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 This study offers a new swarm-based metaheuristic: random-guided 

optimizer (RGO). RGO has novel mechanics in shifting the random motion 

into a guided motion strategy during the iteration. In RGO, the iteration is 

divided into three equal size phases. In the first phase, the unit walks 

randomly inside the search space to tackle the local optimal problem earlier. 

In the second phase, each unit uses a unit selected randomly among the 

population as a reference in conducting the guided motion. In the third 

phase, each unit conducts guided motion toward or surpasses the best unit. 

Through simulation, RGO successfully finds the acceptable solution for 23 

benchmark functions. Moreover, RGO successfully finds the global optimal 

solution for four functions: Branin, Goldstein-Price, Six Hump Camel, and 

Schwefel 2.22. RGO also outperforms slime mold algorithm (SMA), pelican 

optimization algorithm (POA), golden search optimizer (GSO), and northern 

goshawk optimizer (NGO) in solving 12, 20, 12, and 1 function 

consecutively. In the future, improvement can be made by transforming 

RGO into solid multiple-phase strategy without losing its identity as a 

metaheuristic with multiple strategy in every iteration. 
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1. INTRODUCTION  

Optimization is a famous and essential study. Its importance and popularity make optimization has 

been implemented in many areas, such as in computing system [1], transportation [2], mobile communication 

[3], production and manufacturing [4], healthcare [5], power system [6], home appliance [7], and so on. In 

production and manufacture, some study need optimization, such as in flow shop scheduling in multi factory 

environment [8], nozzle assignment in printed circuit board assembly [9], and job assignment in manufacture 

where there are several parallel machines [10], and so on. Several objectives in the manufacturing 

optimization problems are minimizing the completion time [8], total assembly time [9], make-span [11], 

maximizing service level [12], and so on. Meanwhile, the common objectives in the optimization work in the 

power system is higher energy harvesting [13], minimizing power loss [14], maximizing power point [15], 

and so on. 

The metaheuristic has been used extensively in many optimization studies. This circumstance 

happens due to the advantage of metaheuristics in tackling complex optimization real-world problems, 

especially in the number of variables, constraints, or objectives [16]. This advantage comes from the 

characteristic of metaheuristic algorithm as approximate approach [17]. It makes the process does not trace 

all possible solutions that cost excessive computational resources [17].  

https://creativecommons.org/licenses/by-sa/4.0/
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A plenty of new metaheuristics were developed based on swarm intelligence. Many of them adopt 

foraging mechanics, such as slime mold algorithm (SMA) [18], grey wolf algorithm (GWO) [19], marine 

predator algorithm (MPA) [20], Komodo Mlipir algorithm (KMA) [21], pelican optimization algorithm 

(POA) [22], northern goshawk optimization (NGO) [23], butterfly optimization algorithm (BOA) [24], 

squirrel search optimizer (SSO) [25], tunicate swarm algorithm (TSA) [26] and so on. Several algorithms use 

the term leader as metaphors, such as three influential members-based optimizers (TIMBO) [27], mixed 

leader-based optimizer (MLBO) [28], and multileader optimizer (MLO) [29], hybrid leader-based 

optimization (HLBO) [30], and more. 

The similarity among the swam-based metaheuristics is the existence of one or several units that 

become a reference for the swarm. These references can be the best unit, the worst unit, the randomly 

selected unit, and so on. A golden search optimizer (GSO) uses the best unit in every iteration and replaces 

the worst unit with the randomized unit among the population [31]. The population conducts the sinusoid 

motion toward the global and local best [31]. In HLBO, the reference combines the corresponding unit, the 

best unit, and the randomly selected unit [30]. Each unit's proportion is calculated based on the normalized 

fitness score [30]. Then, the corresponding unit walks toward the hybrid leader if this hybrid leader is better 

than the corresponding unit [30]. Otherwise, the corresponding unit walks away from this hybrid leader [30]. 

In MLBO, the mixed leader combines the best and randomly selected units in the first half of the iteration 

[28]. In the second half, the best unit is the only unit that constructs the mixed leader [28]. In GWO, the 

leader is constructed by the resultant of the three best units in every iteration [19]. In NGOs, the reference for 

every unit is selected randomly among the population [23]. Meanwhile, in POA, a reference is selected 

randomly from the problem space at the beginning of every iteration [22]. MLO is the more flexible version 

of GWO. MLO determines the number of best units selected in every iteration manually before the iteration 

runs [29]. In KMA, there are two types of leaders: the big males and the highest quality big male [21]. 

Based on this explanation, there are four issues usually exploited to construct a new swarm-based 

metaheuristic. The first is the construction of the reference. The second is the population's behavior in 

interacting with the reference. The third is randomized motion. The search space of the random motion can 

be the same in every iteration as in KMA [21], declines linearly as in MLO [29], or among the population. 

The fourth is the strategy controlled by the iteration. In most metaheuristic algorithms, the strategy chosen in 

every iteration is still the same. A few algorithms deploy different strategies along the iteration. In MPA, the 

iteration is split into three phases [20]. There is a distinct strategy deployed in every phase [20]. 

Despites the massive development of metaheuristics, the main problem is that there is no perfect 

metaheuristic as stated in the no-free-lunch theory [32]. For example, KMA is not the best one to solve 

Rosenbrock, Quartic, Penalized, and Penalized 2 [21]. BOA is not the best one to solve Ackley, Levy, 

Michalewiz, and Rosenbrock. GSO is not the best one to solve Step, Penalized, Penalized 2, Branin, and 

Hartman 6 [31]. The imperfection of metaheuristic creates room and space for the future development of 

metaheuristic. Although competition among metaheuristic has been criticized [32], exploring various method 

is still interesting. The secondary circumstance is the rarity of metaheuristics that changes their strategy 

during the iteration. It makes the development of metaheuristic with changing strategy during the iteration is 

challenging.  

This study proposes a new metaheuristic algorithm: a random-guided optimizer (RGO). This 

algorithm deploys the iteration-controlled strategy where the iteration is split into several phases, and a 

distinct strategy is deployed in every phase. Based on its name, the strategy walks from random motion to 

guided motion. This mechanism is rare in the development of metaheuristic algorithms. 

The scientific contribution of this work is presented: 

a. A new swarm-based metaheuristic called RGO is proposed with its novel strategy is the shifting from full 

random to the guided search during iteration. 
b. The performance of RGO is assessed by using the set of 23 functions as a theoretical use case. 
c. The comparative performance of RGO, which consisting of its strength and weakness is benchmarked 

with four new swarm-based metaheuristics: SMA, POA, GSO, and NGO. 
The outline of the following sections of this paper is formulated as follows. The research method, 

which consists of the presentation of the model and its assessment scenario, is presented in section 2. The 

simulation's findings, detailed examination of the results, insights from the simulation and the limitation of 

this work are investigated in section 3. The summarization of the conclusion and the possibility for further 

research is presented in section 4. 
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2. METHOD 

2.1.  Proposed model 

This section presents the model of the proposed algorithm. The conceptual frame study of the 

algorithm, a formal description of the algorithm in pseudocode, and a mathematical model that formalizes the 

algorithm's construction process make up this presentation. 

The term RGO comes from the basic concept where the optimization strategy shifts from random to 

guided motion during the iteration. The system consists of a certain number of units that represent the 

solutions. This set of units configures the population. The global best is the highest quality unit so far and has 

become the collective knowledge shared among the population. In RGO, the iteration is split into three equal 

size phases as in MPA [20]. In the first phase, every unit walks randomly inside the search space. This 

method is aimed to address the local optimum entrapment as soon as possible. In the second phase, each unit 

walks according to its local reference. This phase is known as a partial guided motion. This local reference is 

a unit that is selected randomly among the population. In the third phase, the corresponding unit walks 

toward or surpasses the global best. Each time a unit walks to a new one, the global best is updated in all 

phases. The illustration of this shifting is presented in Figure 1. This basic concept is then transformed into an 

algorithm. The algorithm of RGO is shown in Algorithm 1. Meanwhile, the annotations used in this study. 

 

 

 
 

Figure 1. Shifting from random search to guided search 

 

 

Algorithm 1. RGO 

output: 𝑠𝑏𝑒𝑠𝑡  

begin 

  for i=1 to 𝑛(𝑆) do 

    generate the initial unit using (1) 

    update 𝑠𝑏𝑒𝑠𝑡  using (2) 

  end for 

  for t=1 to 𝑡𝑚𝑎𝑥  do 

    for i=1 to 𝑛(𝑆)do 

      if t < 𝑡𝑚𝑎𝑥 / 3 then 

        conduct random motion using (1) 

      else 

        if t < 2𝑡𝑚𝑎𝑥 /3 then 

          conduct partial guided motion using (3) to (5) 

        else 

          conduct guided motion using (6) and (5) 

        end if 

      end if   

      update sbest using (2) 

    end for 

  end for 

end 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Random-guided optimizer: a metaheuristic that shifts random search to guided … (Purba Daru Kusuma) 

2671 

where: 

𝑏𝑙 , 𝑏𝑢 lower bound, upper bound 𝑠𝑠𝑒𝑙  selected unit 

𝑓 fitness function 𝑠𝑐𝑎𝑛 unit candidate 

𝑠 unit 𝑡 iteration 

𝑆 set of units 𝑡𝑚𝑎𝑥   maximum iteration 

𝑠𝑏𝑒𝑠𝑡  best unit 𝑈  uniform random 

 

Here is the explanation of Algorithm 1. Line 1 shows that the global best becomes the output, i.e., 

the final unit. Initialization occurs between lines 3 and 6. The iteration phase is represented by lines 7 to 20. 

There are two loops inside the iteration. The out loop iterates from the first iteration to the maximum 

iteration. The inner loop iterates for the entire population. Lines 9 to 17 indicate the strategy chosen in every 

phase. Line 18 indicates that the global best is updated at the end of every motion. 

The algorithm complexity of RGO can be presented as O(𝑡𝑚𝑎𝑥 . 𝑛(𝑆)). It means that two variables 

affect the complexity linearly: the maximum iteration and the population size. Meanwhile, the mathematical 

model used in this algorithm is presented in (1) to (6): 

 

𝑠 = 𝑈(𝑏𝑙 , 𝑏𝑢) (1) 

 

𝑠𝑏𝑒𝑠𝑡′ = {
𝑠, 𝑓(𝑠) < 𝑓(𝑠𝑏𝑒𝑠𝑡)

𝑠𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
 (2) 

 

𝑠𝑠𝑒𝑙 = 𝑈(𝑆)  (3) 

 

𝑠𝑐𝑎𝑛 = {
𝑠 + 2𝑈(0,1). (𝑠𝑠𝑒𝑙 − 𝑠), 𝑓(𝑠𝑠𝑒𝑙) < 𝑓(𝑠)

𝑠𝑠𝑒𝑙 + 2𝑈(0,1). (𝑠 − 𝑠𝑠𝑒𝑙), 𝑒𝑙𝑠𝑒
 (4) 

 

𝑠′ = {
𝑠𝑐𝑎𝑛 , 𝑓(𝑠𝑐𝑎𝑛) < 𝑓(𝑠)

𝑠, 𝑒𝑙𝑠𝑒
 (5) 

 

𝑠𝑐𝑎𝑛 = 𝑠 + 2𝑈(0,1). (𝑠𝑏𝑒𝑠𝑡 − 𝑠) (6) 

 

Here is the explanation of (1) to (6). The initial unit is randomly selected from the search space and 

follows a uniform distribution, according to (1). In (2) states that the unit only replaces the optimal unit if it is 

superior to the optimal unit. According to (3), the selected unit is picked randomly from the population. In (4) 

states that the candidate is generated by moving the corresponding unit toward or surpassing the selected unit 

only if this selected unit is better than the corresponding unit. If not, the candidate is formed between the 

selected unit and the virtual unit that is distinct from the unit corresponding to the selected unit. In (5) states 

that the candidate replaces the current unit only if this candidate is better than the current unit. In (6) states 

that the candidate is generated by moving the corresponding unit toward and surpassing the global best. 

 

2.2.  Assessment scenario 

RGO is then implemented into the simulation that tries to solve optimization problems. This study 

uses the well-known 23 benchmark functions as theoretical optimization problems. These functions represent 

all variants of theoretical single objective problems. Moreover, many studies proposing new metaheuristics 

use these functions for the theoretical use cases, such as in studies proposing KMA [21], GSO [31], and so 

on. They can be classified into three categories: (1) high dimensional unimodal functions (HDUF), (2) high 

dimensional multimodal functions (HDMF), and (3) fixed dimensional multimodal functions (FDMF). 

Functions 1 to 7 are HDUF functions. Functions 8 to 13 are HDMF functions. Functions14 to 23 are FDMF 

functions. These 23 functions also represent functions with various problem spaces, from the narrow ones, 

such as Hartman 3, Hartman 6, Rastrigin, or Quartic, to the wide ones, such as Griewank or Schwefel. A 

detailed description of these functions is presented in Table 1. 

This study confronts RGO with four latest metaheuristic algorithms: SMA, POA, GSO, and NGO. 

All these algorithms use the swarm intelligence approach. SMA represents an algorithm that many 

optimization studies have used. SMA has been implemented and modified in several engineering problems, 

such as in optimizing the pressure vessel design [33], distribution system [34], conical peak cutting process 

[35], and hydropower multiple reservoir system [36]. On the other hand, POA, GSO, and NGO are brand-

new algorithms first introduced in 2022. Meanwhile, later studies regarding these algorithms are still rare to 

find. 
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Table 1. 23 Benchmark functions 
No Function Type Dimension Problem space Global optimal 

1 Sphere HDUF 25 [-100, 100] 0 
2 Schwefel 2.22 HDUF 25 [-100, 100] 0 

3 Schwefel 1.2 HDUF 25 [-100, 100] 0 

4 Schwefel 2.21 HDUF 25 [-100, 100] 0 
5 Rosenbrock HDUF 25 [-30, 30] 0 

6 Step HDUF 25 [-100, 100] 0 

7 Quartic HDUF 25 [-1.28, 1.28] 0 
8 Schwefel HDMF 25 [-500, 500] -418.9×dim 

9 Ratsrigin HDMF 25 [-5.12, 5.12] 0 

10 Ackley HDMF 25 [-32, 32] 0 
11 Griewank HDMF 25 [-600, 600] 0 

12 Penalized HDMF 25 [-50, 50] 0 

13 Penalized 2 HDMF 25 [-50, 50] 0 
14 Shekel Foxholes FDMF 2 [-65, 65] 1 

15 Kowalik FDMF 4 [-5, 5] 0.0003 

16 Six Hump Camel FDMF 2 [-5, 5] -1.0316 
17 Branin FDMF 2 [-5, 5] 0.398 

18 Goldstein-Price FDMF 2 [-2, 2] 3 

19 Hartman 3 FDMF 3 [1, 3] -3.86 
20 Hartman 6 FDMF 6 [0, 1] -3.32 

21 Shekel 5 FDMF 4 [0, 10] -10.1532 

22 Shekel 7 FDMF 4 [0, 10] -10.4028 
23 Shekel 10 FDMF 4 [0, 10] -10.5363 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Assessment result 

The result is presented in Tables 2 to 4. The average fitness score is shown in Table 2. The fitness 

score's standard deviation is displayed in Table 3. Table 4 displays the number of categories in which RGO 

outperforms its competitors. Several settings regarding this simulation are as follows. The maximum number 

of iterations is 100, which implies a low number of iterations. The population is set at 20, which is a 

reasonable number. Except for the maximum iteration and population size, none of the parameters of these 

algorithms can be modified. 

 

 

Table 2. Simulation result (average fitness score) 
F. SMA POA GSO NGO RGO Better than 

1 2.285x103 2.401x104 2.072x103 1.159x10-13 5.424x102 SMA, POA, GSO 

2 0 0 4.546x1028 0 0 GSO 
3 1.445x104 3.776x104 5.678x103 7.030x10-1 2.132x104 POA 

4 3.114x101 5.821x101 2.326x101 4.274x10-6 5.311x101 POA 

5 2.130x106 4.069x107 4.513x105 2.373x101 1.520x105 SMA, POA, GSO 
6 2.816x103 2.275x104 1.837x103 2.812 5.329x102 SMA, POA, GSO 

7 6.427x101 1.636x101 2.409x10-1 3.425x10-3 1.510 SMA, POA 
8 -6.548x103 -3.172x103 -3.964x103 -4.228x103 -5.553x103 POA, GSO, NGO 

9 2.759x101 2.703x102 8.982x101 1.855x10-6 1.194x102 POA 

10 9.353 1.920x101 1.879x101 9.693x10-8 1.168x101 POA, GSO 
11 2.127x101 2.026x102 1.759x101 4.167x10-9 5.627 SMA, POA, GSO 

12 3.916x105 5.667x107 1.191x104 2.880x10-1 1.300x103 SMA, POA, GSO 

13 3.959x106 1.051x108 5.128x105 2.098 3.321x104 SMA, POA, GSO 
14 1.359 2.206 5.463 1.171 1.800 POA, GSO 

15 9.169x10-2 2.483x10-3 3.006x10-3 4.922x10-4 2.569x10-3 SMA, GSO 

16 -1.439x10-1 -1.029 -1.032 -1.032 -1.032 SMA, POA 
17 6.345x10-1 4.015x10-1 3.981x10-1 3.981x10-1 3.981x10-1 SMA, POA 

18 3.000 3.054 3.000 3.000 3.000 POA 

19 -4.954x10-2 -4.954x10-2 -4.954x10-2 -4.954x10-2 -4.954x10-2 - 
20 -1.248 -3.025 -3.301 -3.303 -3.243 SMA, POA 

21 -8.454 -4.108 -8.730 -8.843 -6.607 POA 

22 -7.049 -3.781 -9.780 -9.648 -8.907 SMA, POA 
23 -8.139 -3.230 -7.291 -9.885 -7.549 POA, GSO 

 

 

Table 2 shows that RGO can find the acceptable solution for all 23 benchmark functions. RGO can 

find the sub-optimal solution of 19 functions. Meanwhile, RGO can find the optimal global solution of four 

functions: Schewfel 2.22, Six Hump Camel, Goldstein-Price, and Branin. Confronted with the sparing 

algorithms, RGO is better than three algorithms in solving seven functions, two algorithms in solving nine 
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functions, and one algorithm in solving six functions. Meanwhile, all algorithms achieve the same result in 

solving Hartman 3. Based on this result, it can be said that RGO is competitive enough confronted with these 

algorithms. Meanwhile, Table 3 shows that the standard deviation of RGO in solving these 23 functions is 

moderate. 

 

 

Table 3. Simulation result (standard deviation) 
Function SMA POA GSO NGO RGO 

1 1.180x103 5.023x103 1.004x103 1.304x10-13 3.767x102 
2 0 0 1.109x1029 0 0 

3 8.818x103 1.166x104 3.431x103 1.088 6.385x103 

4 9.443 6.514 3.070 3.030x10-6 1.359x101 
5 2.064x106 1.705x107 4.956x105 9.298x10-2 4.460x105 

6 1.415x103 4.304x103 9.489x102 3.101x10-1 4.287x102 

7 3.348x101 7.896 6.500x10-2 1.983x10-3 1.096 
8 4.644x102 4.064x102 6.872x102 3.126x102 7.780x102 

9 1.027x101 2.155x101 2.444x101 7.943x10-6 3.395x101 

10 1.882 4.671x10-1 3.116 1.319x10-7 2.003 
11 1.092x101 3.428x101 6.074 1.857x10-8 3.457 

12 4.691x105 2.212x107 4.448x104 6.044x10-2 2.711x103 

13 3.188x106 5.805x107 8.196x105 2.527x10-1 1.197x105 
14 4.894x10-1 1.966 3.354 4.874x10-1 1.569 

15 4.131x10-2 1.197x10-3 5.750x10-2 1.226x10-4 5.620x10-3 
16 2.903x10-1 2.263x10-3 2.273x10-16 2.560x10-10 2.273x10-16 

17 4.250x10-2 3.410x10-3 1.136x10-16 2.231x10-11 1.136x10-16 

18 0 6.512x10-2 4.345x10-11 5.971x10-14 0 
19 2.128x10-17 2.131x10-17 2.131x10-17 2.131x10-17 2.131x10-17 

20 5.743x10-1 1.202x10-1 4.692x10-2 1.918x10-2 5.758x10-2 

21 2.463 1.720 2.600 1.957 3.569 
22 2.932 2.210 2.072 1.910 3.042 

23 2.803 7.945x10-1 3.332 1.496 3.549 

 

 

Table 4. Supremacy comparison 

Cluster 
Number of functions outperformed by RGO 

SMA POA GSO NGO 

1 4 6 4 0 

2 3 6 5 1 
3 5 8 3 0 

Total 12 20 12 1 

 

 

Table 4 shows that RGO is competitive when confronted with SMA, POA, and GSO but less 

competitive than NGO. RGO is very competitive with POA due to its achievement in outperforming POA in 

solving 20 functions. Meanwhile, RGO is competitive enough with SMA and GSO because it outperforms 

SMA and GSO in solving 12 functions. Unfortunately, RGO outperforms NGOs only in solving one 

function. The competitiveness of RGO to SMA, POA, and GSO occurs in all categories: high dimensional 

unimodal functions, high dimensional multimodal functions, and fixed dimensional multimodal functions. 

Meanwhile, the function where RGO outperforms GSO is a high-dimensional multimodal function. 

 

3.2.  Discussion 

In general, the simulation result shows that the strategy implemented in RGO performs well in 

making RGO a good metaheuristic algorithm. The result also shows that RGO is competitive with other latest 

metaheuristic algorithms, especially those built based on swarm intelligence. Table 4 shows that RGO can 

tackle both unimodal and multimodal functions. The random motion strategy conducted in the first phase 

allows RGO to avoid the local optimal entrapment. On the other hand, partial guided and guided motion 

conducted in the second and third phases makes RGO find the acceptable solution once it can find the area of 

the global optimal solution. 

The simulation result strengthens the no-free-lunch theory because RGO is good at solving some 

functions but not so good at solving other functions. Although RGO outperforms POA, POA outperforms 

RGO in solving Kowalik. On the other hand, although, in general, RGO is inferior to NGO, RGO can 

outperform NGO in solving Schwefel.  

The superiority of NGO confronted with RGO can be traced back to the number of sequential 

motions performed in every iteration. There are two sequential motions performed in NGO. The first one is 

guided motion while the second one is random motion [23]. It is different from RGO that performs single 
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motion in every iteration. This result underlines that multiple and sequential motions in every iteration 

promises potential superiority. The superiority of NGO compared to RGO indicates the necessity of the 

interaction with other units. NGO implements this strategy along the iteration. Meanwhile, RGO implements 

this strategy only in one third of the iteration. 

Meanwhile, the superiority of RGO over POA also indicates the necessity or existence of the global 

best unit as the reference. Although POA performs multiple and sequential motions in every iteration [22], 

the missing of the best unit as the reference makes POA inferior confronted with RGO. POA depends only on 

the randomized unit as a reference [22]. 

The superiority of RGO over GSO and SMA indicates the necessity of the rigid acceptance rule. 

RGO, NGO, and POA are metaheuristics with rigid acceptance rule so that the candidate should be better 

than the current solution for replacement to take place. On the other hand, both GSO and SMA do not 

implement this rule so that worse candidate still can replace the current solution. 

There are several limitations regarding this study, especially the proposed RGO. First, RGO is still 

inferior to NGO although RGO is proven superior to POA, SMA, and GSO. Second, RGO has not been 

challenged to solve any real-world optimization problem, especially numerical optimization. It means that the 

success of RGO is limited to the theoretical problem. Third, in the primary form of RGO, the iteration is split 

into three equal size phases. Fourth, RGO still can be seen as a single-phase metaheuristic although it 

performs three strategies. 

This limitation can be explored as a baseline for future development. Technically, there is an 

opportunity to modify the phase width to become more flexible. Moreover, this phase split strategy can be 

conducted more adaptively. In the primary form of RGO, the maximum step size is twice the distance 

between the corresponding unit and its reference. This strategy can be modified by widening or narrowing 

this maximum step size, and then the performance can be evaluated. In RGO, the uniform distribution is 

conducted in the stochastic process. So, the modification of the stochastic distribution with normal, 

exponential, or other distribution can be chosen. Technical improvement also can be made by deploying the 

iteration-controlled local search as found in NGO and POA, especially to make RGO more competitive 

compared to NGO. Moreover, the single-phase approach in the original form or RGO can be transformed into 

multiple-phase approach by adding more searching methods without losing the fundamental essence of RGO 

as a metaheuristic that implements iteration-controlled strategy. Meanwhile, it is important to utilize RGO to 

solve many optimization problems with real-world use cases. 

 

 

4. CONCLUSION 

This study has presented a new swarm intelligence-based metaheuristic algorithm, namely a RGO. 

The RGO has been evaluated to find the optimal unit for 23 benchmark functions. Through simulation, it is 

shown that RGO successfully finds the acceptable, i.e., sub-optimal unit of these 23 functions. Moreover, 

RGO successfully finds the optimal global unit of four functions: Schwefel 2.22, Branin, Goldstein-Price, 

and Six Hump Camel. RGO is also competitive when confronted with the confronting algorithms. RGO 

outperforms SMA, POA, GSO, and NGO in 12, 20, 12, and 1 function consecutively. Through comparative 

assessment, it is found that the existence of global best unit as reference, implementation of rigid acceptance 

rule, and multiple-phase strategy is important to make a powerful metaheuristic. 

Several future studies can be conducted regarding this study. Although RGO is proven good in 

solving theoretical optimization problems, it should be implemented to solve various real-world optimization 

problems, from engineering to finance. Implementing RGO in solving integer-based optimization problems is 

also essential, as in many operations research studies. Transforming the RGO to solve the combinatorial 

optimization problem is also challenging. Moreover, technical improvement can be made by transforming 

RGO into a multiple-phase metaheuristics without losing its fundamental essence as a metaheuristic that uses 

iteration to determine the strategy it takes. 
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