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 Query optimization involves identifying and implementing the most 

effective and efficient methods and strategies to enhance the performance of 

queries. This is achieved by intelligently utilizing system resources and 

considering various performance metrics. Table joining optimization 

involves optimizing the process of combining two or more tables within a 

database. Structured query language (SQL) optimization is the progress of 

utilizing SQL queries in the possible way to achieve fast and accurate 

database results. SQL optimization is critical to decreasing the no of queries 

in research description framework (RDF) and the time for processing a huge 

number of relatable data. In this paper, four new algorithms are proposed 

such as hash-join, sort-merge, rademacher averages and mapreduce for the 

progress of SQL query join optimization. The proposed model is evaluated 

and tested using waterloo sparql diversity test suite (WatDiv) and lehigh 

university benchmark (LUBM) benchmark datasets in terms of time 

execution. The results represented that the proposed method achieved an 

enhanced performance of less execution time for various queries such as Q3 

of 5362, Q8 of 5921, Q9 of 5854 and Q10 of 5691 milliseconds. The 

proposed gives better performance than other existing methods like hybrid 

database-map reduction system (AQUA+) and join query processing 

(JQPro). 
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1. INTRODUCTION 

Database management involves a significant focus on query optimization, which plays a crucial role 

in determining the most efficient order of query operators and their respective implementation algorithms [1]. 

Join is a sufficient operator and can have implemented in various ways on the size of its inputs and outputs 

[2]. The query optimizer of a database management system is used for selecting a query plan which can be 

executed effectively [3]. In the join query, the time of execution is mainly depending upon how every join is 

physically executed [4]. Analytical queries are the popular queries but analytical queries take more time to 

complete the process. Multi-join collects the data from various data sources or tables to provide the material 

for applications like decision support, data sharing and integration [5], [6]. In big data analyzing and 

aggregating data from various data sources for decision-making and prediction in different fields like 

scientific research, industry, business and public utilities can yield highly valued services and products [7]. 

The effectiveness of multi-join query can affect various factors like the count of joins and the count of data, 
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join selectivity, order of join execution, data storage location, resources, strategies and methods that parallel 

optimization used [8]. 

The structured query language (SQL) is created to manipulate, store and query relational databases 

[9], [10]. SQL is carried out by a leading database management system data base management system 

(DBMS) and used in a wide variety of sectors [11]. A DBMS contains irrelevant information and programs 

for manipulating the stored data. The information is separately entered into the tables, records and attributes 

[12]. SQL allows a huge amount of information for processing and the ability to resolve combinatorial 

optimization problems that include clustering, and informetric data processing [13]. One of the major issues 

in query optimization and plan execution is the choosing of the order to process the join operation among the 

tables [14], [15]. In the recent years, the semantic data capacity is maximized with amount of research 

description framework (RDF) datasets excessive of trillion triples in RDF archives. So, RDF dataset’s size 

grows simultaneously [16]. Although with an increasing amount of RDF triples, the complex multi-RDF 

queries become major demand [17], [18]. Certain times those complex queries generate some general  

sub-expressions in one or multi queries processing as a batch. It is also critical to decrease the amount of 

RDF queries and execution time for huge number of relatable data in distributed environment [19], [20]. 

The existing works on query-based optimization techniques are listed as: Ji et al. [21] introduced a double 

deep q network (DDQN) method for join-order query optimization. In this method, the selected actions were done 

by using a dynamic progressive search strategy which can evaluate the information gain (IG) for the uncertainty of 

data in the network that can step up the learning speed and attain effective potential exploration. In this model, if 

increase the number of joins, the delay time of the model was lower. The training of the model was delayed due to 

the elimination of errors to some extent in the cost model. Mohsin et al. [22] developed a quantum inspired ant 

colony algorithm (QIACO) model for join query cost optimization in distributed databases. The search method was 

employed on the search space, utilizing the information obtained from the category tables in the database, to 

enhance the join order. The advantage of using the quantum method was it solved major issues quickly and more 

efficiently. The model does not consider the mutation and modified crossover process. Pavlopoulou et al. [23] 

suggested a runtime dynamic optimization for join queries in big data management systems. In the model, at the 

time of query execution place many re-optimization points and at each re-optimization point considered only the 

next cheapest join and do not form the whole plan and search among all the possible join ordering variations. The 

advantage of the model w on querying big data estimated the small error in big datasets which improves query 

optimization. For predicates, the model has no selectivity estimation and for choosing the right join orders and join 

algorithm opportunities were missed. Renukadevi et al. [24] developed a moth flame and tunicate swarm algorithm 

(MF-TSA) for solving query optimization and optimizing the query platforms in the crowd sourcing platform. In 

this model, to encrypt the data the homomorphic encryption method is used. Two types of crowd-controlled 

administrators are used in query design such as crowd powered selection (CSelect) and crowd powered join 

(CJoin) were joined for query processing. The developed query optimization model was used to reduce latency and 

cost. The MF-TSA query optimizer used integrating tables for selecting the cost of join and it was processed only 

once. Pang et al. [25] implemented an hybrid database-map reduction system (AQUA+) model for query 

optimization in a hybrid database-map reduction system. In this model, the distributed database was used for 

maintaining the data, and on top of the same set of cluster nodes map reduce engines were deployed. AQUA+ and 

SQL-like queries are divided into two parts. One was submitted for processing by the database engine and the 

other part reads the information from the database into the map-reduce engine for query optimization. The model 

used novel tuning for query optimization to improve the performance. Due to a insufficient map-reduce engine, the 

sharding and filtering performance gets worse when the cluster gets larger.  

From the overall analysis, the existing methods has the limitations such as high execution time, the 

model has no selectivity estimation and for selecting right join orders and join algorithm opportunities were 

missed, used integrating tables for selecting the cost of join, it was processed only once and there is an 

insufficient map-reduce engine, the sharding and filtering performance gets worse when the cluster gets 

larger. To address these complications, the paper proposed a join query processing method for big RDF data, 

by utilizing the mapreduce framework proposed four new algorithms such as hash-join, sort-merge, 

rademacher averages and mapreduce -join for SQL join query processing. A rademacher averages is 

calculated which measures the complexity of queries and reduces the complexity of queries which reduces 

the execution time of query optimization. The major contribution of this research is listed as follows: 

− A novel model for joint optimization of SQL query is proposed by using the rademacher averages and 

mapreduce algorithms. Four new algorithms are developed by adopting the mapreduce framework such as 

hash-join, sort-merge, rademacher average and mapreduce join for the progress of SQL query join 

optimization. 

− A novel methodology is proposed for the calculation of rademacher averages bound of all given large 

datasets. Rademacher bound measures the upper limit of input size of training data set and making sure 

the trained model is within the probably approximate correct framework (PAC). Rademacher averages are 

used to the measure complexity of a queries which reduces the execution time of query optimization. 
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− The two benchmarks lehigh university benchmark (LUBM) and waterloo sparql diversity test suite 

(WatDiv) v06 are utilized for evaluation of SQL join query optimization. 

The remaining part of this research is as: a detailed explanation of the proposed methodology is 

given in section 2. The results and discussion of this proposed method are illustrated in section 3. The 

conclusion of this paper is presented in section 4. 

 

 

2. PROPOSED METHODOLOGY 

In the proposed methodology develop a join optimization for SQL query using hash join,  

sort-merge, rademacher averages, and mapreduce framework. The methodology consists of data source, 

preprocessing, and mapreduce framework, which is shown in Figure 1. The data are updated into HIVE, and 

from the storage, the input selector takes the information in triple formats. Based on the query to minimize 

the time it uses mapreduce to find the relevant results and the plan generation is used to minimize the 

quantity of data and execution time of the query [26]. The hadoop cluster is used to retrieve the information 

depending on the machine chosen by the hadoop cluster. Hash join is the first algorithm; all the selected 

inputs are added to the hash table by utilizing a join algorithm. The hash join algorithm outcome is utilized in 

a sort-merge algorithm which is the second algorithm that is utilized to identify the defined values in the join 

features for every part of the information that has the similarity of all datasets. The output of the sort-merge 

algorithm is used in rademacher averages which is the third algorithm used to sort the query for optimization. 

The collaboration of the list of join features is utilized in mapreduce join algorithm to identify the chosen 

information utilizing the mapreduce technique. 
 

 

 
 

Figure 1. Workflow of proposed methodology 

 

 

2.1.  Dataset 

The join optimization for SQL query consists of two major components such as data resource and 

mapreduce technique. The datasets used are benchmark datasets such as LUBM. The component of the data 

source converts huge URL data into RDF formation. The data pre-processor uses an N-triples converter 

module for converting 𝑅𝐷𝐹 into 𝑁 − 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 serialization. The 𝑁 − 𝑡𝑟𝑖𝑝𝑙𝑒 file of the 𝑅𝐷𝐹 graph is an input 

data resource that can be updated as an SQL query. The user sends the query through the SQL query 

associate and then the query is generated by the mapreduce technique. 

 

2.2.  Hash join algorithm 

The hash-join algorithm is mainly created for the input selection module. In the building phase, 

inside the table, the first set of data is loaded with the table [27]. In the probe stage, the huge dataset is joined 

and scanned with the related triple utilized in it. In the first algorithm, the table partitions are described as P 

and Q in WatDiv and LUBM datasets. The algorithm arranges both datasets into join qualities and then 
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combines the arranged datasets and then groups datasets with similar scores in a column of join. The  

hash-join algorithm joins various datasets effectively if they are arranged in various databases. The hash join 

algorithm for query optimization follows the given (1): 
 

𝑅 ⋈𝑟(𝑎)𝜃𝑠(𝑏) 𝑆  (1) 
 

The algorithm for performing (1) is as: 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑢𝑝𝑙𝑒 𝑠 𝑖𝑛 𝑆 𝑑𝑜  
{ℎ𝑎𝑠ℎ 𝑜𝑛 𝑗𝑜𝑖𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑠(𝑏) 

𝑃𝑙𝑎𝑐𝑒 𝑡𝑢𝑝𝑙𝑒𝑠 𝑖𝑛 𝑎 ℎ𝑎𝑠ℎ 𝑡𝑎𝑏𝑙𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒𝑠}; 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑢𝑝𝑙𝑒 𝑟 𝑑𝑜  
{ℎ𝑎𝑠ℎ 𝑜𝑛 𝑗𝑜𝑖𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑟(𝑎) 
 𝐼𝑓 𝑟 ℎ𝑎𝑠ℎ𝑒𝑠 𝑡𝑜 𝑎 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑏𝑢𝑐𝑘𝑒𝑡 𝑜𝑓 ℎ𝑎𝑠ℎ 𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑆 
 𝑇ℎ𝑒𝑛 {𝑖𝑓 𝑟 𝜃 − 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑎𝑛𝑦 𝑠 𝑖𝑛 𝑏𝑢𝑐𝑘𝑒𝑡 
  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑟 𝑎𝑛𝑑 𝑠  
 𝑃𝑙𝑎𝑐𝑒 𝑖𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑄}}; 

 

In the above algorithm, a similar hashing function should be utilized for both relations. In the probe 

stage, the huge dataset is joined and scanned with the related triple utilized in it. The hash-join algorithm 

joins various datasets effectively if they are arranged in various databases. The hash join algorithm is used for 

the input selector module; the selected inputs are sent to sort-merge join algorithm. 

 

2.3.  Sort-merge join algorithm 

The sort-merge algorithm verifies if the plan generation time is shorter than the query processing 

time, and proceeds to execute the next query [28]. The processing of query and plan generation of the RDF 

datasets are the same and these elements are updated to the 𝑃 and 𝑄 datasets. If the 𝑝 and 𝑞 are equal the 

progress will terminate. By covering a particular key range, the merge learns from two various parts of 

reducing outcomes. The sorting progress groups every tuple with similar importance in the join column. The 

separation is utilized by trying to differentiate 𝑃 tuples in a separate with 𝑄 tuples in a similar separation, 

thus further ignoring the enumeration of 𝑃 and 𝑄. Sort-merge join requires arranging the tables depending on 

the general key and joining the arranged tables by examining them in order. It may be utilized in conditions 

where a huge number of data and performance is taken. The sort-merge algorithm for query optimization and 

plan generation follows the given (2): 
 

𝑅 =⋈=𝑟(𝑎)=𝑠(𝑏) 𝑆 (2) 
 

The algorithm for performing the sort-merge method is; 
𝑠𝑜𝑟𝑡 𝑅 𝑜𝑛 𝑟(𝑎); 
𝑠𝑜𝑟𝑡 𝑆 𝑜𝑛 𝑠(𝑏); 
𝑟𝑒𝑎𝑑 𝑓𝑖𝑟𝑠𝑡 𝑡𝑢𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑅; 
𝑟𝑒𝑎𝑑 𝑓𝑖𝑟𝑠𝑡 𝑡𝑢𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑆; 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑢𝑝𝑙𝑒 𝑟 𝑑𝑜 
{𝑤ℎ𝑖𝑙𝑒 𝑠(𝑏)  <  𝑟(𝑎) 
 𝑊𝑟𝑖𝑡𝑒 𝑠 𝑖𝑛𝑡𝑜 𝑄 
 𝑃𝑎𝑑 𝑅 − 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤𝑖𝑡ℎ 𝑛𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 
 𝑅𝑒𝑎𝑑 𝑛𝑒𝑥𝑡 𝑡𝑢𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑆; 
 𝐼𝑓 𝑟(𝑎) = 𝑆(𝑏) 𝑡ℎ𝑒𝑛 
 𝑗𝑜𝑖𝑛 𝑟 𝑎𝑛𝑑 𝑠 
 𝑝𝑙𝑎𝑐𝑒 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑄}; 
 

2.4.  Rademacher averages 

Rademacher averages are an important method to learn the rate of coverage of a group of sample 

means to the expectations [29]. A novel methodology is proposed for the calculation of rademacher averages 

bound of all given large datasets. Rademacher bound measures the upper limit of input size of the training 

data set and making sure the trained model is within the probably PAC. rademacher averages are used to the 

measure complexity of a queries which reduces the execution time of query optimization. The rademacher 

complexity is described on an arbitrary calculation part, the sample part contains a limited domain 𝐷 and the 

specific distribution over the particles of 𝐷. Let 𝐹 be the functions from 𝐷 to the interval [0,1]2 and let  
𝑆 = {𝑠1, … , 𝑠𝑙} be a group of 𝑙 individual uniform samples from 𝐷. For each 𝑓 ∈ 𝐹, describe as (3). Given S, 

the highest divergence of 𝑚𝑆(𝑓) from 𝑚𝐷(𝑓) between every 𝑓 ∈ 𝐹, i.e., the quantity describe as (5). For  

1 ≤ 𝑖 ≤ 𝑙, let 𝜆𝑖 be a variable of rademacher random (𝑟. 𝑣), 𝑖. 𝑒. , 𝑎 𝑟. 𝑣 which takes value 1 with possibility  

½ and -1 with possibility ½. The 𝑟. 𝑣. ’𝑠 𝜆𝑖 are individual describe as (6). 
 

𝑚𝐷(𝑓) =
1

|𝐷|
∑ 𝑓(𝑐)𝑐∈𝐷 𝑎𝑛𝑑 𝑚𝑠(𝑓) =

1

𝑙
∑ 𝑓𝑡

𝑖=1 (𝑠𝑖) (3) 
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It holds, describe as (4): 
 

𝑚𝐷(𝑓) = 𝐸[𝑓] 𝑎𝑛𝑑 𝐸[𝑚𝑆(𝑓)] = 𝑚𝐷(𝑓)  (4) 
 

|𝑚𝑆(𝑓) − 𝑚𝐷(𝑓)|𝑓∈𝐹
𝑠𝑢𝑝

 (5) 

 

𝑅𝐹(𝑆) = 𝐸𝜆[ 1/𝑙𝑓∈𝐹
𝑠𝑢𝑝 ∑ 𝜆𝑖𝑓(𝑠𝑖)

𝑡
𝑖=1 ],  (6) 

 

Where the expectations are only taken the rademacher 𝑟. 𝑣. ’𝑠, that is conditioning on 𝑆. The quantity 

𝑅𝐹(𝑆) is defined as the rademacher average of 𝐹 on S3. The relation between 𝑅𝐹(𝑆) and the highest 

divergence is the main output in the theory of statistical studying. Let 𝑆 be a group of 𝑙 individual uniform 

samples from 𝐷. Let 𝑛 ∈ (0,1). Then with the possibility of at least 1 − 𝜂, describe as (7): 
 

|𝑚𝑠(𝑓) − 𝑚𝐷(𝑓)|𝑓∈𝐹
𝑠𝑢𝑝

≤ 2𝑅𝐹(𝑆) +

𝑖𝑛
3

𝜂
+√(𝑖𝑛

3

𝜂
+4𝑙𝑅𝐹(𝑆))𝐼𝑛

3

𝜂

𝑙
+ √

𝐼𝑛
3

𝜂

2𝑙
 (7) 

 

Computing the expectation in 𝑤. 𝑟. 𝑡 the rademacher 𝑟. 𝑣. ’𝑠 is not straightforward and can be 

computationally expensive, requiring a time-consuming monte carlo simulation. For the above reason, higher 

bounds to the rademacher average are commonly estimated in the space of 𝑅𝐹(𝑆). A strong and  

effective-to-execute bound is implemented in the theorem. Given 𝑆 taken for every 𝑓 ∈ 𝐹, the vector  

𝑣𝑓 , 𝑆 = (𝑓(𝑠1), … , 𝑓(𝑠𝑙))and let 𝑉𝑠 = {𝑣𝑓 , 𝑆, 𝑓 ∈ 𝐹} be the group of those vectors (|𝑉𝑠| ≤ |𝐹|, as there can be 

distinct functions of 𝐹 with similar vectors). Let 𝑤: 𝑅+ → 𝑅+be the function, 𝑤(𝑟) describe as (8): 
 

𝑤(𝑟) =
1

𝑟
𝐼𝑛 ∑ 𝑒𝑥𝑝

𝑟2‖𝑣‖2
2

2𝑙2𝑣∈𝑉𝑠
 (8) 

 

where ‖. ‖2 denoted the 𝑙2 − 𝑛𝑜𝑟𝑚 (euclidean norm). Then: 
 

𝑅𝐹(𝑆) ≤ 𝑤(𝑟)
𝑟∈𝑅+

𝑚𝑖𝑛   (9) 
 

The function 𝑤 is convex, continuous in 𝑅+, and has first and second derivatives 𝑟 everywhere in its 

domain, so it is possible to minimize it effectively by using standard convex optimization methods. The 

euclidean norm is described by utilizing (9). Rademacher algorithm and statistical learning can be assumed 

that a learning algorithm chooses its hypothesis from certain fixed hypothesis class 𝐻, generalization of error 

analysis gives theoretical results bounding generalization of error of hypothesis ℎ ∈ 𝐻 which will be based 

on the sample and properties of hypothesis class. For any hypothesis ℎ, their generalization error is the 

possibility that a randomly drawn example is wrongly classified and describe as (10), any learning algorithm 

aims to identify a hypothesis with a less generalization error, it cannot compute on a sample per se, as it 

would also depend on probability distribution 𝑃. However, an attempt can be made to approximate the 

generalization error of hypothesis ℎ, by their errors in training on 𝑛 examples, 𝜀𝑛(ℎ) is describe as (11). 
 

𝜀𝑝(ℎ) = 𝑃(ℎ(𝑥) ≠ 𝑦) (10) 
 

𝜀𝑛(ℎ) = 1/𝑛 ∑ 𝐿(ℎ(𝑥𝑖), 𝑍𝑖
𝑛
𝑖=1   (11) 

 

where 𝐿 is 0/1 loss function 
 

𝐿(𝑧, 𝑧′) = {(1, 𝑖𝑓 𝑧 ≠ 𝑧′), (0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)} 
 

Empirical risk minimization (ERM) is a principle according to which only such hypothesis whose 

training error is minimal is to be chosen. To ensure that ERM yields a hypothesis with less generalization 

error the bound 𝑠𝑢𝑝ℎ∈𝐻|𝜀𝑝(ℎ) − 𝜀𝑛(ℎ)| can be used. The difference of training error of hypothesis ℎ on 𝑛 

examples and true generalization error converges to 0 in probability as 𝑛 tends to infinity, provided examples 

are independent and identical in distribution while the hypothesis class 𝐻 is not complex. The rademacher 

random variable takes values +1 and -1 with the possibility of ½ for all. Let rademacher random variables 

𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛 be (𝑥1, 𝑦1), … (𝑥𝑛 , 𝑦𝑛). The rademacher penalty of hypothesis class 𝐻 in query is described as 

(12) and by symmetrization inequality of the theory of empirical processes described as (13). 
 

𝑅𝑛(𝐻) = 𝑠𝑢𝑝ℎ∈𝑛|1/𝑛 ∑ 𝑟𝑖
𝑛
𝑖=1 𝐿(ℎ(𝑋𝑖), 𝑌𝑖|  (12) 
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𝐸{𝑠𝑢𝑝ℎ∈𝑛|𝜀𝑝(ℎ) − 𝜀𝑛(ℎ)|} ≤ 2𝐸{𝑅𝑛(𝐻)}  
 

𝜀𝑝(ℎ) ≤ 𝜀𝑛(ℎ) + 2𝑅𝑛(𝐻) + 𝑛(𝛿, 𝑛)  (13) 
 

Where 𝑛(𝛿, 𝑛) = 5√(𝐼𝑛(
2

𝛿
)/2𝑛 is a less error term that takes care of fluctuations of examined 

random variables around the expectations. The benefits of the inequality (2) are raised from the truth which is 

their right-hand side based on the training sample and not on 𝑝 directly, which means that 𝑅𝑛(𝐻) may be 

computed with the algorithm utilized for ERM. Rademacher penalties can be applied to provide an 

approximate solution to the progressive sampling algorithm, particularly in the estimation of stopping time in 

terms of the data-dependent upper bound (ε-approximate) of the sample set used for training the algorithm. 

The minimal number of samples required to guarantee ERM is within a distance of 𝜀 from the generalization 

error of ℎ for every ℎ ∈ 𝐻; in query describe as (14). The rademacher stopping time 𝑣(𝜀, 𝛿) with parameters 

(𝜀, 𝛿) for a hypothesis of class 𝐻 in query is describe as (15). 
 

𝐴𝑟𝑔𝑚𝑖𝑛{𝑃𝑟{𝑠𝑢𝑝ℎ∈𝐻|𝜀𝑝(ℎ) − 𝜀𝑛(ℎ)| ≥ 𝜀} ≤ 𝛿  (14) 
 

𝑣(𝜀, 𝛿) = 𝑚𝑖𝑛{𝑛𝑖 = 2𝑖𝑛0(𝜀, 𝛿)|𝑅𝑛𝑖(𝐻) < 𝜀} (15) 
 

The rademacher average is utilized to attain the data-dependent upper bounds on the learnability of 

function classes, a function class with lesser rademacher averages is easy to study. The minimal number of 

samples required to guarantee ERM is within a distance of 𝜀 from the generalization error of ℎ for every ℎ ∈
𝐻; in query. Rademacher averages sorted only the selected query, these selected queries are used in 

mapreduce join algorithm. 

 

2.5.  Mapreduce join 

The mapreduce join algorithm erases every non-joining variable which is irrelevant to the 𝑄 query. 

𝑄 = {𝑋, 𝑌, 𝑉𝑍, 𝑋𝑌, 𝑋𝑍}, where 𝑋, 𝑌, 𝑉𝑍, 𝑋𝑌 𝑎𝑛𝑑 𝑋𝑍 show a group of attributes with their combination for 

query 𝑄 in the processing and erases the attribute non-merging 𝑉 produces the 𝑄  

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 =  {𝑋, 𝑌, 𝑍, 𝑋𝑌, 𝑋𝑍}. 𝐽𝑜𝑏𝐽 is commonly developed as the storage space for every join operation 

where every task processed is stored respectively. It is significant to point out that ‘𝑗’ shows the identity of the 

present task. To properly experiment with the join optimization method with RDF data, assume that when 

running locally in a real application, different large data applications vary dynamically and consider the 

cluster size used in the analysis. This experiment assumed that users may scale high or low work traces to 

their own needs. The benchmarks are applied to calculate the time execution performance, use of 𝐶𝑃𝑈 and 

proposed to join query algorithms performance. Mapreduce progress is calculated by their timely execution. 

Various some another factors like the number of mapping challenges, the underlying network, the common 

jumbled data pattern and size mainly affect the process of mapreduce. Input and output types of mapreduce 

job can be described as (16): 
 

(𝐼𝑛𝑝𝑢𝑡)𝑘1, 𝑣1 → 𝑚𝑎𝑝 → 𝑘2, 𝑣2 → 𝑟𝑒𝑑𝑢𝑐𝑒 → 𝑘3, 𝑣3(𝑂𝑢𝑡𝑝𝑢𝑡) (16) 
 

Where 𝑘1, 𝑘2, 𝑘3 are keys and 𝑣1, 𝑣2, 𝑣3 are values 

 

 

3. EXPERIMENTAL RESULTS 

The experimental result is given in this section. The section contains the experimental setup, 

benchmark dataset used, the effectiveness of the benchmark dataset, descriptions of datasets utilized, and 

comparative analysis of existing and proposed models are represented in detail. In this paper, the proposed 

rademacher averages are simulated using a python environment with the system requirements; RAM: 16GB, 

processor: Intel Core i7 and operating system: Windows 10 (64 bit). 

 

3.1.  Experimental setup 

A hadoop cluster is used in the conducting experiment. In a distinct (VM), every node is installed. 

Set up a network connection between 5 computers where every computer has a consecrate ethernet cable 

attached to a switch. Then downloaded the hadoop software on every device to merge them into a single 

cluster. Separating workloads across various nodes can increase the progressing power and performance of 

clusters and allows quick progress of huge datasets or difficult calculations. The hadoop cluster consists of a 

master VM, namenode and various VM which work depending on nodemanager and datanode. Datanode is 

situated in a cluster by the namenode where an RDF query is kept. When the data are situated inside the 
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cluster, the nodemanager started the processing of data by utilizing the mapreduce which starts with input 

selector, maps, joins, jumbles, and decreases. The significance of the clustering progress may be seen in their 

capacity to minimize the number of information required for working. An algorithm can delete the unwanted 

computations and join operations by grouping the related data and resulting in quicker query time processing 

and minimized computational overhead. Batch progress may also process by a clustering process that is 

majorly utilized for handling large numbers of data. An algorithm may work batch progressing on data 

subsets by clustering similar data together that minimizes the overall performance time needed to solve all 

queries. The experiments are worked with 5 VMs on the linux ubuntu 19 hadoop cluster. Namenode and 

resourcemanager are utilized by the 𝑉𝑀𝑠 when the datanode and manager are processed by others. Every 

VM has a 2.50GHz processor, 8GB main memory and 100GB of disk place configuration. A benchmark 

group of CPU and 10-intensive applications is used in the hadoop circulation like WatDiv and LUBM is 

utilized for process determination for evaluating the mapreduce jobs efficiently. 

 

3.2.  Dataset benchmarks 

In this paper, two benchmarks are utilized such as LUBM and WatDiv v06 benchmarks. LUBM: 

The LUBM is created as a normal to completely ease the performance of semantic web archives. The main 

use of the benchmark is to examine the performance of the archives with coherent queries over a huge dataset 

committed to one realistic ontology. The benchmark includes the ontology of the domain of the university, 

customized and quotable processed information, a group of test queries and different performance metrics. LUBM 

has maximized to have a globally adopted RDF and OWLdataset benchmark around a data size of 1 GB. 
WatDiv: the benchmark is created to calculate how an RDF data management system works on a 

huge number of sparql queries with various attributes and choosy attributes. WatDiv data giver allows users 

to develop their datasets along a specified language. So, users may maintain which attributes are updated in 

the dataset. How each attribute is good-designed and how various attributes are combined with others and the 

possibility that a kind 𝑋 attribute is combined with a kind 𝑌 attribute and the multiplicity of those 

combinations. The test data for 𝑊𝑎𝑡𝐷𝑖𝑣 is structured by utilizing the attributes. It is probable to give test 

datasets of different sizes by performing the data generator with various scale factors. 

The execution ranges from 10 million to 1 billion RDF triples produced by utilizing the WatDiv data 

producer with scale factors of 10,100 and 1000 on 3 datasets. WatDiv is a much-maintained environment for 

RDF data management systems with much various underlying works than another benchmark, giving the 

producer all the various formats of queries. The motive for selecting the above-mentioned benchmarks in the 

research is both benchmarks of the datasets are the much often utilized to perform RDF datasets as baseline 

benchmarks for mapreduce. 

 

3.3.  Effectiveness of join optimization of WatDiv benchmark 

In this section, Table 1 and Figure 2 represent the outcomes of join optimization on the WatDiv 

benchmark and calculation of time execution for several queries of different size 10M, 100M, and 1000M 

using the WatDiv benchmark. The queries described in Table 1 are 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 (1 − 3), 𝑙𝑖𝑛𝑒𝑎𝑟 (1 − 5), 

𝑠𝑓𝑙𝑎𝑘𝑒 (1 − 5), 𝑎𝑛𝑑 𝑠𝑡𝑎𝑟 (1 − 2). Table 1 observed that each query has various execution time, certain 

queries contain a huge time execution and other contains a low time execution. The join optimization of time 

execution 10M with the WatDiv benchmark dataset is processed efficiently. The query execution time of 

complex 1 is maximized continuously. The execution time is minimized for complex 1 query with the huge 

power of the CPU. This examination is difficult as the process of the proposed method is not in a state across 

different query sizes in the WatDiv benchmark. Although, the developed method is executed effectively in 

this research. The whole outcomes represent that along with a high amount of triples, the timely execution of 

certain classes is minimized slowly. This outcome represents the utilizing join optimization method to 

execute an RDF query that can decrease the time that is taken to solve a task in comparison to the other 

previous general query that gives constant times for every outcome. 

 

3.4.  Effectiveness of join optimization of LUBM benchmark 

In this section, Table 2 and Figure 3 represent the results of join optimization on the LUMA 

benchmark and the calculation of time execution for a number of queries of different size 500 M, 2000 M, 

and 1000 M using the LUBM benchmark. 

In the Table 2, the number of query parts included from one to 14 queries are selected. The 

outcomes represent that these queries work well than common RDF queries. Fourteen queries in Table 2 are 

processed to calculate the time execution and it represents that some query's time execution is maximized. 

Table 2 represents the overall mean time processing for queries of size 500M. From the result, noticed that 

the query 𝑄11 has the maximum time execution. Query 𝑄4, 𝑄3, 𝑄5, 𝑄14, 𝑎𝑛𝑑 𝑄6 are the good-executing 

query on a 500M query size. The outcome acquired in this part with the evaluation on the LUBM benchmark 
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is better, with no higher than the 6.6 𝑠 of time execution in all queries. These values are significant to sorting 

the outcome acquired in this section on the LUBM benchmark. 
 

 

Table 1. Calculation of execution time for several queries using WatDiv  
Execution time 10 M Execution time 100 M Execution time 1000 M 

Complex 1 5,530.00 5,590.00 17,000.00 

Complex 2 5,600.00 6,520.00 5,900.00 

Complex 3 5,560.00 5,550.00 5,600.00 
Linear 1 6,000.00 5,540.00 6,000.00 

Linear 2 5,570.00 6,000.00 5,550.00 

Linear 3 5,985.00 5,570.00 5,500.00 
Linear 4 5,650.00 6,568.00 5,620.00 

Linear 5 5,520.00 5,575.00 5,630.00 

Sflake 1 5,725.00 5,577.00 6,700.00 
Sflake 2 5,525.00 5,585.00 5,550.00 

Sflake 3 5,830.00 5,555.00 5,530.00 

Sflake 4 5,565.00 5,570.00 5,535.00 
Sflake 5 5,550.00 5,590.00 5,540.00 

Star 1 6,570.00 5,580.00 5,700.00 

Star 2 5,575.00 7,500.00 5,600.00 
Star 3 5,578.00 5,650.00 5,535.00 

Star 4 5,590.00 5,600.00 5,550.00 

Star 5 5,780.00 5,550.00 5,537.00 
Star 6 5,585.00 5,550.00 5,600.00 

Star 7 5,587.00 6,400.00 5,530.00 

 

 

 
 

Figure 2. Calculation of execution time for an amount of the queries using WatDiv 
 

 

Table 2. Calculation of time execution for an amount of the queries using LUBM  
Execution time (ms) 500 M Execution time (ms) 2000 M Execution time (ms) 1000 M 

Q1 5,975.00 5,940.00 5,800.00 

Q10 5,990.00 5,940.00 6,150.00 

Q11 7,450.00 5,850.00 6,070.00 
Q12 6,180.00 5,600.00 6,000.00 

Q13 6,200.00 6,070.00 5,890.00 

Q14 5,880.00 5,880.00 5,810.00 
Q2 5,895.00 5,940.00 5,600.00 

Q3 5,800.00 5,745.00 6,000.00 

Q4 5,820.00 5,990.00 6,150.00 
Q5 5,850.00 5,905.00 5,860.00 

Q6 5,900.00 6,095.00 6,000.00 

Q7 6,000.00 5,885.00 5,815.00 
Q8 6,090.00 6,010.00 6,170.00 

Q9 5,960.00 5,950.00 5,990.00 

 

 

3.5.  Comparative analysis  

The section shows the comparative analysis of proposed method with existing methods like AQUA+ [25] 

and join query processing (JQPro) [30] in terms of execution time. Two alternative cases are examined while 

analyzing the proposed method. In case 1, the execution time of query is taken in seconds where as in case 2, the 

execution time of query is taken in milliseconds. Table 3, the proposed method is compared to AQUA+ [25] for 
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case 1. Table 4, shows the comparative analysis of proposed method with JQPro [30] for case. From the results of 

Tables 3 and 4, it is clear that the proposed method shows enhanced performance than existing methods. 

 

 
 

Figure 3. Calculation of time execution for the number of queries using LUBM 
 

 

Table 3. Comparative analysis for case 1 

Author Method 
Execution time for various queries (ms) 
Q3 Q8 Q9 Q10 

Elzein et al. [30] JQPro 5,957.00 6,264.00 6,081.00 6,054.00 

Proposed method Rademacher averages 5,362.00 5,921.00 5,854.00 5,691.00 

 
 

Table 4. Comparative analysis for case 2 

Author Method 
Execution time for various queries (sec) 

Q3 Q8 Q9 Q10 

Pang et al. [25] AQUA+ 180.00 220.00 500.00 210.00 
Proposed method Rademacher averages 5,362.00 5,921.00 5,854.00 5,691.00 

 

 

3.6.  Discussion 

This section provides the discussion about proposed method and its result comparisons. The AQUA+ 

[25] has limitation such as due to an insufficient map-reduce engine, the sharding and filtering performance gets 

worse when the cluster gets larger. The existing model JQPro [30] has limitations such as the semantic data 

capacity is maximized with the amount of RDF datasets excessive of trillion triples in RDF repositories. So, the 

RDF dataset’s size grows simultaneously. Although with an increasing amount of RDF triples, the complex 

multi-RDF queries become major demand. Certain times those complex queries generate some general sub-

expressions in single or multiple queries running as a batch. It is also critical to decrease the amount of RDF 

queries and execution time for a huge number of relatable data in distributed environment. To address these 

complications, the paper proposed a join query processing model for big RDF data, by utilizing the mapreduce 

framework proposed four new algorithms such as hash-join, sort-merge, rademacher averages and mapreduce -

join for SQL join query processing. Hash join is utilized when the estimation of the combined tables is not 

already sorted on the combined columns. Merge sort simultaneously cuts down a list into various sublists until 

everyone has a single component then combines that sublists into a sorted list. Rademacher averages are used to 

the measure complexity of a class. Mapreduce joins algorithms by using a hadoop cluster which takes away the 

complexity of distributed programming. The computation result shows that the execution time of multiple tasks 

in parallel system is minimized. The proposed method achieved an enhanced performance of less execution 

time for various queries such as Q3 of 5,362.00, Q8 of 5,921.00, Q9 of 5,854.00, and Q10 of  

5,691.00 milliseconds which is comparatively better performance than other existing methods like AQUA+ has 

execution time of Q3, Q8, Q9, and Q10 was 180, 220, 500, and 210 seconds respectively and JQPro has 

execution time of Q3, Q8, Q9, and Q10 was 5957, 6264, 6081, and 6054 milliseconds respectively. 

 

 

4. CONCLUSION 

In this research, a new method is proposed using rademacher averages for the SQL query join 

optimization. The developed model comprises four various join algorithms such as hash-join, sort-merge, 

rademacher averages and mapreduce join algorithms for effective optimization. Hash join is utilized when 

the estimation of the combined tables is not already sorted on the combined columns. Merge sort 

simultaneously cuts down a list into various sublists until everyone has a single component then combines 
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that sublists into a sorted list. Rademacher averages are used to the measure complexity of a class. 

Mapreduce joins algorithms by using a hadoop cluster which takes away the complexity of distributed 

programming. From the performance analysis it is concluded that the proposed model has performed well 

and tested using WatDiv and LUBM benchmark dataset, the results show that the proposed method achieved 

an enhanced performance of less execution time for various queries such as Q3 of 5,362.00, Q8 of 5,921.00, 

Q9 of 5,854.00, and Q10 of 5,691.00 milliseconds. 

The proposed method has limitations such as limited range of query operations, dependence on 

mapreduce algorithm and tested on LUBM benchmark. Advanced query capabilities are needed in some 

scenarios and other distributed computing algorithms like apache spark or flink may give better scalability 

and performance. The future scope for the research is utilize the machine learning algorithms to the 

optimization of join query in distributed systems, machine learning algorithm like reinforcement learning to 

choose join algorithm, keys and partition of data for effective processing. 
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