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ABSTRACT

Web transport system (WTS) is commonly used in the production and handling
of web materials such as paper, fabric, corrugated iron, steel, and printing oper-
ations. These materials are easily damaged if the process performance is poor.
Therefore, high technology in mechanics and precise control techniques are re-
quired in this system. In addition, because of parameter variation, strong non-
linearity, and many external noises, there are many challenges in controlling this
process. This paper proposes a backstepping technique-based algorithm to con-
trol the web’s tension and velocity. To solve the parameter variation, a radial
basis function (RBF) neural network-based adaptation algorithm is developed
to approximate the varied components in the control algorithm. The system
stability is guaranteed using the Lyapunov stability theorem. Simulations in
MATLAB/Simulink have been done and the effectiveness of the proposed con-
trol algorithm is verified. Tension and velocity tracking can be obtained with
parameter variations.
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1. INTRODUCTION
Web transport system (WTS), which is one of the popular systems, is widely used in the production

and handling of web materials [1]–[3] such as paper production, glass, oled materials, solar cells, fabrics, and
printing operations [4], [5]. The materials have characteristics such as thin, continuous, elastic, and easy to
be damaged during transportation and handling, so WTS requires not only high technology in terms of me-
chanics but also high requirements on control engineering. In fact, the controllers used for WTS are mainly
proportional-integral (PI) and proportional-integral-derivative (PID) [6]–[8], feedforward control [9], and PID
with feedforward control [10]. However, this is a linear control method, while WTS is a strongly nonlinear sys-
tem, affected by external noise, so it does not always give the desired quality, but the often slow response, low
stability, low accuracy, and challenge to meet the increasingly high requirements of today’s modern production
lines. Therefore, it is necessary to build a modern controller to overcome the disadvantages.
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In recent years, various nonlinear control methods such as sliding mode control [11]–[13], intelligent
control [14]–[16], backstepping control (BC) [17]–[19], and disturbance compensator [20] have been applied
to improve the control quality for the system. These control methods can only improve performance when the
system parameters are clearly known. However, the WTS system is a time-varying system, and the calculation
of system parameters is quite complicated and less precise. To further improve the system performance, it is
necessary to have an adaptive mechanism to track the system parameters’ variation and radial basis function
(RBF) neural network is an appropriate selection in many applications [21]–[24]. The paper proposes adaptive
BC for WTS using RBF neural networks. The controller is designed using the backstepping technique while
the system’s time-varying parts are approximated by RBF neural network. The RBF network weight updating
rules are proposed such as the system stability and desired system performance are guaranteed.

2. WEB TRANSPORT SYSTEM DYNAMIC MODELING
Let us consider a single-span WTS including an unwind roll and a rewind roll as shown in Figure 1.

The guide rolls are ignored for simplicity. According to Newton’s law and mass conservation, the nonlinear
dynamic equations of web transport can be written as (1)-(3) [25]:

ṫw = c1ωu + c2ωrtw + c3ωr (1)

ω̇u = c4Mu + c5tw + c6ωu + c7w
2
u (2)

ω̇r = c8Mr + c9tw + c10ωr + c11ω
2
r (3)

where ci, (i = 1, .., 11) are the time-dependent parameters defined as:

c1 =
ru
L
tu − ESru

L
; c2 = −rr

L
; c3 =

ESrr
L

; c4 = − 1

Ju
; c5 =

ru
Ju

; c6 = −bfu
Ju

; c7 =
awρr3u
Ju

; c8 =
1

Jr
;

c9 = − rr
Jr

; c10 = −bf r
Jr

; c11 = −awρ3r
Jr

;

In the definition of ci, operating radius ru, rr and moment of inertia Ju, Jr, are calculated as:

ru(t) = Ru0 −
φ

2π
a; rr(t) = Rr0 +

φ

2π
a; Ju(t) = Ju0 +

1

2
ρwπ(r4u −R4

c);

Jr(t) = Jr0 +
1

2
ρwπ(r4r −R4

r)

Where tw is web tension, wu is unwind roll’s angular velocity, wr is rewind roll’s angle velocity, Mu is unwind
roll torque, Mr is rewind roll torque, ru is unwind roll radius, Ru0 is unwind roll’s initial radius, rr is rewind
roll radius, Rr0 is rewind roll’s initial radius, Ju is the unwind roll’s total moment of inertia, Ju0 is unwind
roll’s initial total moment of inertia, Jr is rewind roll’s total moment of inertia, Jr0 is rewind roll’s initial total
moment of inertia, bfu is unwind roll vicious friction coefficient, bfr is rewind roll vicious friction coefficient,
E is web elasticity, S is web cross-sectional area, L is web length, a is web thickness, w is web width, and p is
web density.

Figure 1. Single-span WTS
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3. DESIGN A BACKSTEPPING CONTROL INCORPORATING RADIAL BASIS FUNCTION NEU-
RAL NETWORK

At first, we define intermediate variables fu, gu, fr, gr as:

fu = c5tw + c6wu + c7w
2
u; gu = c4; fr = c9tw + c10wr + c11w

2
r ; gr = c8

Then, the dynamical model (1)-(3) becomes (4)-(6):

ṫ = c1ωu + c2ωrt+ c3ωr (4)

ω̇u = fu + guMu (5)

ω̇r = fr + grMr (6)

The designing process is as:

− Step 1: defining tension tracking error variables as (7):

∆tw = tw − Td (7)

where Td is reference web tension, then:

∆ṫw = ṫ− Ṫd = c1ωu + c2ωrt+ c3ωr − Ṫd (8)

Choose the Lyapunov function: V1 = 1
2∆ṫ2w. Taking the derivative of V1 one can obtain as (9):

V̇1 = ∆tw∆ṫw = (c1ωu + c2ωrt+ c3ωr − Ṫd)(t− Td) (9)

In order to stabilize the subsystem, the condition V̇1 ≤ 0 must be guaranteed. Thus, we choose (10):

c1ωu + c2ωrt+ c3ωr − Ṫd = −kt(t− Td) (10)

where kt is a positive real number, then:

V̇1 = −kt(t− Td)
2 = −kt∆t2s ⩽ 0;∀kt ⩾ 0 (11)

From condition (10), we deduce the virtual control signal to stabilize the subsystem as (12):

Fωud
= − 1

c1
(c2tωr + c3ωr − Ṫd + kt(t− Td)) (12)

− Step 2: defining unwind velocity tracking error variables as (13):

∆ωu = ωu − Fωud (13)

Choose the Lyapunov function: Vu = 1
2 (∆ωu)

2 = 1
2 (ωu − Fωud

)2. Taking the derivative of Vu:

V̇u = ∆ωu∆ω̇u = ∆ωu(ω̇u − Ḟωud
) = ∆ωu(fu + guMu − Ḟωud

) (14)

In order to obtain V̇u ≤ 0 the control signal Mu is chosen as (15):

Mu = − 1
gu
(fu − Ḟωud

+ kωu
∆ωu) (15)

where kωu
is a positive real number, then:

V̇u = −kωu(∆ωu)
2 ⩽ 0 (16)

However fu and gu are difficult to determine precisely. Thus, we will approximate them by f̂u and ĝu, respec-
tively. The control signal then is calculated as (17):

Backstepping control with radial basis function neural network for web transport systems (Tong Thi Ly)



3338 ❒ ISSN: 2302-9285

Mu = − 1
ĝu
(f̂u − Ḟωud

+ kωu
∆ωu) (17)

The derivative of Vu becomes (18):

V̇u = ∆ωu((fu − f̂u) + f̂u + (gu − ĝu)Mu + ĝuMu − Ḟωud
)

= ∆ωu(fu − f̂u) + ∆ωu(gu − ĝu)Mu − kωu
(∆ωu)

2 (18)

Next, the approximation rules for fu and gu are proposed. Supposing that the function fu can be computed by
an ideal RBF as (19):

fu = W̄T
u h̄u (19)

Where W̄u is the ideal weight vector of the neural network W̄u = [W ∗
u1,W

∗
u2, ...,W

∗
um]T , m is the number of

neural in the network; and h̄u is a Gaussian function vector h̄u = [hu1, hu2, ..., hum]T . The Gaussian function
hui, (i = 1, 2, ...,m), with inputs wu, wr, is defined as (20):

hui =
exp(

∥ωu−c1i∥
2+∥ωr−c2i∥

2

b2
ui

)∑m
i=1 exp(

∥ωu−c1i∥2+∥ωr−c2i∥2

b2
ui

)
(20)

Where c1i and c2i are the position of the center of the RBF, bui is the width of the RBF. The approximation
function f̂u are calculated using RBF as (21) (Figure 2):

f̂u = ŴT
u h̄u (21)

Where Ŵu = [Wu1,Wu2, ...,Wum]T is weight vector. We have to establish the weight updating rule so that the
system is stable. In addition, we also have to find the approximation rule for gu. It is noted that gu = −1/Ju,
then there exists upper bound gu < guM < 0.

Figure 2. Schematic diagram of RBF neural network to approximate f̂u and f̂r

Supposing that gu can be approximated by ĝu. We define W̃u = W̄u − Ŵu; g̃u = gu − ĝu. Choose
the Lyapunov candidate function V2u as (22):

V2u = Vu + 1
2W̃

T
u Γ−1

u W̃u + 1
2ηug̃

2
u = 1

2 (∆ωu)
2 + 1

2W̃
T
u Γ−1

u W̃u + 1
2ηug̃

2
u (22)

where Γu is a positive definite diagonal matrix and ηu is a positive real number, then:

V̇2u = V̇u + W̃T
u Γ−1

u
˙̃Wu + ηug̃u ˙̃gu

= ∆ωu(fu − f̂u) + ∆ωu(gu − ĝu)Mu − kωu(∆ωu)
2 + W̃T

u Γ−1
u

˙̃Wu + ηug̃u ˙̃gu

= ∆ωuW̃
T
u hu +∆ωug̃uMu − kωu

(∆ωu)
2 + W̃T

u Γ−1
u

˙̃Wu + ηug̃u ˙̃gu

= −kωu
(∆ωu)

2 + W̃T
u (∆ωuhu + Γ−1

u
˙̃Wu) + g̃u(∆ωuMu + ηu ˙̃gu)

= −kωu(∆ωu)
2 + W̃T

u (∆ωuhu − Γ−1
u

˙̂
Wu) + g̃u(∆ωuMu − ηu ˙̂gu

(23)
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In order to guarantee system stability, i.e. V̇2u ≤ 0 the following update laws are proposed:

˙̂gu =


η−1
u ∆ωuMu; if ĝu < guM

η−1
u ∆ωuMu; if (ĝu = guM )&(∆ωuMu < 0)

0; if (ĝu = guM)&(∆ωuMu ≥ 0)

(24)

˙̂
Wu = Γu∆ωuhu (25)

The update rule (24) can be interpreted as:
− If ĝu < guM , it means ˙̂gu is within the allowed limit, then ĝu can take any value and here we choose

˙̂gu = η−1
u ∆ωuMu, then g̃u(∆ωuMu − ηu ˙̂gu) = 0.

− If ĝu = g
u

, it means ĝu reaches the upper bound, then ˙̂gu cannot choose a positive value. So if ∆ωuMu <

0 then we will choose ˙̂gu = η−1
u ∆ωuMu < 0, and g̃u(∆ωuMu − ηu ˙̂gu) = 0.

− If ĝu = guM and ∆ωuMu ≥ 0, we choose ĝu = 0. This keeps the value ĝu equal to the upper bound
value. Then, g̃u = gu − ĝu = gu − guM ≤ 0, deduce: g̃u(∆ωuMu − ηu ˙̂gu) = g̃u∆ωuMu ≤ 0.

Thus, in all cases we always have (26):

g̃u(∆ωuMu − ηu ˙̂gu) ≤ 0 (26)

In addition, from the update rule (25), we have (27):

W̃T
u (∆ωuhu − Γ−1

u
˙̂
Wu) = 0 (27)

Thus:

V̇2u = −kωu
(∆ωu)

2 + W̃T
u (∆ωuhu − Γ−1

u
˙̂
Wu) + g̃u(∆ωuMu − ηu ˙̂gu) ≤ −kωu

(∆ωu)
2 ≤ 0 (28)

− Step 3: defining rewind velocity tracking error variables as (29):

∆ωr = ωr − ωrd (29)

Where ωrd is the reference velocity for the rewind roll. Choose the Lyapunov candidate function:
Vr = 1

2 (∆ωr)
2 = 1

2 (ωr − ωrd)
2. Taking the derivative of Vr:

V̇r = ∆ωr∆ω̇r = ∆ωr(ω̇r − ω̇rd) = ∆ωr(fr + grMr − ω̇rd) (30)

In order to obtain V̇r ≤ 0 the control signal Mr is chosen as (31):

Mr = − 1
gr
(fr − ω̇rd + kωr∆ωu) (31)

where kωr is a positive real number, then:

V̇r = −kωr (∆ωr)
2 ≤ 0 (32)

However fr and gr are difficult to determine precisely. Thus, we will approximate them by f̂r and ĝr, respec-
tively. Then, the control signal is calculated as (33):

Mr = − 1
ĝr
(f̂r − ω̇rd + kωr

∆ωr) (33)

The derivative of Vr becomes (34):

V̇r = ∆ωr((fr − f̂r) + f̂r + (gr − ĝr)Mr + ĝrMr − ω̇rd)

= ∆ωr(fr − f̂r) + ∆ωr(gr − ĝr)Mr − kωr (∆ωr)
2 (34)

Next, the approximation rules for fr and gr are proposed. Supposing that the function fr can be computed by
an ideal RBF as (35):
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fu = W̄T
r h̄r (35)

Where W̄r is the ideal weight vector of the neural network W̄r = [W ∗
r1,W

∗
r2, ...,W

∗
rn]

T , n is the number of
neural in the network, and h̄r is a Gaussian function vector h̄r = [hr1, hr2, ..., hrn]

T . The approximation
function f̂r are calculated using RBF as (36):

f̂r = ŴT
r h̄r (36)

Where Ŵr = [Wr1,Wr2, ...,Wrn]
T is weight vector. We have to establish the weight updating rule so that the

system is stable. In addition, we also have to find the approximation rule for gr. It is noted that gr = 1/Jr,
then there exists lower bound gr ≥ grM > 0. Supposing that gr can be approximated by ĝr. We define
W̃r = W̄r − Ŵr; g̃r = gr − ĝr. Choose the Lyapunov candidate function V2r as (37):

V2r = Vr +
1
2W̃

T
r Γ−1

r W̃r +
1
2ηrg̃

2
r = 1

2 (∆ωr)
2 + 1

2W̃
T
r Γ−1

r W̃r +
1
2ηrg̃

2
r (37)

where Γr is a positive definite diagonal matrix and ηr is a positive real number, then:

V̇2r = V̇r + W̃T
r Γ−1

r
˙̃Wr + ηr g̃r ˙̃gr

= ∆ωu(fr − f̂r) + ∆ωr(gr − ĝr)Mr − kωr (∆ωr)
2 + W̃T

r Γ−1
r

˙̃Wr + ηr g̃r ˙̃gr

= ∆ωrW̃
T
r hr +∆ωr g̃rMr − kωr (∆ωr)

2 + W̃T
r Γ−1

r
˙̃Wr + ηrg̃r ˙̃gr

= −kωr (∆ωr)
2 + W̃T

r (∆ωrhr + Γ−1
r

˙̃Wr) + g̃r(∆ωuMr + ηr ˙̃gr)

= −kωr
(∆ωr)

2 + W̃T
r (∆ωrhr − Γ−1

r
˙̂
Wr) + g̃r(∆ωrMr − ηr ˙̂gr)

In order to guarantee system stability, i.e. V̇2r ≤ 0 the following update laws are proposed:

˙̂gr =


η−1
r ∆ωrMr; if ĝr > grM

η−1
r ∆ωrMr; if (ĝr = grM )&(∆ωrMr > 0)

0; if (ĝr = grM)&(∆ωrMr ≤ 0)

(38)

˙̂
Wr = Γr∆ωrhr (39)

The update rule (38) can be interpreted as:
− If ĝr > grM , it means ĝr is within the allowed limit, then ˙̂gr can take any value and here we choose

˙̂gr = η−1
r ∆ωrMr, then g̃r(∆ωrMr − ηr ˙̂gr) = 0.

− If ĝr = grM , it means ĝr reaches the lower bound, then ˙̂gr cannot choose a negative value. So if
∆ωrMr > 0 then we will choose ˙̂gr = η−1

r ∆ωrMr > 0, and g̃r(∆ωrMr − ηr ˙̂gr) = 0.
− If ĝr = grM and ∆ωrMr ≤ 0, we choose ˙̂gr = 0. This keeps the value ĝr equal to the lower bound

value. Then, g̃r = gr − ĝr = gr − grM ≥ 0, deduce: g̃r(∆ωrMr − ηr ˙̂gr) = g̃r∆ωrMr ≤ 0. Thus, in
all cases we always have (40):

g̃r(∆ωrMr − ηr ˙̂gr) ≤ 0 (40)

In addition, from the update rule (39), we have (41):

W̃T
r (∆ωrhr − Γ−1

r
˙̂
Wr) = 0 (41)

Thus:

V̇2r = −kωr (∆ωr)
2 + W̃T

r (∆ωrhr + Γ−1
r

˙̂
Wr) + g̃r(∆ωrMr − ηr ˙̂gr) ≤ −kωr (∆ωr)

2 ≤ 0 (42)

The control laws, as well as the updating rules, have been developed successfully.
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4. SIMULATION RESULT
Simulations have been conducted using MATLAB/Simulink to verify the effectiveness of the proposed

control method. A comparison is also made between the proposed controller and conventional backstepping.
The simulation parameters are: Ru0 = 0.1 m; Rr0 = 0.05 m; bfu = 0.00002533 Nms; bfr = 0.00002533
Nms; Ju0 = 1.5 kg.m2; Jr0 = 0.5 kg.m2; a = 0.00005 m; kwu = 230; kwr = 230; and kt = 500.

In the simulation, for both the conventional BC and the RBF-BC, the reference tension is 10 N . The
rewind reference speed profile is as follows. The speed increases linearly from 0 to 2 m/s from 0 to 5 second.
The speed is kept constant from 5 to 20 seconds. Finally, the speed decreases linearly from 20 to 25 second.
Two situations are considered in the simulation including the system parameters are known precisely, i.e. the
system parameter error is 0% and there are system parameter error 20%. In both considered situations, the
simulation results are shown in Figure 3(a)-(f).

(a) (b)

(c) (d)

(e) (f)

Figure 3. Simulation results with no parameter error and 20% parameter error: (a) tension-no parameter error,
(b) tension-20% parameter error, (c) unwind roll speed-no parameter error, (d) unwind roll speed-20%

parameter error, (e) rewind roll speed-no parameter error, and (f) rewind roll speed -20% parameter error

For the case of no error, at times 0, 5, 20, and 25 seconds, due to a sudden change in velocity, there
are tension overshoots 0.8% as shown in Figure 3(a). After that, the tension returns back to the reference value.
For the BC controller, the return time is very fast. But for RBF-BC, it takes about 1.2 s to return to the set value
since the system parameters need to be estimated. In addition, at the steady state, for the RBF-BC, there exists
a little steady-state error (0.006%). The unwind velocity in case BC and RBF-BC both track the reference
value; however, in the case of RBF-BC there exists a little error (0.0025%) as shown in Figure 3(c). For the
rewind roll, the velocity tracking is also obtained for both controllers as shown in Figure 3(e). When there are
parameter errors for the BC controller, there is exists a difference between the actual tension and the reference
value, the difference increases when the error increases.

For the case of 20% error, the difference is 0.45% as shown in Figure 3(b). For the RBF-BC controller,

Backstepping control with radial basis function neural network for web transport systems (Tong Thi Ly)
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the difference between the actual and the reference value is much smaller. It is because the BC controller
depends on the system parameter, but RBF-BC can adapt to parameter variation. This is the advantage of the
proposed RBF-based controller. For both BC and RBF-BC controllers, velocity tracking is always guaranteed
as shown in Figures 3(d) and (f). This is the advantage of a backstepping-based controller for WTS.

5. CONCLUSION
A BC coupled with a RBF neural network is proposed for WTS in this paper. The BC strongly depends

on system parameters. Thus, the RBF is proposed to update the changing of the system parameter. The weight
update rules of the neural network have been developed to stabilize the system and guarantee good performance.
Simulation results demonstrate the effectiveness of the proposed controller compared to the conventional BC.
In the future, we will continue to improve the performance of the controller to overcome the ”explosion of
terms” phenomenon in the BC. We also consider implementing the proposed controller in a real system.
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