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1. INTRODUCTION
The common cold (flu) is an inhalable disease that is easily spread due to influenza viruses. The
severity of flu symptoms can vary from mild to severe, it has the potential to impact both people and animals,
such as porkers, birds, and horses. According to the centers for disease control and prevention (CDC), there
were 402 million cases of flu in the United States from 1997 to 2016 [1], the highest number of cases
occurred in 2014 at 38 million. However, not all cases may have been reported, and some patients may even
die from the flu. The 2009 and 2010 flu outbreak affected 60.8 million Americans, while the 2012 and 2013
outbreaks resulted in 710,000 hospitalizations and 56,000 deaths. Anticipated to surpass the previous
epidemic in terms of casualties, the present outbreak can be curtailed through timely intervention by
healthcare authorities. To safeguard oneself from the common flu, it is wise to obtain annual vaccination and
avoid proximity to those who are afflicted.
Influenza vaccines establish immunity and illness Influenza prevention. Influenza vaccines:
successes and continuing challenges [2] presented maternal immunization, which has an estimated efficacy of
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50-60%, is the most promising strategy to protect children who are not eligible for vaccination. This paper
mentioned influenza vaccines have been shown to significantly reduce morbidity and mortality from influenza.
Next-generation flu vaccines aim to evoke a broader, longer immune response to overcome the epidemic of
seasonal influenza virus antigens and to deal with the emergence of an emerging strain of influenza virus on
time. From Buynder et al. [3] have found the most effective prevention of Influenza in the elderly is vaccinated
with an adjuvanted and unadjuvanted trivalent inactivated influenza vaccine (T1V). Essink et al. [4] conducted a
study to evaluate whether an adjuvanted quadrivalent influenza vaccine (aQIV) and a licensed adjuvanted
trivalent influenza vaccine (@T1V) could provide broader protection against influenza in older adults. The study
concluded that aQIV could provide broader protection than aTIV against influenza in older adults.

Accurate prediction of influenza patients contributes to early public health preparedness measures that
can lessen the impact of influenza seasons. Machine learning models are good at predicting infectious disease
variables that have long time frames. Influenza forecasting has evolved through three eras. The first era used the
compartment model, which forecasts the influenza spread. This model is effective in tracking the status of
infected populations and includes types like susceptible-infected-recovered (SIR) [5], [6], susceptible-infected-
recovered-susceptible (SIRS) [7], [8], and susceptible-exposed-infected-recovered (SEIR) [9], [10], which are
deterministic and calibrated for capturing the dynamics of influenza outbreaks. In the second stage, statistical
techniques such as Box-Jenkins, automated regression integration (ARIMA) [11], and generalized
autoregressive moving average (GARMA\) [12] were used to produce highly accurate forecasts of influenza.

In modern times, the application of deep learning models has become prevalent in disease diagnosis
prediction. The predictive disease models include the stacked linear regression [13], support vector
regression [14], binomial [15], and classification and regression trees [16]. The related dataset, such as flu
count and vaccination, was provided in forecasting models to increase the accuracy of influenza prediction
results. Whilst machine learning techniques excel in organizing data based on relevant variables, they are
relatively costlier than statistical models as they require retraining with the introduction of fresh datasets.

A novel data-driven model for real-time Influenza forecasting [17] represented influenza prediction
model via long short-term memory (LSTM) and automated regression integration (ARIMA). This paper
showed the LSTM which is the deep learning model effected effectively influenza prediction in different
geographical regions. This mentioned study provided two variables consisted of geographical proximity flu
count and climatic variables. Humidity, temperature, precipitation, and sun exposure were climate factors.
This model performed regional data on the Google flu trends (GFT) and center for disease control (CDC)
influenza patient. While our present research included a vaccination dataset from the focus region and
adjacent region integrated with climate variables and flu count history from the node and adjacent region for
increased effective influenza forecasting.

Jiaming et al. [18] provided convolution neural networks (CNNs) for message hashing discusses a
novel approach to word hashing using CNNs in which keyword features are encoded into a compact binary
code. The network introduces a keyword attribute to maintain the restriction, as well as a position property
which is a combination of the word and position properties. Additionally, the relative distances of each word
in the text are encoded into vectors using a CNN experiment. The model does not require external tags/labels
and was tested on two datasets using a multi-state hash method. Our CNN model was proposed to forecast
influenza by processing flu count feature on node and adjacent regions, vaccination, and climate variables
resulting in significantly high accuracy.

Our previous research [19] has shown that we can enhance the spatial transmission effects [20] of
regional influenza using the CNN model from mentioned papers [17], [18]. In this paper, since spatial
transmission is the main cause of the influenza epidemic. We improved human movement with the
geographic topology including the local transmission effects [20], and represent it in our CNN influenza
forecasting model. The CNN improved influenza forecasting accuracy by increasing the adjustment of the
spatio-temporal factors to regional nodes and adjacent neighborhood regions to incur spatial correlations.
Additionally, our study proposes a combination of climate variables, vaccinations, and spatiotemporal
features from the United States territory region. In our influenza forecasting paper. We represented the
encounter between Americans and people in an adjacent region in the United States where significant
influenza spread with the CNN model.

2. METHOD

The CNN model has identified three critical variables in predicting influenza outbreaks in the
United States. These variables are; i) climate variable patterns, including snowfall, precipitation, and
temperature variations of the focus region, ii) the influenza vaccination of the focus region and adjacent, and
iii) a spatio-temporal factor that accounts for flu counts in the focal region and neighboring areas. The CNN
model was trained on a comprehensive dataset surrounding all regions of the United States.
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2.1. Climate multivariate data

In this complicated dataset, the climate serves as an essential determinant. The data was sourced
from the valued climate data online (CDO) [21] and includes maximum temperature (TMAX) measured in
tenths of degrees C, lowest temperature (TMIN) measured in tenths of degrees C, precipitation (PRCP)
measured in tenths of millimeters unit, and snowfall (SNOW) measured in tenths of millimeters unit. These
datasets were gathered from the global historical climatology network (GHCN) for the United States. The
weekly data was converted from two hundred million daily datasets of climate datasets. The model uses flu
count data and then transforms data into scaled values for time-series analysis. The climatic data was
collected quarterly from 2009-2016, making for a comprehensive analysis.

2.2. Influenza vaccination data

The second determinant is a vaccination immunization data. Immunization datasets collected from
the CDC [22] which involed vaccine, region, month of each influenza season, and estimated vaccination
coverage is resulted from percent of persons vaccinated in a particular place (percentage). We selected
vaccination data derived from the sample surveyed in years 2009-2016 to estimate influenza imunization in
each region. The 184,329 datasets have been converted into weekly data by utilizing the vaccination data of
the region.

2.3. Spatio-temporal data

Within our research, we are taking into consideration the spatio-temporal data. We are utilizing flu
count data from ten different regions across the United States spanning from 1997 to 2016. This data has
been collected through the CDC [23] and the national center for immunization and respiratory diseases
(NCIRD). The geographical regions of the United States can be seen in Figure 1. Additionally, we are
referring to historical flu count data in specific locations, which can be found in Table 1. This includes the
focus node and its adjacent regions. There are five groups of local transmission regions based on their
proximity, region 1 has only one adjacent region, region 2 and region 10 have two adjacent regions, region 3
and region 9 have three adjacent regions. Region 4, region 5, region 6, and region 7 have four adjacent
regions. The largest number of contiguous regions is region 8 with 5 adjacent regions. All region has a global
influenza forecasting model in recurrent neural network (RNN), LSTM, and CNN.

Health & Human Services

_/@ U.S. Department of
@,

Regions

Figure 1. The United States regional map

Table 1. Territory and their neighboring

Territory Neighboring
Territory 1 Territory 2
Territory 2 Territory 1, Territory 3
Territory 3 Territory 2, Territory 4, Territory 5
Territory 4 Territory 3, Territory 5, Territory 6, Territory 7
Territory 5 Territory 3, Territory 4, Territory 7, Territory 8
Territory 6 Territory 4, Territory 7, Territory 8, Territory 9
Territory 7 Territory 4, Territory 5, Territory 6, Territory 8
Territory 8 Territory 5, Territory 6, Territory 7, Territory 9, Territory 10
Territory 9 Territory 6, Territory 8, Territory 10
Territory 10 Territory 8, Territory 9

2.4. Convolution neural network
CNN is an extension of the traditional multilayer perceptron (MLP) [24] that aims to achieve shift
and distortion invariance by incorporating three key features: local receptive fields, shared weights, and
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spatial and temporal subsampling. CNNs consist of multiple trainable layers [25], each of which has a set of
feature maps [26] as input and output. The output of each layer represents the extracted features from the
input at different locations. Typically, each layer of CNN has three sublayers: a non-linearity sublayer, a
filter bank sublayer, and a feature pooling sublayer. The final output of CNN is obtained by one or more fully
connected layers after several convolution and pooling layers.

2.5. Proposed influenza forecasting model

In order to improve the accuracy of predicting influenza outbreaks, we utilized a 1D CNN with four
channels to integrate climate determinants such as precipitation, snowfall, maximum and minimum
temperatures of the focus region. Our fifth channel included two vaccine coverage features, measuring
vaccine coverage data in the target region and neighboring regions. Additionally, we combined spatio-
temporal features in our sixth channel, measuring flu count data in the focus and adjacent regions. By
considering these factors, an influenza predictive model is based on our CNN. was able to accurately predict
flu outbreaks in neighboring regions. This is particularly important as the interaction of people in the United
States has been a significant factor in the spread of the virus. A diagram of our model is included in Figure 2.

For a CNN model approach, the associate dataset from every city in the United States was
accumulated into a single dataset. The dataset was simultaneously trained in the different attributes size of
vaccination and geography in each region dataset. Finally, all determinant datasets are flattened and
concatenated to predict the influenza epidemic in different weeks. Our study suggested by a CNN model
aimed to predict the occurrence of influenza by analyzing multiple sets of flu data using various time
intervals and neural network structures. The advantage of this approach is that it effectively combines the
impact of neighboring regions on the influenza spread. By using deep learning to analyze big data, we aim to
identify effective patterns for predicting the spread of influenza.

The CNN model had six channels. In four channels, we establish input X into a 1D convolution in
each channel. These four convolution inputs were derived from climate variables C, which is rainfall in the
shortening PRCP, snowfall in the shortening SNOW, maximum temperature in the shortening TMAX, and
minimum temperature in the shortening TMIN, incorporating data from prior weeks. As a conceptual, when
dealing with input dataset C located in region n, the model employs (1):

"= {Ch G ChL o G @

Where C™ is the variable of climate; n is target region node | n € {1,2,3, ...,10}; j is the temporal sequences
of four climatic variables j | j € {PRCP, SNOW, TMAX, TMIN}; and T is the time series from T=1to T.

C
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In (2) and Figure 2 the climatic of the region dataset is used in 4 time steps. As an theoretical, if we
have a climate dataset for a certain region 8 with PRCP values of {8,5,3,4,...}, SNOW values of {5,4,2,7,...},
TMAX values of {6,2,8,5,...}, and TMIN values of {1,3,5,7,...}. We can use (3) to input this climatic data.

CS: 2’3""1“ (3)
11 131 15

The flu prediction model has added a fifth channel which is vaccination input data V. This channel
uses two features: the first was the vaccination rate of the focus region node and the second was the
vaccination rate v of the neighboring nodes k from the week i, as indicated in Table 1 of our model. If there
is no data available for a particular node, it is assigned a null k value of 0 using the fillna function in Python.
Both features are then fed into a 2D CNN as per (4):

N

[oe]
N U1 B

Ve = {vl?,lk' Vi1 e vin+N,k} 4)

Where V' is the variable of influenza vaccination; n is the target territory | n € {1,2,3,...,10}; i is the
sequence of time; v is the veritable rate of influenza vaccination in the contiguous vicinity; and k is the
adjacent node of the focus entity | k € {1,2, ..., Kjpax } | Kmax £S maximum number of adjacent regions.
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Figure 2. The dataset pattern utilized in the proposed global CNN for forecasting influenza

The datasets used for training consist of pairs {x;,y;}, starting from time i and continuing until it
reaches end time t | where i is a member of the set {1,2,3, ..., N} for N examples. The sequence of training is
denoted as (x;,y;) in all its complexity, where x* = V;* U {V;*} and y* = V;;*, w=sliding window size. As an
example, if the vaccination rate of Region 8 node is [4,2,7,4,7,5,3,...], and vaccination rate of five adjacent
regions consisting of the 1% Region (Region 5)=[8,7,9,5,8,9,3,...], the 2" region (region
6)=[6,2,1,8,4,9,7,...], the 3" region (region 7)=[1,5,9,7,4,1,6,...], the 4" region (region 9)=[6,-,-,4,2,4,3,...],
the 5™ region (region 10)=[1,5,-,3,8,2,1,...]. The sliding window size is 4 and the input x, which is spatio-
temporal, as (5):
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Through the sixth channel of the influenza prediction model, we have successfully formulated
spatio-temporal A by attaching two distinct attributes. The first attribute draws upon the historical flu count
of the focal node, while the second component integrates flu count information from node A and its
neighboring nodes k from the week i, as indicated in Table 1 of our model. For nodes in the flu count A
category, we assign a null k value of 0 using the fillna function in Python. Both features are then fed into a
2D CNN as outlined in (6):

A} z{aﬂnaﬁLk'm'aﬁN*} N

Where A} is the variable of spatio-temporal flu; n is the target territory | n € {1,2,3, ...,10}; i is the sequence
of time; a is the veritable count of influenza cases in the contiguous vicinity; and k is the adjacent node of
the focus entity | k € {1,2, ..., Kjnax } | Kmax =Maximum number of adjacent regions.

The datasets used for training consist of pairs {x;,y;}, starting from time i and continuing until it
reaches end time t | where i is a member of the set {1,2,3, ..., N} for N examples. The sequence of training is
denoted as (x;,y;) in all its complexity, where x[* = AT U {A}} and y/'= A%, w=sliding window size. As an
example, we will keep a record of the number of flu cases in region 8, which includes the values
[2,4,7,1,1,53,...]. The flu count of five adjacent regions consisted of the 1% region (region
5)=[4,5,3,8,7,5,3,...], the 2™ region (region 6)=[7,3,9,6,4,9,7,...], the 3" region (region 7)=[3,2,4,8,4,1,6,...1,
the 4% region (region 9)=[1,3,-,4,2,2,1,...], the 5" region (region 10)=[7,-,-,-,7,4,8,...]. A sliding window size
of 4 will be used, and the spatio-temporal input x will as (7):

4732172
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3947007 0
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8 .8 _
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3. RESULTS AND DISCUSSION

Using Python and Tensorflow libraries, we conducted a thorough examination of specific neural
network models to determine the most effective one. We analyzed data related to climate, vaccination, and
flu count from 1997 to 2016 using all ten regional models to attain the results. Our neural architecture was
trained using a differential time step varying from twelve to twenty-eight weeks. The models we assessed
included RNN, LSTM neural network, and CNN.

3.1. Evaluation metrics

In the evaluation of each model, two crucial metrics are employed- the mean absolute error (MAE)
and the root mean square error (RMSE), as previously utilized in [27], [28]. To expand, the actual influenza
count value is defined as A, while F represents the predicted influenza value, and N denotes the number of
observations. The absolute values are represented by vertical bars, as agreed by the performance predictor.
These metrics form the basis for the valuation of the model.

MAE is a statistical measure used to evaluate the performance of predictive prediction models.
MAE measures the accuracy or precision of predictive models by computing the average of the absolute
difference between predicted and observed data points. MAE is a powerful performance evaluation criterion,
as it considers the size of errors without regard to their direction, making it particularly useful when assessing
the overall model fit in regression and forecasting tasks. It is naturally expressed as a percentage and is
defined by (8):

MAE = ~Y.(A—F) (8)

The RMSE is a statistical metric widely applied in various instruction, including statistics, machine
learning, and engineering, to assess the accuracy of predictive models by calculating the square root of the
mean of the squared differences between predicted and observed values, providing a comprehensive measure
of the magnitude of errors and their dispersion in relation to the true values. To compute the RMSE. The
square root of the mean of the difference between the predicted and actual values is squared. is taken, as
demonstrated by (9):

RMSE = /%Z(A — F)2 9)
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3.2. Resulted of experiments

The study compared the predictive values of various models, including DENSE and different neural
networks, at different time steps with a learning rate=0.0001. The CNN model was designed to work with
varying filter sizes, depending on the adjacent neighboring regions. The study found that the CNN model was
able to predict flu epidemics by analyzing climate variables at the focus node, vaccination, and flu counts on
nodes and adjacent neighbors. Specifically, the CNN model performed better than the RNN and LSTM
models in predicting influenza in regions with higher time steps. The study found that prediction was less
effective in areas with a lower time step. Additionally, the study evaluated the performance of RNN, LSTM,
and CNN models using MAE and RMSE, and the findings are presented in Table 2.

Table 2. The evaluation of predictive competences for influenza utilizing RNN, LSTM, and CNN methodologies
Timesteps
Model 12 16 20 24 28
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
RNN  0.00353 0.02802 0.04335 0.07010 0.00404 0.02938 0.00455 0.02840 0.00425 0.03025
LSTM 001998 0.03106 0.01882 0.02975 0.01995 0.03101 0.01662 0.02728 0.01668 0.02740
CNN_ 0.00447 0.00596 0.00390 0.00514 0.00343 0.00446 0.00298 0.00386 0.00290  0.00376

Within Table 2, one may observe the MAE and RMSE performance outcomes affecting influenza
prediction through the employment of RNN, LSTM, and CNN models. The CNN model produced the most
accurate predictions when using 12-week time steps, with an RMSE of 0.00596 compared to RNN value of
0.02802 and LSTM value of 0.03106. When reducing the time steps to 16 weeks, CNN model has lower
MAE and RMSE value than RNN and LSTM models, with an RMSE of 0.00513, 0.07010, and 0.02975,
respectively. These results are significant because the CNN model was able to extract and learn influenza
spread patterns from limited time series data, resulting in a significant reduction in RMSE error. The CNN
model achieved the lowest RMSE of 0.00376 with 28-week time steps, while RNN and LSTM had RMSEs
of 0.03025 and 0.02740, respectively.

Figure 3 displays the outcomes of influenza forecasting in the United States using RNN, LSTM, and
CNN models. The MAE error values showed in Figure 3(a) and RMSE error values are presented in
Figure 3(b). The predictive models were compared with reliable flu CDC datasets. Our proposed CNN model
proved superior in predicting influenza over a twelve-week period compared to RNN and LSTM models. The
three critical factors influencing influenza prediction in the United States are climate in focus region, vaccine
coverage, and the number of flu cases in each region and surrounding areas. We have provided a chart of
performance errors for these indicators. The CNN effectively predicted influenza based on CNN model. In
the future, by including spatio-temporal data, disease transmission studies can effectively utilize location data
that involves a considerable population. The dataset of place coordinates, derived from Google Maps location
data, can significantly contribute to this approach, and can provide more precise flu prediction.

Region of the United States Region of the United States
0.5 =—4#— RNN —4+— RNN
—=— LSTM 0.5 —=— LSTM |
—a— CNN —e— CNN
0.4
0.4
0.3
o umJO.E]
= 2
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0.1 \ : 0.1 .uVV\rD c :
0.0 r-v 0.0 “}2‘1 Z *00000
123456 B9 Wfilr‘w;g“sge";;“‘qw“”)““”w?N 1234567889 ]ugi]%glggéﬁplg]a 192021 22232425262728
(@) (b)
Figure 3. The MAE and RMSE errors of RNN, LSTM, and CNN influenza prediction models; (a) MAE and
(b) RMSE
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4. CONCLUSION

This study outlines a model that utilizes RNN, LSTM, and CNN to predict an influenza epidemic in
the United States. The dataset used in the study consists of three factors: climate data, vaccination data, and
flu count historical data. The spatial correlations between influenza patients and geographically adjacent
regions have been represented by the CNN model impacting the accuracy of influenza epidemic predictions.
The experiment was conducted using a default timestep of twelve, sixteen, twenty, twenty-four, and twenty-
eight weeks. The CNN model at twenty-eight time steps was found to be the most effective. This research
demonstrates that machine learning can be used to predict influenza with greater accuracy using time-series
data and spatio temporal data. The study used data from ten regions in the United States, and we are hoping
to expand their dataset to include adjacent nodes. We suggest that their model has the possibility to be
applied to various clinical outbreaks and infectious diseases. They predict that in the future, disease
transmission studies could be conducted by integrating location data of numerous individuals, in addition to
spatio-temporal data. The dataset used in this study is derived from precise flu prediction data on Google
Maps, indicating the exact coordinates of the locations.
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