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 The spread of influenza is contingent upon a multitude of outbreak-related 

factors, including viral mutation, climate conditions, acquisition of 

immunity, crowded environments, vaccine efficacy, social gatherings, and 

the health and age profiles of individuals in contact with infected 

individuals. An epidemic in the region impacted by spatial transmission risk 

from adjacent regions. A few influenzas epidemic models start highlighting 

the spatial correlations between influenza patients and geographically 

adjacent regions. The proposed model is based on the concept of climatic, 

immunization, and spatial correlations which are represented by a 

convolution neural network (CNN) for influenza epidemic forecasting. This 

study presents an integration of three determinants for predicting influenza 

outbreaks, multivariate climate data, spatial data on influenza vaccination, 

and spatial-temporal data of historical influenza patients. The performance 

of three comparison models, CNN, recurrent neural network (RNN), and 

long short-term memory (LSTM) was compared by the root mean squared 

error metric (RMSE). The findings revealed that the CNN model represents 

human interaction at intervals of 12, 16, 20, 24, and 28 weeks resulting in 

the best effectiveness of the lowest RMSE=0.00376 with learning 

rate=0.0001. 
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1. INTRODUCTION 

The common cold (flu) is an inhalable disease that is easily spread due to influenza viruses. The 

severity of flu symptoms can vary from mild to severe, it has the potential to impact both people and animals, 

such as porkers, birds, and horses. According to the centers for disease control and prevention (CDC), there 

were 402 million cases of flu in the United States from 1997 to 2016 [1], the highest number of cases 

occurred in 2014 at 38 million. However, not all cases may have been reported, and some patients may even 

die from the flu. The 2009 and 2010 flu outbreak affected 60.8 million Americans, while the 2012 and 2013 

outbreaks resulted in 710,000 hospitalizations and 56,000 deaths. Anticipated to surpass the previous 

epidemic in terms of casualties, the present outbreak can be curtailed through timely intervention by 

healthcare authorities. To safeguard oneself from the common flu, it is wise to obtain annual vaccination and 

avoid proximity to those who are afflicted. 

Influenza vaccines establish immunity and illness Influenza prevention. Influenza vaccines: 

successes and continuing challenges [2] presented maternal immunization, which has an estimated efficacy of 

https://creativecommons.org/licenses/by-sa/4.0/
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50–60%, is the most promising strategy to protect children who are not eligible for vaccination. This paper 

mentioned influenza vaccines have been shown to significantly reduce morbidity and mortality from influenza. 

Next-generation flu vaccines aim to evoke a broader, longer immune response to overcome the epidemic of 

seasonal influenza virus antigens and to deal with the emergence of an emerging strain of influenza virus on 

time. From Buynder et al. [3] have found the most effective prevention of Influenza in the elderly is vaccinated 

with an adjuvanted and unadjuvanted trivalent inactivated influenza vaccine (TIV). Essink et al. [4] conducted a 

study to evaluate whether an adjuvanted quadrivalent influenza vaccine (aQIV) and a licensed adjuvanted 

trivalent influenza vaccine (aTIV) could provide broader protection against influenza in older adults. The study 

concluded that aQIV could provide broader protection than aTIV against influenza in older adults. 

Accurate prediction of influenza patients contributes to early public health preparedness measures that 

can lessen the impact of influenza seasons. Machine learning models are good at predicting infectious disease 

variables that have long time frames. Influenza forecasting has evolved through three eras. The first era used the 

compartment model, which forecasts the influenza spread. This model is effective in tracking the status of 

infected populations and includes types like susceptible-infected-recovered (SIR) [5], [6], susceptible-infected-

recovered-susceptible (SIRS) [7], [8], and susceptible-exposed-infected-recovered (SEIR) [9], [10], which are 

deterministic and calibrated for capturing the dynamics of influenza outbreaks. In the second stage, statistical 

techniques such as Box-Jenkins, automated regression integration (ARIMA) [11], and generalized 

autoregressive moving average (GARMA) [12] were used to produce highly accurate forecasts of influenza. 

In modern times, the application of deep learning models has become prevalent in disease diagnosis 

prediction. The predictive disease models include the stacked linear regression [13], support vector 

regression [14], binomial [15], and classification and regression trees [16]. The related dataset, such as flu 

count and vaccination, was provided in forecasting models to increase the accuracy of influenza prediction 

results. Whilst machine learning techniques excel in organizing data based on relevant variables, they are 

relatively costlier than statistical models as they require retraining with the introduction of fresh datasets. 

A novel data-driven model for real-time Influenza forecasting [17] represented influenza prediction 

model via long short-term memory (LSTM) and automated regression integration (ARIMA). This paper 

showed the LSTM which is the deep learning model effected effectively influenza prediction in different 

geographical regions. This mentioned study provided two variables consisted of geographical proximity flu 

count and climatic variables. Humidity, temperature, precipitation, and sun exposure were climate factors. 

This model performed regional data on the Google flu trends (GFT) and center for disease control (CDC) 

influenza patient. While our present research included a vaccination dataset from the focus region and 

adjacent region integrated with climate variables and flu count history from the node and adjacent region for 

increased effective influenza forecasting. 

Jiaming et al. [18] provided convolution neural networks (CNNs) for message hashing discusses a 

novel approach to word hashing using CNNs in which keyword features are encoded into a compact binary 

code. The network introduces a keyword attribute to maintain the restriction, as well as a position property 

which is a combination of the word and position properties. Additionally, the relative distances of each word 

in the text are encoded into vectors using a CNN experiment. The model does not require external tags/labels 

and was tested on two datasets using a multi-state hash method. Our CNN model was proposed to forecast 

influenza by processing flu count feature on node and adjacent regions, vaccination, and climate variables 

resulting in significantly high accuracy. 

Our previous research [19] has shown that we can enhance the spatial transmission effects [20] of 

regional influenza using the CNN model from mentioned papers [17], [18]. In this paper, since spatial 

transmission is the main cause of the influenza epidemic. We improved human movement with the 

geographic topology including the local transmission effects [20], and represent it in our CNN influenza 

forecasting model. The CNN improved influenza forecasting accuracy by increasing the adjustment of the 

spatio-temporal factors to regional nodes and adjacent neighborhood regions to incur spatial correlations. 

Additionally, our study proposes a combination of climate variables, vaccinations, and spatiotemporal 

features from the United States territory region. In our influenza forecasting paper. We represented the 

encounter between Americans and people in an adjacent region in the United States where significant 

influenza spread with the CNN model. 

 

 

2. METHOD 

The CNN model has identified three critical variables in predicting influenza outbreaks in the 

United States. These variables are; i) climate variable patterns, including snowfall, precipitation, and 

temperature variations of the focus region, ii) the influenza vaccination of the focus region and adjacent, and 

iii) a spatio-temporal factor that accounts for flu counts in the focal region and neighboring areas. The CNN 

model was trained on a comprehensive dataset surrounding all regions of the United States. 
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2.1.  Climate multivariate data 

In this complicated dataset, the climate serves as an essential determinant. The data was sourced 

from the valued climate data online (CDO) [21] and includes maximum temperature (TMAX) measured in 

tenths of degrees C, lowest temperature (TMIN) measured in tenths of degrees C, precipitation (PRCP) 

measured in tenths of millimeters unit, and snowfall (SNOW) measured in tenths of millimeters unit. These 

datasets were gathered from the global historical climatology network (GHCN) for the United States. The 

weekly data was converted from two hundred million daily datasets of climate datasets. The model uses flu 

count data and then transforms data into scaled values for time-series analysis. The climatic data was 

collected quarterly from 2009-2016, making for a comprehensive analysis. 

 

2.2.  Influenza vaccination data 

The second determinant is a vaccination immunization data. Immunization datasets collected from 

the CDC [22] which involed vaccine, region, month of each influenza season, and estimated vaccination 

coverage is resulted from percent of persons vaccinated in a particular place (percentage). We selected 

vaccination data derived from the sample surveyed in years 2009-2016 to estimate influenza imunization in 

each region. The 184,329 datasets have been converted into weekly data by utilizing the vaccination data of 

the region.  

 

2.3.  Spatio-temporal data 

Within our research, we are taking into consideration the spatio-temporal data. We are utilizing flu 

count data from ten different regions across the United States spanning from 1997 to 2016. This data has 

been collected through the CDC [23] and the national center for immunization and respiratory diseases 

(NCIRD). The geographical regions of the United States can be seen in Figure 1. Additionally, we are 

referring to historical flu count data in specific locations, which can be found in Table 1. This includes the 

focus node and its adjacent regions. There are five groups of local transmission regions based on their 

proximity, region 1 has only one adjacent region, region 2 and region 10 have two adjacent regions, region 3 

and region 9 have three adjacent regions. Region 4, region 5, region 6, and region 7 have four adjacent 

regions. The largest number of contiguous regions is region 8 with 5 adjacent regions. All region has a global 

influenza forecasting model in recurrent neural network (RNN), LSTM, and CNN. 
 

 

 
 

Figure 1. The United States regional map 
 

 

 

Table 1. Territory and their neighboring 
Territory Neighboring 

Territory 1 Territory 2 

Territory 2 Territory 1, Territory 3 

Territory 3 Territory 2, Territory 4, Territory 5 
Territory 4 Territory 3, Territory 5, Territory 6, Territory 7 

Territory 5 Territory 3, Territory 4, Territory 7, Territory 8 

Territory 6 Territory 4, Territory 7, Territory 8, Territory 9 
Territory 7 Territory 4, Territory 5, Territory 6, Territory 8 

Territory 8 Territory 5, Territory 6, Territory 7, Territory 9, Territory 10 

Territory 9 Territory 6, Territory 8, Territory 10 
 Territory 10 Territory 8, Territory 9 

   

 

 

 

2.4.  Convolution neural network 

CNN is an extension of the traditional multilayer perceptron (MLP) [24] that aims to achieve shift 

and distortion invariance by incorporating three key features: local receptive fields, shared weights, and 
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spatial and temporal subsampling. CNNs consist of multiple trainable layers [25], each of which has a set of 

feature maps [26] as input and output. The output of each layer represents the extracted features from the 

input at different locations. Typically, each layer of CNN has three sublayers: a non-linearity sublayer, a 

filter bank sublayer, and a feature pooling sublayer. The final output of CNN is obtained by one or more fully 

connected layers after several convolution and pooling layers. 

 

2.5.  Proposed influenza forecasting model 

In order to improve the accuracy of predicting influenza outbreaks, we utilized a 1D CNN with four 

channels to integrate climate determinants such as precipitation, snowfall, maximum and minimum 

temperatures of the focus region. Our fifth channel included two vaccine coverage features, measuring 

vaccine coverage data in the target region and neighboring regions. Additionally, we combined spatio-

temporal features in our sixth channel, measuring flu count data in the focus and adjacent regions. By 

considering these factors, an influenza predictive model is based on our CNN. was able to accurately predict 

flu outbreaks in neighboring regions. This is particularly important as the interaction of people in the United 

States has been a significant factor in the spread of the virus. A diagram of our model is included in Figure 2. 

For a CNN model approach, the associate dataset from every city in the United States was 

accumulated into a single dataset. The dataset was simultaneously trained in the different attributes size of 

vaccination and geography in each region dataset. Finally, all determinant datasets are flattened and 

concatenated to predict the influenza epidemic in different weeks. Our study suggested by a CNN model 

aimed to predict the occurrence of influenza by analyzing multiple sets of flu data using various time 

intervals and neural network structures. The advantage of this approach is that it effectively combines the 

impact of neighboring regions on the influenza spread. By using deep learning to analyze big data, we aim to 

identify effective patterns for predicting the spread of influenza. 

The CNN model had six channels. In four channels, we establish input X into a 1D convolution in 

each channel. These four convolution inputs were derived from climate variables 𝐶, which is rainfall in the 

shortening PRCP, snowfall in the shortening SNOW, maximum temperature in the shortening TMAX, and 

minimum temperature in the shortening TMIN, incorporating data from prior weeks. As a conceptual, when 

dealing with input dataset 𝐶 located in region 𝑛, the model employs (1): 
 

𝐶𝑛 =  {𝐶𝑗1
𝑛 , 𝐶𝑗2

𝑛 , 𝐶𝑗3
𝑛  , … , 𝐶𝑗𝑇

𝑛 } (1) 
 

Where 𝐶𝑛  is the variable of climate; 𝑛 is target region node | 𝑛 ∈ {1,2,3, … ,10}; 𝑗 𝑖𝑠 the temporal sequences 

of four climatic variables j | j ∈ {PRCP, SNOW, TMAX, TMIN}; and 𝑇 is the time series from 𝑇=1 to 𝑇.  

 

𝐶𝑛 = {[

𝐶𝑝𝑟𝑐𝑝1

𝐶𝑠𝑛𝑜𝑤1

𝐶𝑡𝑚𝑎𝑥1

𝐶𝑡𝑚𝑖𝑛1

] , [

𝐶𝑝𝑟𝑐𝑝2

𝐶𝑠𝑛𝑜𝑤2

𝐶𝑡𝑚𝑎𝑥2

𝐶𝑡𝑚𝑖𝑛2

] , [

𝐶𝑝𝑟𝑐𝑝3

𝐶𝑠𝑛𝑜𝑤3

𝐶𝑡𝑚𝑎𝑥3

𝐶𝑡𝑚𝑖𝑛3

] , [

𝐶𝑝𝑟𝑐𝑝4

𝐶𝑠𝑛𝑜𝑤4

𝐶𝑡𝑚𝑎𝑥4

𝐶𝑡𝑚𝑖𝑛4

]} (2) 

 

In (2) and Figure 2 the climatic of the region dataset is used in 4 time steps. As an theoretical, if we 

have a climate dataset for a certain region 8 with PRCP values of {8,5,3,4,…}, SNOW values of {5,4,2,7,…}, 

TMAX values of {6,2,8,5,…}, and TMIN values of {1,3,5,7,…}. We can use (3) to input this climatic data. 
 

  𝐶8  = {[

8
5
6
1

] , [

5
4
2
3

] , [

3
2
8
5

] , [

4
7
5
7

]}  (3) 

 

The flu prediction model has added a fifth channel which is vaccination input data 𝑉. This channel 
uses two features: the first was the vaccination rate of the focus region node and the second was the 

vaccination rate 𝑣 of the neighboring nodes 𝑘 from the week i, as indicated in Table 1 of our model. If there 

is no data available for a particular node, it is assigned a null 𝑘 value of 0 using the fillna function in Python. 

Both features are then fed into a 2D CNN as per (4): 
 

 𝑉𝑘
𝑛  = {𝑣𝑖,𝑘

𝑛 , 𝑣𝑖+1,𝑘
𝑛  , … , 𝑣𝑖+𝑁,𝑘

𝑛 } (4) 
 

Where 𝑉𝑘
𝑛  is the variable of influenza vaccination; 𝑛 𝑖𝑠 the target territory | 𝑛 ∈ {1,2,3, … ,10}; 𝑖 𝑖𝑠 the 

sequence of time; 𝑣 𝑖𝑠 the veritable rate of influenza vaccination in the contiguous vicinity; and 𝑘 𝑖𝑠 the 

adjacent node of the focus entity | 𝑘 ∈ {1,2, … , 𝐾𝑚𝑎𝑥} | 𝐾𝑚𝑎𝑥  𝑖𝑠 maximum number of adjacent regions. 
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Figure 2. The dataset pattern utilized in the proposed global CNN for forecasting influenza 
 

 

The datasets used for training consist of pairs {𝑥𝑖 , 𝑦𝑖}, starting from time i and continuing until it 

reaches end time t | where 𝑖 is a member of the set {1,2,3, … , 𝑁} for N examples. The sequence of training is 

denoted as (𝑥𝑖 , 𝑦𝑖) in all its complexity, where 𝑥𝑖
𝑛 = 𝑉𝑛

𝑛 ∪ {𝑉𝑘
𝑛} and 𝑦𝑖

𝑛 = 𝑉𝑛
𝑛, w=sliding window size. As an 

example, if the vaccination rate of Region 8 node is [4,2,7,4,7,5,3,...], and vaccination rate of five adjacent 

regions consisting of the 1st Region (Region 5)=[8,7,9,5,8,9,3,…], the 2nd region (region 

6)=[6,2,1,8,4,9,7,…], the 3rd region (region 7)=[1,5,9,7,4,1,6,…], the 4th region (region 9)=[6,-,-,4,2,4,3,…], 

the 5th region (region 10)=[1,5,-,3,8,2,1,…]. The sliding window size is 4 and the input x, which is spatio-

temporal, as (5): 
 

𝑥𝑖 
8, 𝑦𝑖

8 = {[

8 6 1 4 6 1 4
7 2 5 2 0 5 2
9 1 9 7 0 0 7
5 8 7 4 4 3 4

]} (5) 

 

Conv1D Feature maps Flatten 

Channel 1: C
PRCP

 

Channel 2: C
SNOW

 

Channel 3: C
TMAX

 

Conv2D Feature maps Flatten 

Filter layer & Activation layer   Pulling layer & Flattening Fully-connected Output 

Concatenate 

12288 

Dense 

1000 

Dense 

500 

Multivariate time series data Feature extraction Prediction 

Channel 4: C
TMIN

 

Channel 6: Spatio-temporal 11x5x256 5x2x256 

16x6x1 

input convolutions subsampling 

14x256 7x256 

16x1 

input convolutions subsampling 

Channel 5: Vaccination 11x5x256 5x2x256 

16x6x1 

input convolutions subsampling 

14x256 7x256 

16x1 

input convolutions subsampling 

14x256 7x256 

16x1 

input convolutions subsampling 

14x256 7x256 

16x1 

input convolutions subsampling 
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Through the sixth channel of the influenza prediction model, we have successfully formulated 

spatio-temporal 𝐴 by attaching two distinct attributes. The first attribute draws upon the historical flu count 

of the focal node, while the second component integrates flu count information from node 𝐴 and its 

neighboring nodes 𝑘 from the week i, as indicated in Table 1 of our model. For nodes in the flu count 𝐴 

category, we assign a null 𝑘 value of 0 using the fillna function in Python. Both features are then fed into a 

2D CNN as outlined in (6): 
 

  𝐴𝑘
𝑛  = {𝑎𝑖,𝑘

𝑛 , 𝑎𝑖+1,𝑘
𝑛  , … , 𝑎𝑖+𝑁,𝑘

𝑛 } (6) 
 

Where 𝐴𝑘
𝑛  𝑖𝑠 the variable of spatio-temporal flu; 𝑛 𝑖𝑠 the target territory | 𝑛 ∈ {1,2,3, … ,10}; 𝑖 𝑖𝑠 the sequence 

of time; 𝑎 𝑖𝑠 the veritable count of influenza cases in the contiguous vicinity; and 𝑘 𝑖𝑠 the adjacent node of 

the focus entity | 𝑘 ∈ {1,2, … , 𝐾𝑚𝑎𝑥} | 𝐾𝑚𝑎𝑥 =Maximum number of adjacent regions. 

The datasets used for training consist of pairs {𝑥𝑖 , 𝑦𝑖}, starting from time i and continuing until it 

reaches end time t | where 𝑖 is a member of the set {1,2,3, … , 𝑁} for N examples. The sequence of training is 

denoted as (𝑥𝑖 , 𝑦𝑖) in all its complexity, where 𝑥𝑖
𝑛 = 𝐴𝑛

𝑛 ∪ {𝐴𝑘
𝑛} and 𝑦𝑖

𝑛= 𝐴𝑛
𝑛, w=sliding window size. As an 

example, we will keep a record of the number of flu cases in region 8, which includes the values 

[2,4,7,1,1,5,3,…]. The flu count of five adjacent regions consisted of the 1st region (region 

5)=[4,5,3,8,7,5,3,…], the 2nd region (region 6)=[7,3,9,6,4,9,7,…], the 3rd region (region 7)=[3,2,4,8,4,1,6,…], 

the 4th region (region 9)=[1,3,-,4,2,2,1,…], the 5th region (region 10)=[7,-,-,-,7,4,8,…]. A sliding window size 

of 4 will be used, and the spatio-temporal input 𝑥 will as (7): 
 

 𝑥𝑖 
8, 𝑦𝑖

8 = {[

4 7 3 2 1 7 2
5 3 2 4 3 0 4
3 9 4 7 0 0 7
8 6 8 1 4 0 1

]} (7) 

 

 

3. RESULTS AND DISCUSSION  

Using Python and Tensorflow libraries, we conducted a thorough examination of specific neural 

network models to determine the most effective one. We analyzed data related to climate, vaccination, and 

flu count from 1997 to 2016 using all ten regional models to attain the results. Our neural architecture was 

trained using a differential time step varying from twelve to twenty-eight weeks. The models we assessed 

included RNN, LSTM neural network, and CNN. 

 

3.1.  Evaluation metrics 

In the evaluation of each model, two crucial metrics are employed- the mean absolute error (MAE) 

and the root mean square error (RMSE), as previously utilized in [27], [28]. To expand, the actual influenza 

count value is defined as 𝐴, while 𝐹 represents the predicted influenza value, and 𝑁 denotes the number of 

observations. The absolute values are represented by vertical bars, as agreed by the performance predictor. 

These metrics form the basis for the valuation of the model. 

MAE is a statistical measure used to evaluate the performance of predictive prediction models. 

MAE measures the accuracy or precision of predictive models by computing the average of the absolute 

difference between predicted and observed data points. MAE is a powerful performance evaluation criterion, 

as it considers the size of errors without regard to their direction, making it particularly useful when assessing 

the overall model fit in regression and forecasting tasks. It is naturally expressed as a percentage and is 

defined by (8): 
 

𝑀𝐴𝐸 =
1

𝑁
∑(𝐴 − 𝐹) (8) 

 

The RMSE is a statistical metric widely applied in various instruction, including statistics, machine 

learning, and engineering, to assess the accuracy of predictive models by calculating the square root of the 

mean of the squared differences between predicted and observed values, providing a comprehensive measure 

of the magnitude of errors and their dispersion in relation to the true values. To compute the RMSE. The 

square root of the mean of the difference between the predicted and actual values is squared. is taken, as 

demonstrated by (9): 
 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐴 − 𝐹)2 (9) 
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3.2.  Resulted of experiments 

The study compared the predictive values of various models, including DENSE and different neural 

networks, at different time steps with a learning rate=0.0001. The CNN model was designed to work with 

varying filter sizes, depending on the adjacent neighboring regions. The study found that the CNN model was 

able to predict flu epidemics by analyzing climate variables at the focus node, vaccination, and flu counts on 

nodes and adjacent neighbors. Specifically, the CNN model performed better than the RNN and LSTM 

models in predicting influenza in regions with higher time steps. The study found that prediction was less 

effective in areas with a lower time step. Additionally, the study evaluated the performance of RNN, LSTM, 

and CNN models using MAE and RMSE, and the findings are presented in Table 2. 

 

 

Table 2. The evaluation of predictive competences for influenza utilizing RNN, LSTM, and CNN methodologies 

Model 

Timesteps 

12 16 20 24 28 
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

RNN 0.00353 0.02802 0.04335 0.07010 0.00404 0.02938 0.00455 0.02840 0.00425 0.03025 

LSTM 0.01998 0.03106 0.01882 0.02975 0.01995 0.03101 0.01662 0.02728 0.01668 0.02740 

CNN 0.00447 0.00596 0.00390 0.00514 0.00343 0.00446 0.00298 0.00386 0.00290 0.00376 

 

 

 Within Table 2, one may observe the MAE and RMSE performance outcomes affecting influenza 

prediction through the employment of RNN, LSTM, and CNN models. The CNN model produced the most 

accurate predictions when using 12-week time steps, with an RMSE of 0.00596 compared to RNN value of 

0.02802 and LSTM value of 0.03106. When reducing the time steps to 16 weeks, CNN model has lower 

MAE and RMSE value than RNN and LSTM models, with an RMSE of 0.00513, 0.07010, and 0.02975, 

respectively. These results are significant because the CNN model was able to extract and learn influenza 

spread patterns from limited time series data, resulting in a significant reduction in RMSE error. The CNN 

model achieved the lowest RMSE of 0.00376 with 28-week time steps, while RNN and LSTM had RMSEs 

of 0.03025 and 0.02740, respectively. 

Figure 3 displays the outcomes of influenza forecasting in the United States using RNN, LSTM, and 

CNN models. The MAE error values showed in Figure 3(a) and RMSE error values are presented in  

Figure 3(b). The predictive models were compared with reliable flu CDC datasets. Our proposed CNN model 

proved superior in predicting influenza over a twelve-week period compared to RNN and LSTM models. The 

three critical factors influencing influenza prediction in the United States are climate in focus region, vaccine 

coverage, and the number of flu cases in each region and surrounding areas. We have provided a chart of 

performance errors for these indicators. The CNN effectively predicted influenza based on CNN model. In 

the future, by including spatio-temporal data, disease transmission studies can effectively utilize location data 

that involves a considerable population. The dataset of place coordinates, derived from Google Maps location 

data, can significantly contribute to this approach, and can provide more precise flu prediction. 

 

 

  
(a) (b) 

 

Figure 3. The MAE and RMSE errors of RNN, LSTM, and CNN influenza prediction models; (a) MAE and 

(b) RMSE 
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4. CONCLUSION  

This study outlines a model that utilizes RNN, LSTM, and CNN to predict an influenza epidemic in 

the United States. The dataset used in the study consists of three factors: climate data, vaccination data, and 

flu count historical data. The spatial correlations between influenza patients and geographically adjacent 

regions have been represented by the CNN model impacting the accuracy of influenza epidemic predictions. 

The experiment was conducted using a default timestep of twelve, sixteen, twenty, twenty-four, and twenty-

eight weeks. The CNN model at twenty-eight time steps was found to be the most effective. This research 

demonstrates that machine learning can be used to predict influenza with greater accuracy using time-series 

data and spatio temporal data. The study used data from ten regions in the United States, and we are hoping 

to expand their dataset to include adjacent nodes. We suggest that their model has the possibility to be 

applied to various clinical outbreaks and infectious diseases. They predict that in the future, disease 

transmission studies could be conducted by integrating location data of numerous individuals, in addition to 

spatio-temporal data. The dataset used in this study is derived from precise flu prediction data on Google 

Maps, indicating the exact coordinates of the locations. 
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