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 The image datasets that are most widely used for training deep learning 

models are specifically developed for applications. This study introduces a 

novel dataset aimed at augmenting the existing data for the identification of 

figs in their natural habitats, specifically in the wilderness. In the present 

study, researchers have generated numerous image datasets specifically for 

object detection focus on applications in agriculture. Regrettably, it is 

exceedingly difficult for us to obtain a specialized dataset specifically 

designed for detecting figs. To tackle this issue, a grand total of 462 

photographs of fig fruits were gathered. The augmentation technique was 

utilized to substantially increase the size of the dataset. Ultimately, we 

conduct an examination of the dataset by doing a baseline performance study 

for bounding-box detection using established object detection methods, 

specifically you only look once (YOLO) version 3 and YOLOv4. The 

performance obtained on the test photos of our dataset is satisfactory. For 

farmers, the capacity to identify and oversee fig fruits in their natural or 

developed environments can be highly advantageous. The detecting device 

offers instantaneous data regarding the quantity of mature figs, facilitating 

decision-making procedures. 
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1. INTRODUCTION 

Fruit identification is the cornerstone of agricultural automation, upon which fruit positioning, 

automated harvesting, and yield estimation are developed. Human visual inspection is the most typical 

method for identifying fruits in the wild or an orchard environment. This conventional technique of detection 

would need a lot of labour and time. Due to the rapid development of algorithms [1] for artificial intelligence 

and image sensor technology, online automatic fruit recognition has lately emerged as a new trend [2]. They 

allow farmers to manage and maximize their resources while making wise decisions during harvest [3]. 

Artificial intelligence systems used for fruit detection on digital images offer several advantages, including a 

high degree of accuracy, user-friendliness, and real-time performance that is both efficient and effective  

[4], [5]. The development of technology has driven the idea of fig detection [6]. 

As we all know, figs are famous due to their excellent nutritional, health, and therapeutic properties. 

As a result, figs have been actively collected worldwide in recent years. In 2013, the fig production area was 

https://creativecommons.org/licenses/by-sa/4.0/
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predicted to be 358,494 hectares, with a yield of 1,117,452 t. Fig trees are mostly found in Turkey around the 

Black Sea, the Marmara area, the Aegean, and Mediterranean coasts. As the market is excitingly growing, the 

size of fig production has increased further [4]. Fig fruits are less distinguishable in color from the 

background, with thicker branches and leaves than the other fruits. Thus, effective recognition and placement 

of fig fruits may provide significant technical support for intelligent orchard technologies such as yield 

predictions and automated picking [7]. 

The detection of fruit has been undertaken by researchers with a broad spectrum of sensor 

technologies and algorithms; however, cameras and computer vision techniques are the most effective 

combination [8]. Unfortunately, using computer vision technology in outdoor orchard settings comes with its 

challenges, including the following: i) varying brightness conditions and ii) occlusion of fruits by other 

leaves, branches, or other fruits. As a result, detecting fruits has become increasingly challenging, leading to 

the development of deep learning algorithms to automate processes. However, because there are no 

standardized benchmark datasets or testing standards in precision agriculture, it is hard to compare different 

methodologies directly. Benchmark datasets have received much attention and are driving computer vision 

research [5]. ImageNet, pascal visual object classes (VOC), and the common items in context (COCO) 

dataset are well-known datasets in computer vision that contain many images organized into various 

categories. However, there is a shortage of resources for datasets relevant to fig fruits, and most datasets 

developed to identify figs are in general contexts. 

The key reason leading to the lack of research activities is the lack of publicly available data 

annotated with information on the ground truth. It has become a severe bottleneck in developing fig fruit 

recognition, particularly in deep learning models, which depend heavily on massive training data. In this 

work, we provide a dataset that attempts to overcome this limitation. Furthermore, a significant gap in the 

academic community must be filled by datasets of fig images captured in natural settings and supported by 

standardized analysis methods. We have great expectations that this dataset will be a critical step in 

advancing the agriculture field. 

 

 

2. RELATED WORK 

Datasets have consistently been crucial in advancing image-processing research. They offer a 

technique for instructing, assessing algorithms, and propelling study in novel and demanding domains. The 

majority of computer vision approaches depend on extensive datasets for the purpose of training, testing, and 

assessing different solutions to issues [9]. They offer the resources to educate and assess novel algorithms, 

facilitating a direct comparison of the outcomes [10], [11]. Ultimately, they enable researchers to address 

novel and increasingly complex research problems [12]. ImageNet [13] and COCO [14] are widely 

recognized as the most popular image datasets. These datasets were made freely accessible by their 

respective developers, the ImageNet large scale visual recognition challenge (ILSVRC) and Microsoft. 

ImageNet, COCO, and pascal VOC [15] are three datasets that have facilitated the advancement of image 

classification and object segmentation by providing a vast collection of annotated photos to the public. 

Over the past few years, the ImageNet dataset [8], consisting of a large number of images, has 

significantly enhanced the precision of research utilizing neural networks [4], [16], [17] for the purposes of 

image categorization and object recognition. In the future, the release of the COCO database, which aims to 

identify non-iconic objects, could enable researchers to do more precise object recognition, instance 

segmentation, image captioning, and human keypoint localization [14]. Google has released open images V4 

[13] a newly available dataset. The dataset comprises nine million photos that have been annotated at the 

image level and include corresponding item bounding boxes. The datasets listed contain photos that are 

intended for widespread utilization. This means that the objects, perspectives, and applications depicted in 

the images are representative of typical circumstances. 

The initial stage in estimating yield or harvesting fruit involves the detection of the fruit. Several 

studies have been published that focus on fruit detection, using different datasets. Yamparala et al. [18] 

introduced a method for automatically classifying fruit diseases in order to facilitate identification. The 

experiments are conducted using a dataset consisting of 200 photographs of various fruits. Specifically, there 

are 50 images of apples, 50 images of mangoes, 50 images of oranges, and the remaining 50 images depict 

grapes. Neural networks are trained using the size, color, and form of the fruits. In addition, the researchers 

of reference [19] developed a deep learning model to classify mango and pitaya fruits. The input consists of 

authentic data provided by fruit producers, which includes a total of 700 photographs of mangoes and 700 

photographs of pitaya fruits. In their publication, Jian et al. [20] introduced an algorithm for the optical 

detecting system used in agricultural robots for fruit harvesting. This algorithm is capable of identifying and 

locating different types of fruits in diverse environments. The dataset comprises photos depicting apples, 

oranges, and bananas, with detection accuracies of 96.5%, 97.6%, and 82.3%, correspondingly. 
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In their study, Zhao and Qu [21] propose techniques for identifying both sound tomato fruits and 

those affected by prevalent physiological disorders. The dataset underwent several improvements to optimize 

network performance: initially, the picture datasets were enriched with additional data to mitigate the risk of 

overfitting. As a result, augmented datasets were acquired, which encompassed 1000 photographs of tomato 

fruits. Furthermore, a grayscale processing module and a foreground extraction module were created to 

assess the importance of picture data type. This report advocated for the employment of data augmentation in 

our project. Yijing et al. [4] introduced a deep learning approach to identify fig fruits. Their method utilized a 

dataset consisting of 913 photos. The training set consisted of 70% (639 photos), while the test set consisted 

of 30% (274 images). Nevertheless, the dataset utilized is confidential. 

 

 

3. METHOD 

In this method, a dataset of 462 fig fruit images was gathered in Tasik Gelugor, Penang, capturing 

variations in fruit quantity and shading using a Nikon DSLR camera. The dataset was meticulously annotated 

using LabelImg software [22], creating bounding boxes for ‘buah tin’ (fig fruit) and saving annotation 

information in PascalVOC [23] format “.xml” files. Data augmentation was employed to enhance dataset 

diversity and prevent overfitting, which included 90º rotations, resizing to 416×416, brightness and noise 

variations, resulting in 1110 augmented samples. The dataset was then split into a 70/30 training/testing ratio, 

allocating 70% (972 images) for training and 30% (138 images) for testing, setting the stage for robust deep 

learning applications and performance assessment. 

 

3.1.  Dataset acquisition 

The fig fruit photos were gathered in Tasik Gelugor, Penang, with a sample size of 462 images, as 

depicted in Figure 1. The sample collection comprises photos that vary in terms of fruit quantity and shade 

intensity, hence augmenting the diversity of the samples. The fig fruit photographs were captured with a 

Nikon DSLR camera with a resolution of 4608×3072 pixels, resulting in a spatial resolution of 300 dpi. 

Consequently, these photos are suitable for applications that demand great resolution and quality. Every 

image is unique in terms of the quantity of fruits, perspective, and level of shading. In addition, certain 

photos depict fig fruits that are half concealed, shrouded by another object, or just partially perceptible. To 

enhance identification during testing and training, the dataset’s diversity is augmented by incorporating a 

complex backdrop environment. 

 

 

   
 

Figure 1. Sample of fig fruit images collected 

 

 

3.2.  Dataset annotation 

The process of manually annotating the photos of fig fruits is crucial in order to obtain precise data 

parameters once a significant amount of photographs has been collected in the dataset. The image annotation 

tool utilized for this task was the LabelImg software (refer to Figure 2). The smallest external rectangular box 

of the fig fruit was chosen as the actual box for annotation in order to minimize the number of background 

pixels within the box. This stage employs Python programming to provide a function for selecting a frame. 

Every fig fruit image in the collection has been labeled as ‘buah tin’. To clarify, all the bounding boxes of the 

figures seen in the image were recorded in the PascalVOC format, as depicted in Figure 3. Following the 

annotation stage, the application produces .xml files for every annotated image, containing data such as the 

coordinate values for the bounding boxes of each lesion on the fig fruits, including their height and width. 
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Figure 2. Image annotation process using Labelimg 

 

 

  
 

Figure 3. Detailed information of a labelled fig fruit image. The green, blue, and red rectangles indicate the 

size of the image, fruit location, and the object name based on the image on the left, respectively 

 

  

3.3.  Dataset augmentation 

Data augmentation is one method for increasing the dataset by changing the diversity of the image. 

Besides, it is also overcoming the problem of overfitting in training [21]. Overfitting happens when random 

noise or mistakes are reported rather than the underlying relationship. In this process, several techniques are 

used for data augmentation operations which are 90º rotation transformations clockwise, counterclockwise, 

and upside-down. Next, the images are resized to 416×416 and contain disturbances of brightness and noise. 

Furthermore, the brightness is set between -25% and +25%; meanwhile, the noise is up to 5% of pixels. Due 

to that reason, three new fig fruit images are generated from each image through the operations stated, as 

shown in Figure 4. In Figure 4(a) the original image serves as a reference point. Figure 4(b) demonstrates the 

resized image with both reduced brightness and low noise, while Figure 4(c) showcases the image after a 

clockwise rotation, combined with low brightness and heightened noise. Finally, Figure 4(d) illustrates the 

resized image post-clockwise rotation, exhibiting increased brightness and noise levels. These augmentation 

techniques serve to diversify the dataset, helping the deep learning algorithm learn from a range of variations, 

ultimately enhancing its robustness and ability to handle different real-world scenarios. 

Therefore, new 1110 augmented dataset samples were obtained. With additional images following 

data augmentation, it would benefit the algorithm as it may learn as many irrelevant patterns as possible 

throughout the training step, avoiding overfitting and achieving better performance. Then, the dataset will be 

split into the most commonly adopted deep learning applications, a 70/30 ratio of training and testing, 

respectively. Hence, 70% (972 images) were selected for training, and 30% (138 images) were selected for 

testing. Figure 5 shows the train images, which consist of the raw image, the augmented image with ground 
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truth and the heatmap. Figure 5(a) reveals the raw image, offering insight into the original visual data.  

Figure 5(b) displays an augmented image with ground truth, which incorporates the results of the data 

annotation process, enhancing the image’s informative value. Finally, in Figure 5(c), we observe a heatmap 

that highlights a single annotation, showcasing the spatial distribution of important features in the image. 

This figure serves as a valuable reference for understanding the stages of data processing and annotation, 

illustrating how raw images are transformed into informative, annotated representations with ground truth 

information. 

 

 

    
(a) (b) (c) (d) 

 

Figure 4. Fig fruit image augmentation: (a) original image; (b) resized picture with reduced brightness and 

noise; (c) resized image with clockwise rotation, reduced brightness, and increased noise; and (d) adjust the 

size of the image by rotating it in a clockwise direction and increase the brightness level with a high amount 

of noise 

 

 

   
(a) (b) (c) 

 

Figure 5. Sample of train image; (a) raw image; (b) augmented image with ground truth; and (c) heatmap of a 

single annotation 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Related object detectors 

Object identification techniques based on deep learning can be categorized into two types:  

region-based two-stage target detection methods, exemplified by the region-based convolutional neural 

network (R-CNN) series and regression-based one-stage target detection algorithms, such as you only look 

once (YOLO) and single shot detector (SSD). R-CNN employs the selective search method to extract around 

2000 region proposals from the uppermost to the lowermost parts of the image. Subsequently, it retrieves 

characteristics for every suggested region and categorizes them employing support vector machines (SVM). 

Subsequently, it conducts boundary regression on the proposed regions. This strategy is segmented into 

multiple sections, and the process of preparing the area proposal is excessively time-consuming [7]. 

Faster-R-CNN improved upon the R-CNN by replacing the original selective search method with 

region proposal network (RPN) to generate region proposals. This change reduced the amount of region 

proposals from approximately 2,000 to 300, resulting in improved overall quality. In order to enhance 

performance and optimize operations, faster-RCNN utilizes shared convolutional layers with RPN and Fast 

R-CNN [7]. An example of this is the approach devised by [19] to classify mango and pitaya fruits using 

Faster R-CNN. The input consists of authentic data provided by fruit producers, which includes a total of 700 

photographs of mangoes and 700 photographs of pitaya fruits. The proposed approach has an accuracy score 

of around 99%. This methodology is suitable for developing a systematic process for efficiently categorizing 

a large quantity of fruits in real-time, with the aim of preserving the fruits’ overall quality. 

Several neural networks, including YOLO, can extract the bounding boxes of multiple kinds of 

items from an image and proceed to the next stage. YOLO is an all-in-one network that does feature 
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extraction, localization, and classification. Therefore, the YOLO series demonstrates exceptional velocity and 

is better suited for real-time detection in comparison to the R-CNN series. As an illustration, YOLOv3 

exhibited a considerably higher detection speed, achieving a frame rate of eight times that of faster R-CNN. 

YOLOv4 outperforms other detectors in terms of both speed and accuracy, surpassing the quickest and most 

accurate ones [4], [24], [25]. Consequently, this work utilizes YOLOv3 and YOLOv4 to build fig fruit 

identification models for real-world scenarios.  

 

4.1.1. YOLOv3 

YOLOv3 is an upgraded iteration of the YOLO technique that divides the input image into a grid of 

S×S dimensions, where S is equal to 13. Every grid is assigned the responsibility of identifying an object that 

is situated within it. Each grid consists of three border boxes with distinct initial sizes. K-means clustering 

determines the initial dimensions of each anchor box. The YOLO v3 model produces five predictions for 

each bounding box: tx, ty, tw, and th represent the coordinates of the bounding box, while confidence is the 

score indicating the likelihood of an object being present [26]. The YOLO v3 model employs logistic 

regression to forecast objectness scores for every bounding box. If the previous bounding box overlaps with a 

ground truth object and has a greater size than the other prior bounding box, it is given a score of 1. 

Bounding box priors that do not possess the best quality but nevertheless exhibit an overlap with a ground 

truth object surpassing a specific threshold will be discarded. Before allocation, a bounding box is assigned to 

each object to accurately represent the ground truth. The YOLOv3 network architecture is seen in Figure 6. 

 

 

 
 

Figure 6. YOLOv3 network architecture 

 

 

The YOLO v3 model currently produces a three-dimensional tensor that contains encoded data for 

bounding boxes, objectness scores, and class predictions. The tensor is of size NN[3(4+1+C)], where NN 

denotes the number of bounding box offsets, 4 denotes the number of bounding box coordinates, 1 is the 

objectness prediction, and C denotes the number of class predictions. The utilized feature extraction network 

is darknet-53, which consists of a total of 53 convolutional layers. The darknet-53 employs a convolutional 

neural network structure comprising of 33 and 11 convolutional layers, in addition to a few shortcut 

connections. The YOLOv3 algorithm utilizes convolution and batch normalization procedures to predict 

boxes at three different scales based on the input image. Object detection is performed on scales of 13×13, 

26×26, and 52×52 when the supplied image has a size of 416×416. YOLOv3 integrates three scales using a 

comparable approach to feature pyramid network (FPN). Multi-scale detection enables the acquisition of 

features from different resolutions, providing an advantage in recognizing small target objects [24]. 

 

4.1.2. YOLOv4 

YOLOv4 is an enhanced iteration of YOLOv3 that successfully accomplishes target localization and 

target classification prediction. The one-stage technique transforms the challenge of determining the location 
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of the object bounding box into a regression problem, resulting in a substantial enhancement in detection speed 

while retaining a predetermined level of accuracy. Contrary to two-stage target identification techniques like 

faster RCNN, YOLO employs a solitary convolutional neural network to ascertain the category and location of 

the regression target over the entire image [25], [26]. The YOLO network comprises three primary 

components: backbone, neck, and head. The term “Backbone” refers to the convolutional neural network that 

collects and produces visual features at various degrees of detail in the image. The neck is a constituent of the 

network layer that consolidates and integrates visual attributes. The primary objective of this is to integrate 

feature information from feature maps of different sizes and supply image data to the prediction layer. The 

head is a neural network that possesses the capability to predict picture attributes, produce bounding boxes, 

and categorize images [4], [26]. Figure 7 illustrates the network structure of YOLOv4. 
 

 

 
 

Figure 7. YOLOv4 network architecture 
 
 

The YOLOv4 model utilized the CSPDarknet53 design as its core, effectively concealing 

unnecessary gradient information while optimizing the network. The incorporation of the cross-stage particial 

(CSP) module in YOLOv4 facilitates the assimilation of all gradient modifications into the feature map. This 

leads to a decrease in the number of parameters and computational requirements of the model, while yet 

preserving accuracy. The Mish activation function is utilized in the backbone to amplify the infiltration of 

input into the neural network, leading to enhanced accuracy and generalization capabilities. PANet functions 

as a module for merging features in the neck component of YOLOv4. The objective is to address the issue of 

one-way feature integration in YOLO v3’s FPN by including bottom-up feature fusion. In addition, the 

spatial pyramid pooling (SPP) technique is used as an extra component to broaden the scope of information 

received, extract significant contextual data, enhance the overall and local accuracy of fruit identification in 

complicated environments, and enhance the efficiency of detection [4]. 

 

4.2.  Training platform 

The training procedure of the two proposed models will be conducted using Google Colab, with the 

programs written in the Python environment. Both variants of the proposed YOLO utilize the Darknet 

framework, which is an open-source neural network framework built in C and CUDA. Darknet is known for 

its speed, ease of installation, and support for CPU or GPU processing. The training aims to develop a model 

for fig fruit detection. 

 

4.3.  Performance evaluation 

The assessment measures utilized in this study to assess the detection model include mean average 

precision (mAP), precision, recall, and F1 score. The measures used to evaluate performance are true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN). True positive rate (TPR) is the ratio of 

correctly identified positive samples to the total number of samples with positive outcomes. The image 

contains a fig fruit, and the computer successfully identifies it as ‘buah tin’. FP is the proportion of genuine 

negative samples with expected positive outcomes. There is no depiction of a fig fruit in the image, yet the 

system correctly identifies it as ‘buah tin’. FN represents the count of genuine negative samples that resulted 

in negative predictions. Although the image contains a fig fruit, the algorithm fails to identify it as ‘buah tin’. 

The TN value is not considered in our performance metrics calculation [25]. 

 

4.3.1. Precision 

Precision refers to the proportion of correctly anticipated positive cases out of all the projected 

positive cases. It quantifies the level of precision of the model in performing the detection task. A low 

precision signifies a significant amount of FP. Precision can be defined as (1): 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (1) 

 

4.3.2. Recall 

Recall indicates that the proportion of affirmative cases is expected to be positive. The recall metric 

quantifies the number of objects that the algorithm erroneously disregarded. A high recall value indicates a 

low amount of false negatives. Recall can be depicted as (2): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (2) 

 

4.3.3. F1-score 

The F1-score is a metric that quantifies the accuracy of a model by considering both precision and 

recall, which have an inverse relationship. The model is deemed flawless when the F1-score equals one and 

may be computed using (3): 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 × 100% (3) 

 

4.4.  Detection result 

The system was trained using a batch size of 32 and an epoch setting of 100. Figure 8 demonstrates 

that both versions of YOLO exhibit exceptional performance and are capable of detecting the majority of figs 

inside an image. The top section of the Figure 8 exhibits the output generated by YOLO v3, whereas the 

bottom section showcases the outcomes produced by YOLOv4. Figures 8(a)-(d) display four distinct sample 

photos, enabling a direct comparison of the detection capabilities between the two versions of the YOLO 

object identification system. According to Table 1, the detection results of YOLOv3 show a greater number 

of false negative values compared to YOLOv4. False negatives refer to instances that should have been 

detected but were not. This phenomenon is known as the potential for overlooking some detections when the 

fruit is extensively obscured by surrounding features, such as branches and leaves, as depicted in Figures 8(a) 

and (b). YOLOv4 exhibits a significant number of FP samples in its detection results, as the resulting value 

surpasses that of YOLOv3. The model’s tendency to misidentify the backdrop, such as foliage, as fruit is 

significant. Moreover, if the background and the item share a similar color, it can potentially elevate the 

likelihood of a FP outcome. The model accurately identifies the presence of ‘buah tin’ in the image, as shown 

in Figures 8(c) and (d), even when there is no fig present. Nevertheless, YOLOv4 has a significant capability 

to accurately detect a greater number of genuine positive samples, even when faced with substantially 

occluded figures, surpassing the performance of YOLOv3. The greater TPR achieved by YOLOv4 compared 

to YOLOv3 is evident. 
 

 

    
    

    
(a) (b) (c) (d) 

 

Figure 8. Comparison of the detection result from YOLO v3 (above) and YOLO v4 (below): (a) sample 

image 1, (b) sample image 2, (c) sample image 3, and (d) sample image 4 
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The test set comprises 30% of photos randomly selected from the dataset, totaling 138 images. The 

precision values obtained for both models can be deemed almost similar, with YOLOv3 being marginally 

higher by one percent compared to YOLOv4. However, according to the data, YOLOv4 performs better than 

YOLOv3 in terms of recall and F1-score, achieving 89% and 0.84, respectively. Furthermore, we evaluate 

performance using mAP, which refers to the accurate detection of test images. The mAP attained by 

YOLOv4 is the greatest, reaching 90.02%, followed by YOLO v3 with a mAP of 81.40%. Hence, the 

obtained performance results demonstrate that both models are capable of accurately detecting the location of 

the fig by utilizing our dataset. 

 

 

Table 1. Result indicators of two models 
Model TP FP FN IoU (%) Precision (%) Recall (%) F1-score mAP (%) 

YOLOv3 330 78 95 58.56 81 78 0.79 81.40 

YOLOv4 337 94 48 60.16 80 89 0.84 90.02 

 

 

5. CONCLUSION 

This paper offered a new dataset for fig fruit detection in the wild scenario. This compilation of 

annotated object instances is expected to facilitate the progress of object detection in complex and crowded 

surroundings. Regarding the benchmarks, we only conducted tests using the most cutting-edge object 

detectors to showcase the dataset’s capacity and value for object detection. The results suggest that by 

employing our dataset, which portrays intricate background scenarios, a reasonable level of accuracy is 

achieved. To be more precise, YOLO v4 achieves an outstanding precision rate of 80%, a recall rate of 89%, 

an F1 score of 0.84, and a mAP of 90.02%. We anticipate that this dataset will address the current lack of 

available datasets pertaining to fig fruits, hence assisting computer vision researchers engaged in fruit 

detection tasks. In addition, we aim to expand our fig dataset by include information about the ripeness of the 

figs, which will be used for classification purposes. We also plan to enhance the efficiency of the dataset as 

we move forward. 
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