Bulletin of Electrical Engineering and Informatics
Vol. 12, No. 6, December 2023, pp. 3517~3529
ISSN: 2302-9285, DOI: 10.11591/eei.v12i6.6614 a 3517

A novel method for estimating propagation pathloss in
millimeter-wave communication systems

Vu Thanh Quang!, Do Huu Duc!, Vu Van Yem!, Hoang Thi Phuong Thao?

Department of Communication Engineering, School of Electrical and Electronic Engineering, Hanoi University of Science and

Technology, Hanoi, Vietnam

2Department of Electronics and Telecommunications, Electric Power University, Hanoi, Vietnam

Article Info

ABSTRACT

Article history:

Received Apr 30, 2023
Revised May 15, 2023
Accepted Jul 13, 2023

Keywords:

Clustering technique

Co-IEE algorithm
Millimeter-wave communication
Minimum mean square error
method

In millimeter wave communication systems, the construction of a path loss
model that is close to empirical one plays an important role in planning cov-
erage, system capacity, and link budgets. In this paper, we propose a novel
approach applied unsupervised machine learning for propagation pathloss esti-
mation in millimeter wave communication systems based on the iterative proce-
dure of cooperative and iterative evaluation exchange (Co-IEE) algorithm. The
propagation path loss models of the time city—an urban area in the center of
Hanoi, Vietnam in both line-of-sight (LOS) and non line-of-sight (NLOS) are
estimated and calculated using the proposed approach and then they are com-
pared to the minimum mean square error (MMSE). The estimated results of
the proposed model show the approximation with the optimum one returned by
MMSE method. Moreover, the proposed model of estimating path loss can solve
the problem of sensitivity with outliers existing in MMSE and give more choices

Pathloss estimation for path loss exponents.
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1. INTRODUCTION

An increasing demand for communication traffic encourages the advent of fifth generation (5G) mobile
technology in this period of global technological growth. As a result, technological innovations and additional
frequency bands are proposed to accommodate the increased demand [1], [2]. As a result, 5G wireless commu-
nication is suggested and discussed. The 5G network is intended to meet three primary requirements: support-
ing machine communications applications in diverse industries, having a low reaction time to enable real-time
communication, and effectively exploring available spectrum [3], [4]. The 5G technology outperforms in many
ways, but the challenges posed by millimeter wave are critical. As a result, channel characterisation and mea-
surement are observed, particularly wave attenuation studies at mm-wave frequency.

There have been many linear log-distance-based path loss models, such as those in [5]-[12], which are
typically classified using one of two methods: empirical or deterministic [13]. Although the linear log-distance
model is simple and tractable, the path loss prediction performance is not always accurate for all propagation
environments. Therefore, it is necessary to propose methods for modeling and estimating pathloss with high
performance for different contexts. In this paper, we create a wave propagation model for an urban region in
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Hanoi, Vietnam, with the empirical model as our focus. Because empirical models are based on simulation
and practical measurements in a specific scenario, and measured data may contain relationships or effects of
propagation parameters with path loss values, it is a potential field for extracting, analyzing, and discovering
the hidden structure of propagation model. Furthermore, due to its simplicity and lack of computational labor,
a large number of empirical investigations and experiments have been launched to model wave propagation.
The log-distance-based model is the most prevalent sort of propagating model. The NYU wireless campaign
of real outdoor measurements developed two models to construct wave propagation, namely, the close-in (CI)
reference distance model and the floating-intercept (FI) model for urban areas at frequencies of 28 GHz and
38 GHz [14], [15]. In addition, Patwari et al. [16] discusses and analyzes the log-distance based model.
Machine learning is a data-driven research topic that enables machines or computers to learn without directly
programming them.

Machine learning tasks are divided into three categories: supervised learning, unsupervised learning,
and semi-supervised learning. Computers learn from a training set of labeled data and make judgments based
on it. Unsupervised learning is also used to learn and find the unlabeled data’s hidden and natural structure
or pattern. Some papers have studied and presented applications of supervised machine learning techniques
to deterministic wave propagation models [17]-[19]. However, it can occasionally overburden computing and
make it impossible to apply to real-world scenarios. Besides, research into the data processing of empirical
models is still in its early phases. The new Bayesian filtering method is used in the study proposed in [20]
to estimate the pathloss exponent (PLE) of the log-normal shadowing propagation model for outdoor received
signal strength indicator (RSSI) observations. The RSSI measurements were made using the Zigbee protocol
and a broadcasting distance of 1 to 100 m. The method relies on weighted random samples (particles). Its
execution mechanism is iterative and consists of three major stages: prediction, update, and resampling. In
two innovative approaches, the publication [21] proposes the idea of noise floor for evaluating the path loss
parameters of shortened data sets. In the case of an unknown number of samples below the noise floor, the PLE
and standard deviation of large-scale fading are approximated using the likelihood equation for the truncated
normal distribution. Meanwhile, if the number of missing samples is known, the estimation is based on an
incomplete data set and the expectation maximization (EM) technique. The method was successfully used
to data from automobiles communicating at 5.6 GHz. Aldossari and Chen [22] introduced a novel machine
learning approach called multiple linear regression that can tackle the concerns of inaccuracy, complexity,
and measurement capacity of traditional techniques. In comparison to conventional linear regression, multiple
linear regression improves path loss model estimation.

In this research, we present a novel unsupervised machine learning processing model for the problem
of path loss estimation in an empirical model. The proposed model is based on the cooperative and iterative
evaluation exchange (Co-IEE) clustering algorithm’s iterative method. Our model is capable of dealing with
outliers in the data set. Furthermore, it can provide a plethora of scenarios or structures that may be buried in
a particular data collection. To demonstrate the performance of the proposed model, data from wireless insite
simulation of time city area-a typical urban area in Hanoi, Vietnam are analyzed, and the PLE and standard
deviation are estimated using both the minimum mean square error (MMSE) approach and the suggested model.

2. CI FREE SPACE PATH LOSS MODEL
The CI free space reference distance path loss model [7], [23], [24] describes the dependence of path
loss value on the physical distance between Tx-Rx. The CI model is given by (1):

d
PL(d)[dB] = FSPL + 10.7.log;, N + X, (1)
0
where FSPL denotes the free space path loss which can be calculated by Friis as (2):

47Td0f

FSPL(d)[dB] = 20.log;, 2)
The environmental dependent parameter is the CI reference distance dy. This reference distance allows the
propagating model to transmit the signal without attenuation or multipath fading. In other words, within this
reference distance, the signal is transmitted in free space condition. In millimeter waveband, this reference
distance dj is set to equal 1 m as standard because of its convenience in measurement and physical guarantee.
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In CI model, since the FSPL just depends on frequency, the only parameter that need to be optimized is an
overall path loss exponent 7. Since the PLE is indicated, the path loss value linearly depends on the quantity
logo %. The PLE is a slope to measure the decreasing ratio of received signal strength (RSS) relied on the
separating distance Tx-Rx. The increase in physical distance between Tx-Rx will lead to a lower RSS, or the
higher value of path loss in propagating path. For the given data set of path loss value and corresponding Tx-Rx
distance of receivers, we need to estimate the optimum PLE in order to the error (or loss function) between
estimated set and the empirical one is minimum. X, is a Gaussian random variable with zero mean which is a
quantity to represent the error (or the shadow fading) of function. The overall PLE is calculated based on linear
regression, we need to find the best fitting line for the given data set. In this linear case, the variance of shadow
fading is equal to the concept of error function named mean square error (MSE). The square root of MSE is
root mean square error (RMSE) which is known as the standard deviation. The MSE and RMSE defined as (3):

Y@ —y)?
MSE = =22
RMSE = VMSE

Where g is estimated value, y is sample one, and N is number of data points. Normally, the mean is halved
as a convenience for the computation. In order to estimate the best fitting slope (or the best overall PLE), the
classical regression algorithm usually used is gradient descent (GD). GD is the first-order iterative optimization
algorithm of machine learning for finding the local minimum or global minimum of given linear function. The
iterative process for converging to the minimum point of GD is given by (4):

3)

Tivr =z —nf () )

Where x; is a point that we estimated after iteration i, while ;1 is a point that we find after iteration ¢ + 1; n
is the learning rate which is given as input parameter of GD algorithm; and f ' (x;) is derivative of considered
function at z;.

The GD algorithm starts at a random point, then executes its iterative procedures to gradually converge
to the optimum point. To apply the GD algorithm to the problem of path loss estimation, we use the GD to
iteratively minimize the MSE or RMSE of the data set having log-distance format as shown in (1). The overall
PLE that allows the minimum MSE will be chosen as the result of estimation. In linear regression with one
variable, the optimum point returned by GD is the global minimum, so the overall PLE returned by GD in this
case will be the optimum one.

3. PROPOSED MODEL

Figure 1 illustrates the general flowchart of our proposed model for path loss estimation. It follows
the procedure proposed in [25] with some additional steps. The proposed model includes six main steps:
i) feature selection and conversion step extracts suitable and useful information from the raw data set, ii)
forward evaluation exchange step calculates and transfers voting within receivers based on extracted data set,
iii) backward evaluation exchange step calculates and transfers feedbacks, iv) convergence checking decides
whether the procedure can stop or not; v) validating the clustering results, and vi) result interpretation and
evaluation step chooses the best result to deduce the optimum PLE.

3.1. Data set

Our proposed model takes the raw data set of path loss model as its input, then executes its iterative
procedure to finally deduce the overall PLE of given path loss model. Based on the proposed model, the
simulated data which is researched in a specific area will be discovered and analyzed to reveal some useful
patterns that can be used to deduce the optimum PLE of the considered path loss model. The raw data set
includes some important features for estimating path loss model such as the physical distance between Tx-Rx,
the path loss value of each receiver.

In CI model, the quantity log;, % is linearly affected to the value of path loss with the slope of overall
PLE 7. It means that instead of finding the best fitting slope (overall PLE 7n) with the raw data set as MMSE
method did, our proposed model groups receivers that have similar PLE into clusters and then infer the most
optimum overall PLE. The aim of our model is also to minimize the error between the estimated data with
the raw one. For more detail, the act of grouping receivers leads to the aim of minimization inter-distance
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between PLE of receivers. From there, we can evaluate the tendency of PLE values in considered data set, then
deduce the overall PLE by considering the contributions of groups. Indicating an exact overall PLE based on
tendencies of members’ PLE allows the model to return the minimum error of estimated data.

Simulated data
set of path loss

Feature selection
and conversion

'

Forward
evaluation

!

Backward
evaluation

Y

NO

Convergence
checking

Validating the
clustering results

v

Result interpretation
and evaluation

v

Figure 1. Flow chart of the proposed model

3.2. Feature selection and conversion

Overall, feature extraction step selects the core and general characteristics of objects based on crite-
ria and rules. The selected characteristics would be converted and standardized into a general and consistent
format. This step plays an important role in the model because it directly affects to the correctness and effec-
tiveness of clustering applications in the next stage. In this study, our raw data set of wave attenuation is a set
of received points, in which each point contains two data fields, i.e., physical separating distance Tx-Rx and
path loss value which will be used to estimate the overall PLE. However, we need to transfer the raw data set
into a suitable form, because the form of raw data would cause the wrong case when two receivers have the
similar path loss exponents but the distance (or difference) between them is large because of the large differ-
ence between physical distances Tx-Rx of these two receivers and it will cause the large difference in received
powers. In the CI path loss model, the goal of path loss estimation is to find the overall path loss exponent
which allows the minimum error of estimated path loss compared to the practical one. To do this, our proposed
model initially consider the specific path loss exponent of each received point which can be calculated from
path loss value and distance Tx-Rx. Then the extracted data set will be analyzed and evaluated based on an
iterative process which follows the procedure proposed by [25]. The iterative process includes 3 main phases,
i.e., forward evaluation exchange, backward evaluation exchange, and convergence checking.

3.3. Forward evaluation exchange
Let consider a set of received points: {rzy,rxa,...,rzx}. After the feature extraction step, each
receiver has a general format as (5):

re; = [n;] € R,i=[1:N] (3)
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Where n; is a path loss exponent of received point rx;. Then the model calculated the distance between each
pair of receivers to prepare for forward evaluation calculation. Each distance is calculated based on the carrying
information of receivers, the calculation is expressed as (6):

di, k = dk,i = |ni — nk|2 (6)

The distance between a pair of receivers reflects the level of their difference. A low distance implies
that two receivers have similar path loss exponent and vice versa. In this phase, N x N forward evaluations are
calculated and exchanged in parallel among NV receivers. Each receiver rx; will calculate and send N forward
evaluations including N — 1 normal forward evaluations to other receivers and one self-forward evaluation to
itself. Each normal forward evaluation sent from rx; to rx (i, k € [1 : N|;i # k) is calculated by (7):

fi k) = d(i, k) —m(i, k') (7)

Where m(i, k" is a “cumulative” distance between rz; and its “closest” receiver except rxy, in other words,
m(i, k' is a measurement of similarity between rx; and the receiver (differs to rxy) having most similar path
loss exponent with rx;. This quantity is expressed as (8):

m(i, k') = min{d(i, k') + bpre(k', 1)} (8)

K #k

Where d(i, k') is the distance between rz; and rx(k/), bpre (K , ) is backward evaluation sent from mc(k:/)
to rx; in the previous iteration, it is set to equal zero when the algorithm is running in the first iteration, and
bp,.e(k/, i) is the quantity representing the cumulative component in the calculation of m(i, k).

The normal forward evaluation indicates the competitive ability of rz; with other objects for being
representative of rx;. If f(i,k) < 0, the received point rz;, has ability to represent ra; because there is no
receiver being closer to rz; than rxzy,. In this case, the lower value of f (i, k) indicates that rz; has more ability
to represent rx;. In contrast, if f(i,k) > 0, the received point 7z, is not suitable to represent rx; because
it exists a receiver being closer to rx; than rxy. Besides, the self-forward evaluation that rz; sent to itself is
similarly calculated as the normal forward evaluation and shown in (7). It reflects the ability of rx; for being
representative based on the competition of rx; with other receivers.

f(iv 7’) =Di— LI};n{d(Z, k,) + bpre(kla Z)} 9
2
p; is an input quantity called preference value of each receiver rx;. It directly affected to the competitive
ability of receiver rx; in the competition to become representative. In this study, because we aim to extract and
discover the hidden structure of given data set and there is no existing information about the data set are known,
so that we set preference values of all receivers are equal to a general preference value p. So, the self-forward
evaluation of each receiver rx; will be expressed as (10):

/

ﬂawzp—ggw0$d+%mwﬁﬂ (10)

The lower value of general preference p could cause the bigger number of clusters at the clustering
output and vice versa. As a result, if the general preference value is low enough, it will lead to each object
becomes a cluster, or the number of clusters is maximum. While a very high preference value causes the
algorithm to return minimum number of clusters, or all receivers will live in one cluster. Based on this crucial
characteristic, we can find the most accurate and suitable clustering results of given data set.

3.4. Backward evaluation exchange

As we have known in the first phase, the negative value of forward evaluation f (4, k) reflects that rxzy,
is suitable for being representative of rx;. Therefore, to evaluate the ability of being representative based on
voting from other received points, the receiver rz;, calculates a quantity b(k, k) which is a concept of self-
backward evaluation and expressed as (11):

b(k, k) = min{0, f(i' . k)} (11)
i’ #k
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However, to fully evaluate its ability of being representative, 7z adds the quantity f(k, k) reflecting
its competition with other objects to its supporting forward evaluations. The complete evaluation of rzy is
calculated by (12):

co(k, k) = f(k, k) + b(k, k) (12)

In this phase, there are also N x NN backward evaluations in total are calculated and exchanged in parallel
among N objects. In particular, N — 1 normal backward evaluations are sent from each receiver to different
ones and one self-backward is sent to itself. The concept of normal backward evaluation is calculated by (13):

b(k,i) = max{0, co(k, k) — min{0, f(i, k)}} (13)

Because rxj; is sending backward evaluation to rx; for reviewing, so the value of normal backward
evaluation does not contain the voting from rx; to rxy. We set threshold to the value of normal backward
evaluation b(k,i) (i # k), so that it is not smaller than zero to avoid the situation when b(k, %) is negative
because of highly supported receiver rxy, which is not candidate representative of ra;. This value of b(k, ¢) not
only leads to rz; chooses rxy, as its representative while rxj, is not suitable to be the representative of rx;, but
also affects to the representative competition in the first phase of following iterations.

The positive value of b(k, ¢) implies that rz; is not suitable for being represented by ray, because rxzy,
does not deserve as a representative (no one votes for rxy), while the zero value of b(k, ¢) implies that rz; can
be represented by rxj because rx qualifies as a representative. It is important to note that the smaller value
of self-backward evaluation reflects the higher ability of each rxj to be representative, while the higher value
of normal backward evaluation b(k, ) reflects the lower ability of ra; being represented by rxy. While the
exchange is completed, all backward evaluations will be updated as cumulative evidence for reviewing forward
evaluations in the next iteration. There are /N x [N backward evaluations updated in total.

bpre(k, i) = b(k,4) (wherei, k = [1 : NJ) (14)

3.5. Convergence checking
At the end of each iteration, the model always searches a representative for each receiver and check
whether it is convergence or not. The representative c¢; of each receiver rx; is indicated based on (15):

¢i = argmin {co(i, k)} (15)
op,k=[1:N]
Where co(i, k) is the cooperative evaluation between ra; and rzy. It is a sum of forward evaluation sent from
rx; to rzy and backward evaluation sent from 7z back to rz;. The cooperative evaluation co(i, k) reflects
the level of mutual suitability between rz; and rx. The lower value of co(i, k) reflects the higher level of
suitability between rx; and rxy, and vice versa.

The model will follow that procedure until all representatives of N receivers are indicated. When the
list of representatives of all considered receivers does not change after a given number of iterations, we enclose
the iterative process and move to the step of validating results. The clustering output returned by the iterative
process is the representative set of all N receivers. From the representative set returned by the model, we
group receivers which have the same representative into a cluster and the representative of cluster is the general
representative of all members in that cluster. Each receiver is located in only one cluster and the representative
of each cluster is a receiver which has most similar carrying information to all members of that cluster, in other
words it has the most similar path loss exponent with all members of that cluster. In this case study, there is
no existing information about data set, the Co-IEE just works on its own way to discover the natural structure
of the given data set. Therefore, Silhouette validity index, which is a kind of internal validation technique, is
entirely suitable and applicable to assess the performance of clustering results. The silhouette index [26]-[28]
of each receiver rx; is defined as (16):

Lo b)) —ali)
S0 = e ). b)) (16)

Where a(7) is the average distance between rz; and other receivers locating in the same cluster with it, b(¢) is
the minimum average distance between rz;, and all other receivers in different cluster with rx;. In other words,
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b(1) is the overall average distance between rz; with its “closest” cluster. a(7) and b(¢) are calculated based on
euclidean distance to have synchronized unit with the input of Co-IEE.

To evaluate the overall performance of each clustering result, we use a concept of global silhouette
which is defined as (17):

i1 Sili
N

The single Sil(7) reflects how well suited each receiver is when it locates in the current cluster. The value of
Sil(i) ranges from -1 to 1. The clustering result is good if the S7l() is nearl while the contrast validation occurs
when Sil(7) is near -1. The value of Sil(7) is around O implies that ra; hesitantly belongs to its current cluster
and the nearest cluster with it. Meanwhile, the global silhouette Sil4;01q; indicates the overall correctness and
compactness of the clustering result. We can use this quantity to search for the most suitable number of clusters.

Sil(global) = (17

3.6. Result interpretation and evaluation
Based on the set of clusters formed in convergence checking step, we deduce an overall path loss
exponent of the whole data set. To do this, we use the statistical concept of weighted arithmetic mean. The
weighted mean indicates the center of a quantitative set of objects based on their different contributions in
the set. Therefore, we can calculate the overall path loss exponent as shown in (18), where each quantitative
object is a representative of each cluster, the weight is number of members in that cluster over N. Because the
representative of each cluster is the most similar member to others in cluster, it can represent the contributions
of its represented members.
S0 nom;.ng,
N

Where noc is number of clusters, nom; is number of members in cluster ¢, and n., is path loss exponent of the
representative of cluster .

n =

(18)

4. SIMULATION RESULTS
4.1. Simulation scenario

To obtain a data set for path loss model, we chose time city—an urban area in Hanoi, Vietnam as a
simulation location because this area is a typical place of urban environment with a lot of high-rise architecture.
The simulation is implemented in wireless insite tool with the environmental setup approximating real life. The
system is implemented with the transmitted power of 35 dBm and a communicating frequency of 28 GHz. The
PLE and standard deviation are simulated and estimated by both the MMSE method and the proposed model.

4.2. Simulation results of minimum mean square error method

In order to compare the proposed model to the MMSE method, we first simulate PLE and RMSE
using GD algorithm. Table 1 shows the estimated PLE and RMSE of simulated model of time city area. The
implementations are executed in MATLAB tool with the learning rate of GD algorithm equal to 0.01 and the
starting point of path loss exponent is 0.

Table 1. Estimated result of GD algorithm
PLE (7?) RMSE (dB)
LOS 1.80 6.53
NLOS 3.34 35.94

From the estimated parameters shown in Table 1, we construct the system of equations for the CI
model at 28 GHz as (19) and (20):

d
PLros(d)[dB) = 61.385 + 18log - + X, (witcho = 6.53B) (19)
0
PLy1os(d)[dB] = 61.385 + 33.4log di + X, (witcho = 35.94dB) (20)
0
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Figures 2 and 3 show the MATLAB simulation results of path loss estimation using GD. In which
each blue point is a receiver with corresponding path loss and the linear component 10 log %, while the red
line is the best fitting line estimated by GD.
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Figure 3. Path loss estimation of NLOS data set

4.3. Simulation results of proposed model

This subsection includes the simulated results of the proposed model applied to the data sets in time
city area. There are two simulated data sets: the LOS set includes 40 receivers, and the NLOS set includes 40
receivers. The transmission is set at a frequency of 28 GHz, a transmitted power of 35 dBm, a transmitter’s
height of 7 m, and a receiver’s height of 1.5 m. The simulation results of the relationship between the number

of clusters, the global silhouette index, and the general preference value for the LOS data set and the NLOS
data set are shown in following subsection.

4.3.1. Line-of-sight data set

Figures 4 and 5 illustrate the connections between general preference value with the number of clusters
and global silhouette index respectively while the model runs on the LOS data set. As we can see in Figure
4, the model is most stable at 3 or 2 clusters, which corresponds to a range from 0.4642 to 0.9452 and a
range from 0.9822 to 2.61. In Figure 5, we can see that the model returns the highest stable global silhouette
index (0.9623) when the general preference value varies from 0.9822 to 2.61 (a range allows model to return
2 clusters). Besides, while the general preference value is smaller than 0.9822 (a range allows model to return
3 clusters), the values of global silhouette index are quite high but not very stable. Therefore, we focus on

searching over the range from 0.9822 to 2.61 to find an optimum value of general preference value that allows
model to return the lowest RMSE.
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Figure 6 illustrates the connections of overall path loss exponent and corresponding RMSE with gen-
eral preference value. It can be seen in Figure 6, the lowest value of RMSE that the model can reach is 6.526
dB. To reach this lowest RMSE value, the general preference value must be equal to a value belonging to a set
([0.9822, 1.093], 1.87, 2.055, 2.277, [2.425, 2.61]). We can choose any value of this set for general preference
value because all values of this set will allow model to return the same result. Moreover, as in the relationship
of general preference with overall exponent, the estimated overall exponent equals to 1.801 when the result of
model is optimum. Figure 7 provides the view of estimated result while the model is executed with specific
general preference value of 0.9822. In which the star frame notes the cluster representatives, and the blue line
is fitting line estimated by proposed model. We can see that the outliers (red points) are detected exactly by the
model.
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4.3.2. Non line-of-sight data set

For the NLOS data set, the connections between general preference value with the number of clusters
and global Silhouette index are shown in Figures 8 and 9. Overall, Figure 8 shows the view that the result of
2 clusters is the most stable scenario returned by the model, while the second one is the result of 3 clusters.
These two results correspond to general preference values ranging from 16.9 to 86.62 and from 2.501 to 16.52,
respectively. Figure 9 shows that when the general preference value varies from 2.501 to 86.62 (the range
allows model to return 3 or 2 clusters), the global Silhouette values are quite high and vary from 0.81 to 0.86.
Especially, the global silhouette value reaches the highest point overall, at 0.8604 while the preference values
vary from 80.18 to 86.62. Therefore, we will search over the range from 2.501 to 86.62 of general preference
value to choose the optimum value that allows model to return the best result.
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Figure 10 provides a view of the connections between overall PLE and the corresponding RMSE with
general preference value. As we can see in the graph of connection between general preference with RMSE,
the lowest value of RMSE that the model can obtain is 35.94 dB. The result has this RMSE value when the
general preference belongs to a set ([21.45, 27.13], [29.78, 30.92], [33.95, 63.12]). Then the value of overall
path loss exponent could be equal to 3.344, 3.317, or 3.328. While the general preference value varies from
80.18 to 86.62, the RMSE is slightly higher than the lowest point, at 35.99 dB. Then the overall path loss
exponent equals to 3.421. The estimated results by the works on model with general preference values of 21.45
and 80.18 are shown in Figures 11 and 12.
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Figure 10. Connection between overall path loss exponent, RMSE, and general preference value (NLOS)
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Figure 12. Visualization of estimated results with general preference of 80.18 (NLOS set)

4.4. Result comparison

Table 2 shows the estimated results of GD and the proposed model in time city area. As supported by
Table 2, the path loss exponents of LOS condition estimated by two methods are equal with the same RMSE
(or standard deviation). The differences between two methods are witnessed in the NLOS condition, in which
the proposed model provides 4 optional path loss exponents with the same and slightly higher RMSE than the
results of GD (35.94 dB and 35.99 dB). The only result of linear regression is an optimal one. It means that
the result of path loss exponent estimated by GD is the best possible one. Therefore, the equivalent results
of the proposed model with GD demonstrate that this model is correctly applied to the problem of path loss
estimation with exact results.

Table 2. Result collections
Dataset PLE(7) RMSE (dB)

GD LOS 1.80 6.53
NLOS 3.34 35.94

LOS 1.801 6.526

Proposed model using Co-IEE ~ NLOS 3.344 35.94
3.317 35.94

3.328 35.94

3.421 35.99

5. CONCLUSION

In this study, we propose a novel model of signal processing that can be applied to millimeter wave
propagation path loss model estimation. The simulation results prove that the model is successfully applied to
the problem of path loss estimation. The path loss models of time city area (at 28 GHz, in both LOS and NLOS
conditions) are then estimated by the proposed model. The results are compared to the optimum results of the
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MMSE method and reflect the minor difference between them. For the LOS condition, the processing model
returns the estimated PLE of 1.804 with the standard deviation of shadow fading equals to 6.526 dB. In NLOS
condition, the PLE is estimated to equal 3.344, 3.317, or 3.328 with standard deviation of 35.94. Moreover,
another possible scenario is returned by the proposed model with the PLE of 3.421 and standard deviation
of 35.99 which has better correctness and separateness of clustering results. These results are similar to the
theoretical path loss model, i.e., free space PLE of 2 and PLE in urban area ranging from 3 to 5. This signal
processing model suggests the works of application to various path loss models and the in-depth discovery of
the structure of path loss model, i.e., separating the data set for constructing a more detailed and fitting path
loss model.
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