controller and are indicated in Tables 2–4 

respectively. ILC PI ABAC has been shown to perform better in reducing SNH violations in all weather 

conditions. The time of SNH violation during dry, rain and storm inflow reduced by 0.9%, 3.7%, and 2.35%, 

respectively, compared to the controller PI. This shows that the proposed ILC PI ABAC successfully 

improved the nitrification process, which means that there is enough oxygen for the bacteria in the tank. 

Compared to the PI controller, where DO is set to a higher level just to avoid nitrification failure, the 

combination of PI ABAC and ILC shows that nitrification is further improved without simply setting the 

level high all the time. 

 

 

Table 2. The number of violations under dry weather 
  PI PI ABAC ILC PI ABAC 

Ntot % 17.86% 15.77% 15.8% 

 Occasion 7 7 6 

SNH % 16.82% 16.82% 15.9% 

 Occasion 5 5 5 

 

 

Table 3. The number of violations under rain weather 
  PI PI ABAC ILC PI ABAC 

Ntot % 11.01% 9.82% 9.97% 
 Occasion 5 5 5 

SNH % 25.59% 31.10% 21.9% 

 Occasion 8 11 8 

 

 

Table 4. The number of violations under storm weather 
  PI PI ABAC ILC PI ABAC 

Ntot % 15.48 13.24% 13.7% 

 Occasion 7 6 6 
SNH % 26.34% 27.83% 23.95% 

 Occasion 7 7 7 

 

 

PI ABAC indicates the best outcomes in terms of Ntot violations in all weather conditions. 

However, the improvement is only slightly better than ILC PI ABAC. On the other hand, PI ABAC 

unfortunately has the worst results on SNH violations. This is particularly noticeable for rain weather, where 

there were 11 SNH violations, representing 31.1%. This is to be expected because better Qa manipulation 

was required for the Ntot violations, which means that the PI controller for the second tank must also be 

modified to produce better results. Qa is raised when the input SNH is elevated to reduce the output SNH. 

The simulation findings show that the proposed ILC PI ABAC control has enhanced plant performance by 

lowering Ntot and SNH effluent violations. 

 

3.2.  The effluent quality and cost index 

Effluent quality (EQ) needs to be maintained at particular standards, not just to avoid paying further 

penalties or levies, but also to ensure that the environment is safe and clean for all. The average energy use 

per day should be restrained to reduce the WWTP's operating costs. Tables 5–7 compare effluent quality and 

average energy use under three different weather conditions. 

The EQ index (kg pollution unit d-1), according to BSM1, is defined as the average across the 

evaluation period established on a weighting of the wastewater released quality loads of chemicals that have 

a substantial impact on the river’s trait. The value of levies or fines that must be paid as a result of releasing 

pollution into receiving water bodies is reflected in the EQ index, which is a measure of standard quality. To 

put it another way, high effluent quality raises levies.  
 

 

Table 5. Comparative of EQ and average energy usage in dry weather 
 PI PI ABAC ILC PI ABAC 

Influent quality (IQ) index kg poll.units/d 52081.3952 52081.3952 52081.3952 

EQ index kg poll.units/d 6096.1317 6081.46 6006.832 

Average aeration energy per day (kWh/d) 3697.7019 3641.69 2827.4923 

Total OCI 16385.8552 16317.85 15667.60 
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In the simulation of the weekly time scale, the ILC PI ABAC control strategy surpassed both PI and 

PI ABAC in terms of EQ index performance, as shown in Tables 5-7. ILC PI ABAC controller produced an 

EQ index of 6006.83 kg poll.units/d for dry weather (reduced by 1.47%), 8021.218 kg poll. units/d for rain 

weather (reduced by 1.54%) and 7075.189 kg poll.units/d for storm weather (reduced by 1.57%) when 

compared to PI controller. IQ defined the water quality incoming to the plant while EQ is the water quality 

leaving the plant. It can be seen that the quality of incoming water before discharge into the river has greatly 

improved using the proposed ILC PI ABAC control, from the original 52081.3952 kg poll.units per day. 
 

 

Table 6. Comparative of EQ and average energy usage in rain weather 
 PI PI ABAC ILC PI ABAC 

IQ index kg poll.units/d 52081.3952 52081.3952 52081.3952 
EQ index kg poll.units/d 8146.2177 8219.54 8021.218 

Average aeration energy per day (kWh/d) 3671.8674 3565.74 2827.4923 

Total OCI 15977.3599 15873.11 15302.88 

 

 

Table 7. Comparative of EQ and average energy usage in storm weather 
 PI PI ABAC ILC PI ABAC 

IQ index kg poll.units/d 54061.497 54061.497 54061.497 
EQ index kg poll.units/d 7187.2151 7244.73 7075.189 

Average aeration energy per day (kWh/d) 3720.9099 3615.32 2827.4923 

Total OCI 17248.7678 17140.22 16522.75 

 

 

The average AE results indicate that the ILC PI ABAC control method is effective at lowering the 

energy use of WWTPs. The average AE value of the ILC PI ABAC controller as determined by simulation is 

the same for all weather conditions at 2827.4923 kWh/d. For dry, rain, and storm weather, the ILC PI ABAC 

contributed reductions of 23.5%, 23%, and 24%, respectively when compared to PI. As mentioned earlier, 

AE is the most important factor in the operating costs of a wastewater treatment plant. Thus, reducing AE 

helps to reduce the overall cost of the WWTP. ILC PI ABAC control strategies significantly improve the 

results of the comparison by lowering the total operational cost index. A reduction of 4.3%, 4.2%, and 4.2% 

for the corresponding dry, rainy, and storm weather is shown by the percentage difference between the 

proposed ILC PI ABAC controller and PI controller. PI controller reported the greatest total OCI index in all 

weather conditions. The total OCI index is calculated by taking into account all other variables of operating 

costs for WWTPs, such as those for pumping power, aeration power, sludge treatment and disposal, chemical 

usage, and effluent quality. 

 

 

4. CONCLUSION 

In terms of energy efficiency and performance, the obtained findings demonstrate the advantages of 

the suggested ILC PI ABAC controller over a traditional PI and PI ABAC controller. The operation of the 

plant in terms of effluent violations shows fewer effluent violations in all three weather scenarios, especially 

in SNH violations. In addition, the plant performance in terms of EQ and overall OCI has improved 

significantly. For all weather scenarios, there is a significant improvement in daily energy consumption. ILC 

PI ABAC has helped to reduce energy consumption by about 24% and improve effluent quality by up to 

1.57% compared to the BSM1 PI controller. The advantages of ILC show that it can be a promising way to 

control DO in a WWTP. However, it ought to be verified in a real or a pilot WWTP. Since the proposed 

controller was only applied to tank 5, we can extend the applicability of the method to other tanks in future 

work to further reduce the OCI and EQ. 
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