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ABSTRACT

Number of cardiac conditions have been associated with abnormal heartbeat (ar-
rhythmia) such as ventricular fibrillation (Vfib), ventricular flutter (Vfl), and
ventricular tachycardia (Vta). This is a difficult and essential job for timely
clinical assessment and identification of these potentially life-threatening heart
arrhythmias. With the aid of a one-dimensional electrocardiogram (ECG) sig-
nal and its associated two-dimensional image, the suggested method provides a
strategy for the detection of time-frequency interpretation (Vfib, Vfl, and Vta).
A four-stage cascaded Savitzky-Golay (SG) filter is used after a 2-stage median
filter to preprocess the ECG signal. This technique employs z-score normalisa-
tion after brief (2 sec) ECG readings. The classification of these ECG segments
(1-D) and associated time-frequency representation pictures (2-D) was explored
separately using a bi-directional long short-term memory-based network. Eight
distinct categorization scenarios were examined, and then an average accuracy
of 99.67% for 1-D ECG and 99.87% for 2-D ECG signal was attained.
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1. INTRODUCTION
The physiological functions of the heart are electrically portrayed by the electrocardiogram (ECG)

[1]. Any alteration in the ECG signal’s morphology indicates a heart problem. Cardiovascular diseases are the
major cause of death worldwide, and not just in middle- and lower-income nations [2], [3]. The most frequent
reasons for cardiovascular fatalities are ventricular fibrillation (Vfib), ventricular flutter (Vfl), and ventricular
tachycardia (Vta) [4]. In order to effectively treat Vfib and Vta patients, automatic external defibrillators
(AEDs) as well as implanted cardioverter defibrillators (ICDs) should be able to distinguish between Vfib
and Vta successfully and consistently [5]. Therefore, accurate and prompt detection of cardiac problems may
contribute to preventing mortality from heart failure or stroke [6]. Manual ECG analysis requires a high level
of expertise from the cardiologist in order to detect cardiovascular problems. The ECG is normally examined
by a cardiologist to look for irregularities, which renders the process lengthy and frustrating and reduces the
diagnostic effectiveness [7]. Three distinct classes of premature ventricular contractions (PVC, normal, and all
other beats as one class) are identified in [8]. The application of statistics to the features that characterise ECG
signals was demonstrated in [9]. The development of multilayer perceptron (MLP) neural network designs that
can recognise ECG signal variability is described in [9]. They have proposed a three-stage method made up of
units for denoising, feature extraction, and classification. Despite the fact that there were very few recordings
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collected for the experiment, the precision was not as intended. The ECG signal is preprocessed by employing
discrete wavelet transform, extracted the statistical features and are fed to the support vector machine (SVM)
for categorization [10]. Castro et al. [11] extracted the characteristics like heart rate variability, pressure
wave (P-Wave), and QRS complex from the ECG and fed to feedforward neural network for categorization
of paroxysmal atrial fibrillation. Nugroho et al. [12] proposed an efficient model which can able to forecast
coronary artery diseases and acheived good accuracy by effectively tuning hyperparametrs.

Recently, especially with the application of artificial intelligence (AI), automatic categorization of
different cardiac problems has increased tremendously. Asmae et al. [13], a synthetic minority oversam-
pling strategy is used to address issues with imbalanced classes. To conduct an empirical assessment, many
researchers employed long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM)
[14]–[19]. Using an unbalanced dataset, atrial fibrillation (Afib) was automatically classified in [20] using
a hybrid convolutional neural network (CNN)-LSTM approach. As it can be applied directly to one dimen-
sional recurrent neural network (RNN) as well as CNN models, deep learning (DL) may be utilised to achieve
one-dimensional ECG data classification. Consequently, using an AI model designed for a 2-D image to char-
acterize a 1-D signal is not possible [7]. As a result, processing the 1-D ECG signal for arrhythmia classification
using 2-D image classification approaches is best accomplished through signal conversion into the spectral do-
main. Time-frequency approximations have been employed in many applications for efficient interpretation
of non-stationary signals like sonar, radar, biological, multimedia data, seismic, and more. Utilizing temporal
frequency distributions is the most widely used technique [21]. For a variety of frequency-modulated signals,
several scientists have diligently attempted to identify an ideal distribution [22]–[24] There have been several
time-frequency distributions proposed.

After segmentation and preprocessing, our proposed approach prepares the dataset by utilising z-
score normalisation. The one-dimensional ECG data was transformed into the model’s two-dimensional visual
representation in order to use it (i.e., in time-frequency domain). Our suggested solution makes use of a
Bi-LSTM oriented DL model to classify ECG in both 1-D and 2-D. The paper is formatted as follows: the
databases used for this study and underlying methodology for this suggested technique are discussed in section
2. The findings are presented in section 3, the discussion is presented in section 4, and a succinct conclusion is
presented in section 5.

2. MATERIALS AND METHOD
The ECG datasets used in this study were taken from the MIT-BIH malignant ventricular ectopy

database (MVED) and creighton university ventricular tachyarrhythmia database (CUVDB) [25], [26]. 35
eight-minute ECG recordings of human patients with sustained spells of Vta, Vfl, or Vfib can be found in the
CUVDB. The MVED has 22 half-hour ECG recordings of individuals who experienced persistent ventricular
tachycardia, ventricular fibrillation, and ventricular flutter. From each record, required slices are selected de-
pending on the annotations. CUVDB contains 35 eight-minute ECG recordings of human subjects who had
sustained Vfib, Vfl, and Vta episodes. These rhythms are incredibly difficult to capture in high-quality, making
them crucial for the creation and assessment of ventricular arrhythmias [25].

In this section, we provide our proposed method for automatic Vfl, Vfib, and Vta categorization using
an ECG image AI-based idea. The five steps of the methodology include preprocessing, segmentation, 2-D
image conversion, normalisation, and Bi-LSTM. Figure 1 shows the proposed technique’s process flow.

Figure 1. Work flow of the proposed technique
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2.1. Pre processing
The dominant noises in the raw ECG signal are baseline line wander (BW) as well as powerline

interference (PLI). The technique’s performance is considerably improved by reducing contamination from the
original ECG, which is an essential phase. The noise present in the signal makes it difficult to identify the
state of the heart. To obtain a BW free ECG at the preprocessing stage, the raw ECG signal is passed via a
two-stage median filter [27]. The PLI noise contained in the ECG signal is then removed using a four-stage
Savitzky-Golay (SG) filter [28].

2.2. Segmentation and normalisation
Both datasets contain lengthy ECG records that need to be split before being fed into a DL algorithm.

After preprocessing for investigation, long-term ECG signals are divided into short-term ECG segments (2
sec). 500 samples, which are enough for the DL model, are present in a 2-second slice [29], [30]. Figures 2(a)
to (d) show the segments of the normal, Vfib, Vfl, and Vta signals, respectively.

(a) (b)

(c) (d)

Figure 2. Sample segments of; (a) normal heartbeat rhythm segment, (b) ventricular fibrillation segment, (c)
ventricular flutter segment, and (d) ventricular tachycardia segment

The segmented ECG signal is then normalised. By maintaining the signal inside the range, this method
enables DL models to train more rapidly and accurately. To normalise the signal, the z-score method was
employed. The mathematical formula is provided by (1):

x(n) =
h(n)− µ

σ
(1)

where h(n) denotes original signal, x(n) represents the normalised signal, µ is mean, and σ is standard devia-
tion.

2.3. Time-frequency image conversion
The time-frequency (T-F) image is a 2-D (2-D) representation of the energy distribution of a signal.

The frequency content of a signal is described by prior spectrum analysis techniques without revealing the
precise locations of the signal’s individual frequency components. The short-term Fourier transform is used to
receive the frequencies in each sector of the spectrogram, which divides the signal into shorter terms (STFTM).
By a spectrogram of smaller sections, the normalised and square magnitude of the STFTM parameters are
displayed. The energy present in the STFTM spectrogram [31] is equal to the energy in the time–frequency
signal. Figures 3(a) to (d) depicts time-frequency representations of normal, Vfib, Vfl, and Vta segments
respectively.
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(a) (b)

(c) (d)

Figure 3. 2-D representation of; (a) normal, (b) Vfib, (c) Vfl, and (d) Vta signals

2.4. Feature extraction
The effectiveness of the proposed method can be improved by feature extraction, such as instantaneous

frequency (fins(t)) and spectrum entropy (SPEN). The signal time-dependent frequency, which was obtained
using (2), is determined by the fins(t) [32].

fins(t) =

∫∞
0

fQ(t, f)df∫∞
0

Q(t, f)df
(2)

where Q(t, f) is spectrogram power spectrum of the ECG signal.
The distribution of the signal spectrum is also computed by SPEN using the distribution power spec-

trogram. The normalised power distribution’s Shannon entropy is computed in the frequency domain by the
SPEN, which interprets the signal as a probability distribution. A signal’s power spectrum as well as probabil-
ity distribution function is used to generate the SPEN equation. In (3) Vakkuri et al. [33] was used to compute
the SPEN:

SPEN = −
N∑

m=1

Q(m) log2 Q(m) (3)

where Q(m) is the probability distribution.

2.5. Bidirectional long short term memory
The LSTM was developed by Hochreiter and Schmidhuber to overcome vanishing gradient problems,

particularly in ANN designs [34]. A kind of RNN called LSTM is used to handle sequential data processing,
including voice identification, genome exploration, image categorization, as well as other classifications [35].
The ANN’s inability to handle temporal data well and its dependency on previous input for future input are two
issues that the RNN network resolves. A hidden layer resembling memory cells is used by LSTM [36]. The
three gates: the input gate (ig), output gate (og), and forget gate (fg), govern the memory unit, which saves
the temporal information traveling through it. The ig checks the input sequence and prior concealed state to
see if the input is still worth saving, and then utilises it to gate new memory module. The fg is identical to
the ig , but it does not use the input sequence to determine whether or not the preceding memory unit may be
used to estimate the current memory unit. In the LSTM, the og is not clearly visible. These gates provide
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ranges between zero and one by using the sigmoid as an activation function. A value of 0 in the activation
function denotes a closed gate, while a value of 1 denotes an open gate. No data can pass through the gate
when it is closed, but all data can pass through when the gate is released [37]. The internal structure of a single
LSTM unit is shown in Figure 4. The LSTM cell’s restrictions, which only permit the use of previous data,
must be circumvented. Schuster and Paliwal [38] proposed bidirectional recurrent neural networks (BiRNNs),
that are composed of two separate LSTM hidden layers with similar output but in opposite directions. This
design uses insights from the past and the future in the output layer. In Bi-LSTM, an input sequence X = (X1,
X2, ..., Xn ) is calculated in the forward direction as

−→
hf = (

−→
h1,
−→
h2,
−→
h3......

−→
hn) and backward directions as

←−
hb = (

←−
h1,
←−
h2,
←−
h3....

←−
hn). This cell’s final out is created by both hf and hb the final sequence of out reads y =

(y1, y2, y3 ..., yn ). The basic structure of Bi-LSTM network is depicted in the Figure 5.

Figure 4. Architecture of an LSTM unit

The Bi-LSTM network is designed with a sequence input layer, where the sequence input is equal
to one for a 1-D representation and two for a 2-D representation. Next comes a 100-hidden-unit Bi-LSTM
layer, then a fully connected layer with a 4-dimensional inner space, and finally an activation function titled
softmax in the output layer. The “crossentropyex” loss function-based final classification layer follows the fully
connected layer. In (4)-(8) describe the mathematical specifics for the gates in Bi-LSTM:

fg = sigmoid(Wxfxt +Wfhht−1) + bf (4)

ig = sigmoid(Wixxt+Wihht−1 + bi) (5)

og = sigmoid(Woxxt +Wohht−1 + bo) (6)

ct = ct−1 ⊙ fg + ig ⊙ tanh(Wcxxt +Wchht−1 + bc) (7)

ht = og ⊙ tanh(ct) (8)

where ct denotes current state cell, ht represents current hidden state, and ⊙ depicts element-wise multiplica-
tion of vectors.

Figure 5. Basic organization of Bi-LSTM network
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3. RESULTS
Data from CUVDB and MVED were used to evaluate the method’s performance for four distinct

categories of Vfib, Vfl, Vta, as well as normal. MATLAB 2020a software was used to conduct the experiments
on a desktop computer with an Intel i7-series processor running at 3.12 GHz and 16 GB of RAM. In this work,
the identification of normal, Vfib, Vfl, as well as Vta in 1-D and 2-D representations was carried out using
the Bi-LSTM, and the outcomes were verified using other established methods. The 10-fold cross-validation
process of the LSTM model was used to train and evaluate the proposed neural network model. For the Bi-
LSTM model to perform classification during research, the following aspects were chosen: Adam was chosen
as the optimizer, with a batch size of 100 and a learning rate of 0.01. Each investigation was simulated with
the 30 epochs in consideration to ensure the consistency of the model. For binary class classification, a total
of 11396 normal, 1200 Vfib, 1000 Vfl, and 1200 Vta segments are utilised. 90 percent of them i.e., 10360,
1080, 900, and 1080 samples of normal, Vfib, Vfl, and Vta, respectively, were used for training and the rest 10
percent of the data i.e., 1036 normal, 120 Vfib, 100 Vfl, and 120 Vta is employed for testing.

The results are presented on binary class classification utilizing two approaches: 1-dimensional ECG
and its time–frequency representation as inputs. Table 1 depicts the confusion matrix (CMX) elements obtained
by using test data for different classification strategies. To assess the classification’s performance, we employed
performance metrics such as accuracy (ACCY%), sensitivity (SEN%), specificity (SPY%), and positive pre-
dictivity (PP%). The metrics mentioned afore were calculated using:

ACCY% =
(TP + TN)

(TP + TN + FN + FP )
× 100 (9)

SEN% =
(TP )

(TP + FN)
× 100 (10)

SPY% =
(TN)

(TN + FP )
× 100 (11)

PP% =
(TP )

(TP + FP )
× 100 (12)

where TP denotes true positive, FP represents false positive, TN is true negative, and FN denotes false negative.

Table 1. CMX and performance metrics calculations
Input Experimentation TP FP FN TN SEN(%) SPY(%) PP(%) ACCY(%)
1-D Normal Vs Vfl 100 0 4 1032 96.15 100 100 99.65

Normal Vs Vfib 120 0 1 1035 99.17 100 100 99.91
Vfib Vs Vfl 100 0 0 120 100 100 100 100
Normal Vs Vta 119 1 4 1032 96.75 99.9 99.17 99.57
Vfib Vs Vta 120 0 1 119 99.17 100 100 99.58
Vfl Vs Vta 100 0 1 119 99.01 100 100 99.55
Normal Vs Vfib + Vfl 213 7 3 1033 98.61 99.33 96.82 99.2
Normal + Vfl Vs Vfib 120 0 1 1135 99.17 100 100 99.92
Average 124 1 1.88 703.13 98.50 99.90 99.50 99.67

2-D Normal Vs Vfl 100 0 3 1033 97.09 100 100 99.74
Normal Vs Vfib 119 1 2 1034 98.35 99.9 99.17 99.74
Vfib Vs Vfl 100 0 0 120 100 100 100 100
Normal Vs Vta 119 1 1 1135 99.17 99.91 99.17 99.84
Vfib Vs Vta 120 0 0 120 100 100 100 100
Vfl Vs Vta 100 0 0 120 100 100 100 100
Normal Vs Vfib + Vfl 219 1 4 1032 98.21 99.9 99.55 99.6
Normal + Vfl Vs Vfib 120 0 0 1036 100 100 100 100
Average 124.63 0.38 1.25 703.75 99.10 99.96 99.74 99.87

3.1. Experimentation with 1-D electrocardiogram
When no additional features could be recovered in this experiment, the output from the Bi-LSTM

prototype using 1-D ECG was obtained. After preprocessing, segmentation, and normalisation, the database
was subsequently compelled to use Bi-LSTM for classification. This dataset was divided into segments that
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were each 1 × 500 pixels long. The Bi-LSTM prototype used in this study uses a bi-directional LSTM layer
(100 hidden units), a fully linked layer (4 units, softmax activation), and a final output classification layer to
produce the results (crossentropyex loss function).

The experimental results obtained using 1-D ECG are depicted in the Table 1 under the row labeled
‘1-D’. From the Table 1 under the row labeled ‘1-D’, we infer that we have achieved ACCY% of 100 in the
case of Vfib Vs. Vfl. The average ACCY% obtained for different classification strategies is 99.67. The average
SEN%, SPY%, and PP% obtained for different classification strategies are 98.5, 99.9, and 99.5 respectively.

3.2. Experimentation using time–frequency (2-D) representation of electrocardiogram
In this study, the dataset for the Bi-LSTM structure was created using the 2-D ECG format. The

1-D ECG data’s time-frequency description was produced via the spectrogram. The instantaneous frequency
and spectral entropy of the spectrum were computed for each segment of the dataset. The time-frequency
representation of the ECG was combined with the Bi-LSTM model for categorization. The developed model is
put to the test using several categorization strategies, which are discussed in the preceding section.

The experimental results obtained using 2-D ECG are depicted in the Table 1 under the row labeled
‘2-D’. From the Table 1 under the row labeled ‘2-D’, we infer that we have achieved highest ACCY% of 100 in
the case of Vfib Vs Vfl, Vfib Vs Vta, and Vfl Vs Vta. The average ACCY% obtained for different classification
strategies is 99.87. The average SEN%, SPY%, and PP% obtained for different classification strategies are
99.1, 99.96, and 99.74 respectively. We have also performed the experimentation for different epoches. The
plot showing various accuracies against different epoches for different cases of 1-D and 2-D ECGs is shown in
the Figure 6(a) and Figure 6(b) respectively.

(a)

(b)

Figure 6. Plot showing the number of epoches against ACCY% for different cases of; (a) 1-D and (b) 2-D
ECG

4. DISCUSSION
In prior investigations, the feature extraction stage was used to create data for the feeding classifier

that was used to identify Vfib, Vfl, and Vta. As far as we are aware, that also happens with every arrhythmia
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detection method and every categorization technique that relies on biological data [39]. No matter whether
a signal’s components are from the frequency domain, the time domain, or the cardiac cycle, features are
thought to collect information that is relevant to class discrimination [40]. Thus, deciding which attributes
should have been used as classifier input has turned into an usual challenge for learning algorithms [39]. First,
we hypothesised that since features are presumed either explicitly or implicitly from 1-D or 2-D anatomical
structure of the ECG signal, time-frequency depiction images could be directly fed into any classification
model to achieve the best results, provided that time and frequency details are preserved without any loss [41].
We concentrated on recognising and differentiating normal, Vfib, Vfl, and Vta despite keeping the extent of
preprocessing necessary to a minimum in order to verify our hypotheses. The proposed method is contrasted
with a number of other methods in Table 2.

Table 2. Comparison of the proposed technique with various existing methods

Author Method Input Type of arrhythmias
Performance metrics

ACCY(%) SEN(%) SPY(%)

Current Bi-LSTM with Z-score NRSN
1-D Nl, Vfib, Vfl, and Vta 99.67 98.5 99.9
2-D Nl, Vfib, Vfl, and Vta 99.87 99.1 99.96

[42] SVM + AdaBoost 1-D Vfib 98.20 98.25 98.18
[30] CNN 1-D Vfl Vs Vta Scenario 81.25 90.46 70.82
[43] 2-D CNN 2-D Shockable rhythms 98.82 95.05 99.43

[41]
ANN 2-D Vfib,Vta 98.19 95.56 98.8
BGC 2-D Vfib,Vta 98.44 98.46 98.43

[44] DAS 1-D Vfib 94.1 93.8
[45] SVM 1-D Vfib 96.3 96.2 96.3
[5] AEY 1-D Vfib 91 91.84 90.2
[4] KNNS 1-D Vfib 93.2 98.1 88
[4] RNFN 1-D Vfib 91.3 91.53 90.91

[46]

RFAM
1-D Vfib Vta Vs Non-Vfib Vta scenario

95.66 95.37 95.96
SVM 89.58 82.02 97.08
KNN 96.01 95.64 96.38

RFAM
1-D Vfib Vs non-Vifb scenario

95.8 95.74 95.86
SVM 89.3 81.84 96.86
KNN 93.22 93.73 95.31

[47] RFAM 1-D Vfib 91.3 91.84 90.2
[5] FSAE 1-D Vfib 97.5 97.98 97.03

[48] EMDAE 1-D Vfib 91.2 90.47 91.66

Nl: normal, Afibn: atrial fibrillation, Aflr: atrial flutter, RQAS: recurrence quantification analysis, RNFN: radial basis function, EM-
DAE: emperical mode decomposition and app entropy, FSAE: fuzzy simil app entropy, KNNS: K-nearest neighbors, DWTPCA: discrete
wavelet transform with principal component analysis, DB6C: daubechies-6 with counters, BGC: bagging classifier, DAS: discriminant
analysis, AEY: approximate entropy, NRSN: normalisation.

Approximate entropy is used for distinguishing between Vfib and Vta and achieved a good perfor-
mance, i.e, ACCY% of 91, SEN% of 91.8, and SPY% of 90.2 [5]. SVM is used and was able to achieve an
ACCY%=96.3, SEN%=96.2, and SPY%=96.2% [45]. Amalgamation of SVM and AdaBoost and achieved
ACCY% of 98.20, 98.25 SENY%, and 98.18 SPY% [42]. Panda et al. [30] utilizes deep CNN and obtained
ACCY% of 81.25, 90.46 SENY%, and 70.82 SPY%. ECG signal is converted to corresponding 2-D format and
fed to 2-D CNN and obtained ACCY% of 98.82 [43]. Sharma and Sunkaria [46] employed random forest al-
gorithm (RFAM) for the categorization of Vfib Vta from non-Vfib Vta and obtained ACCY% of 95.66. Phong
and Thien [47] succeeded in obtaining ACCY% of 91.3 by employing RFAM while categorizing Vfib. For
computerized external defibrillation and patient monitoring, accurate detection and classification of Vfib, Vfl,
and Vta is critical. As a result, having a precise technique to discriminate between Vfib, Vfl, and Vta is critical.
Mjahad et al. [41] used ANN is employed for classification of Vfib in 2-D (time-frequency representation) and
achieved an ACCY% of 98.19, SEN% of 95.56, and SPY% of 98.8. They employed a bagging classifier for the
classification of Vfib in 2-D and were able to achieve 98.44 ACCY%, 98.46 SEN%, and 98.43 SPY%. Our pro-
posed technique has achieved significantly better performance when compared with others in terms of ACCY%
and SPY%. The proposed parameter set in [44], is a trustworthy technique for automatic external defibrillator
shock advisory techniques because it combines reliable detection and prediction, along with the notion that
the decision for defibrillation will take into account both the kind of rhythm and the likelihood of successful
defibrillation. The technique used in [49] achieved better SPY% when compared with others. With the help
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of empirical mode decomposition (EMD) as well as approximate entropy, [48] developed a new technique for
detecting Vfib that successfully achieved an ACCY% of 91. It is therefore obvious that using time-frequency
information results in higher performance. Last but not least, the success of the proposed method demonstrates
that any accuracy loss resulting from feature selection may be avoided by feeding the neural network directly
with the time-frequency representation, enabling the creation of higher-performing arrhythmia detectors.

5. CONCLUSION
The ECG signal is filtered using a two-stage median filter in the proposed approach for the identifi-

cation of ventricular arrhythmias, followed by a four-stage cascaded SG filter. The outcome of preprocessing
stage is then segmented and normalised. Additionally, the 1-D ECG signal is converted into a time-frequency
(2-D) representation and provided as an input to a Bi-LSTM network. Eight different classification scenarios
are used while classifying things. We have achieved 99.67% and 99.87% average accuracy for 1-D ECG and
its 2-D representation, respectively. The suggested approach can be used for automated classification of Ven-
tricular arrhythmias. The performance of the suggested technique can be improved by finely tuning the network
parameters. The proposed method can be extended to categorization of other cardiovascular disorders. Hence,
the load on the health care professionals can be minimized.
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