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ABSTRACT

In this paper, we propose a new technique to improve QRS complex detection.
This technique consists of incorporating an autoencoder and bidirectional long
short term memory (BiLSTM). The autoencoder used is a stacked autoencoder
and functions as signal filtering. Meanwhile, BiLSTM is used as a detector.
Exploration of the effect of hyperparameter in the autoencoder was also carried
out to determine the effect on QRS complex detection. Furthermore, the dataset
used in this study is the MIT-BIH arrhythmia database. Based on the experi-
mental results, the hyperparameter in the autoencoder that gives a better effect
on QRS complex detection is 16-8. Finally, the proposed method out-of-perform
state of the art algorithm with accuracy 99.94%.
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1. INTRODUCTION
The fact about human death due to heart disease is no longer a secret. According to World Health

Organization (WHO), heart disease results in 17.7 million human deaths in the world [1]. In this regard,
research on electrocardiogram (ECG) signal analysis is very important. Research on ECG signal analysis is an
important step in diagnosing heart disease. Research on the analysis of ECG signals has also been carried out
for decades and the ECG signal itself has characteristics consisting of three main waves, namely the P wave,
QRS complex and T wave. The QRS complex wave has useful information for the medical field such as RR
interval, QT interval, and PR interval, so this QRS complex wave is an important wave for ECG signal based
Health evaluation.

Initially, research on ECG signals or QRS wave detection focused on the pre-processing stage. At this
stage usually use nonlinear or linear filters to reduce noise for example moving average filter [2], [3] wavelet
transform [4]–[7], Hilbert transform [8], and squaring function [9]. Besides using filtering, some researchers
use the adaptive threshold technique so that the proposed method can adapt to the shape of the ECG signal.
For example, [10], using a combination of lowpass filter and irregular RR interval as a representation of a
single level adaptive threshold. Meanwhile, for multi-level representation, [11] uses a combination of adaptive
threshold.

In recent years, the development of deep learning is very rapid, especially in the medical field, for
example its use for image analysis in radiology [12]. On the other hand, the ECG signal is a 1-dimensional (1D)
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signal which if used deep learning for analysis is not suitable because the input for deep learning, especially
the convolutional neural network (CNN) uses a 2-dimensional (2D) size. In this regard, the transformation
from 1D to 2D is proposed so that the ECG signal input will conform to the CNN architecture. For example,
spectogram can be used to transform 1D data to the 2D data based on the short term Fourier transform (STFT).
This approach was done by [13] using STFT and stationary wavelet transform (SWT), in his research, CNN is
used to classify STFT and SWT outputs. The results of this study indicate that CNN outperforms compared to
other methods. Although CNN has excellent results for the case of QRS complex detection, recurrent neural
network (RNN) has advantages for time series data. On the other hand, the problem of gradients in the learning
process is experienced by RNN. Gradient performance which does not have a significant effect on the learning
process can be improved using the long short term memory (LSTM) method. Moreover, deep learning-based
QRS complex detection and also the used of deep learning in ECG signal classification have been conducted in
[14]–[26].

Considering these facts, in this paper we suggest a new method to improve the performance of QRS
ECG signal detection by combining autoencoder and bidirectional long short term memory (BiLSTM). BiL-
STM was chosen because the computational process is more efficient than using LSTM or RNN, long-term
information loss, memory limitations and is prone to overfitting. Meanwhile, the autoencoder is used for the
pre-processing and denoising of the ECG signal, which is more effective and provides better performance than
using pre-processing techniques such as filtering. Furthermore, because of this fact, the combination between
BiLSTM and stacked autoencoder is our contribution in this paper.

The remainder of this paper is organized as follows. Section 2 explains the concepts of the autoen-
coder, BiLSTM, ECG signal, and the proposed method. After that, experimental results with benchmark
datasets and other advanced QRS complex detection methods are presented in section 3. Finally, conclusions
and future work are presented in section 4.

2. METHOD
2.1. Autoencoder

Autoencoder is a method that uses an unsupervised learning approach. The autoencoder consists of
three main parts, namely: encoder, decoder, and embedding. The function of the encoder in the autoencoder
is to change the input data to match the conditions in the hidden representation. While the function of the
decoder is a technique of reconstructing the input data from the hidden representation or layer. In this paper,
we used stacked autoencoder and it has several hyperparameters that can affect the performance of a system.
The hyperparameters are the number of layers, the number of nodes with embedding layers and a loss function.
If we have input data {x}(p)p=1, where xp ∈ Rmx1, hp represents hidden encoder vector which calculated from
xp, and x̂p is the output from decoder called decoder vector. Further, the processes that perform in the encoder
layer are:

hp = f(W1xp + b1) (1)

where W1, b1, and f are weight matrix of encoder, bias vector and a function from autoencoder itself, respec-
tively.

Furthermore, the processes in the decoder are represented as (2) and (3):

x̂p = s(W2hp + b2), (2)

A =
argmin

ø, ø′
1

p

p∑
i=1

L(xi, x̂i) (3)

where s, W2, b2, A, and L is a decoder function, weight matrix, bias parameter, optimization function, and loss
function, respectively. Autoencoder architecture shown schematically Figure 1.

2.2. Bidirectional long short term memory
BiLSTM is a deep learning method that combines the bidirectional recurrent neural network algorithm

with LSTM. LSTM arises from the problem of RNN where the more data is trained, the more gradients are
removed. This makes the RNN lack the ability to understand information contextually. The thing that dis-
tinguishes RNN from LSTM is the process in one module. In RNN, one module only consist one activation
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function single tanh layer that can be used for data classification, this fact is different compared to LSTM. In
LSTM, consist four main components such as input gate, output gate, forget gate, and cell activation. Further,
BiLSTM consist forward and backward LSTM where the forward pass represent as (4):

ft = α(Wf ∗ [ht−1, Xt] + bf ), (4)

where α is sigmoid activation function, ft represents the forget gate’s output for time step t, Wf are the weights
for the forget gate, ht−1 is the previous hidden state, Xt is the current input, bf is the bias for the for the forget
gate.

it = α(Wi ∗ [ht−1, Xt] + bi), (5)

where it represents the input gate’s output for time step t, Wi are the weights for the input gate, bi is the bias
for the for the input gate.

Ĉt = tanh(WC ∗ [ht−1, Xt] + bC) (6)

where Ĉt represents the candidate cell state for time step t, tanh is the hyperbolic tangent activation function,
WC are the weights for the candidate cell state, bC is the bias for the for the candidate cell state.

Ct = ft ∗ Ct−1 + it ∗ Ĉt, (7)

where Ct represents the update cell state for time step t, Ct−1 is the previous update cell state.

ot = α(Wo ∗ [ht−1, Xt] + bo), (8)

where ot represents the output gate’s output for time step t, Wo are the weights for the output gate, bo is the
bias for the for the output gate. The equations for the backward pass are similar, but the sequence is processed
in reverse order Figure 2 repesents BiLSTM architecture.

Figure 1. Stacked autoencoder architecture
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Figure 2. BiLSTM architecture

2.3. Electrocardiogram
ECG is a system that detects electrical signals caused by the activity of the heart muscles. The cycle of

the heart rate on the ECG consists of P waves (P-wave), QRS complex, T-wave, and U-wave which is usually
seen in almost 50%-70% of all ECGs. The base voltage of the ECG is known as the isoelectric line. Usually the
isoelectric line is measured as part of the track that follows the T-wave and precedes the next P-wave. Figure 3
represent the waveform of ECG signal and its part.

Figure 3. Waveform of ECG signal and its part

2.4. Proposed method
In this paper, MIT-BIH arrhythmia database is used to perform the experiment. In this dataset, ECG

signal is extremely clean, so in order to represent the experiment in real condition, artificial noise is added by
using MIT-BIH noise stress database with sampling frequency 250 Hz. In adding noise, we did as in previous
research and also in TensorFlow guidance. The addition of noise represents the presence of noise in a device so
that it affects the characteristics of the ECG signal. So that when this signal becomes an input to the proposed
method, the signal reflects a real condition in an environment in the field. Further, according to this dataset,
we divide it into 80% training data and 20% as a testing data. These data are completely independent from
the other. Furthermore, the contribution in this paper is proposed BiLSTM to detect QRS complex signal and
autoencoder is used to improve the detection performance. The specification of BiLSTM that used in this
paper has 64 depth. In the other hand, exploration of autoencoder also performed in this paper. The stacked
autoencoder is used in this paper and investigate the depth specification are: 128-64, 128-32, 128-16, 128-
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8, 128-4, 64-32, 64-16, 64-8, 64-4, 32-16, 32-8, 32-4, 16-8, 16-4, and 8-4. The rule to implement stacked
autoencoder is the depth size of encoder should larger than decoder. Furthermore, experimental is done in GPU
1×Tesla K80, 12 GB GDDR5 VRAM, and 1×single core hyper threaded Xeon processors @2.3 Ghz.

Moreover, the representation of our proposed method is described in Figure 4. In this method, there
are two main parts: stacked autoencoder and BiLSTM. The input of the system is ECG signal from MIT-BIH
arrhythmia database that has been added artificial noise. Because the input ECG signal is noisy, filtering by
using stacked autoencoder is performed. Stacked autoencoder is used because it has advantages to perform
filtering. The stacked autoencoder may reduce the dimensionality of the data and it can reach global optima
for the optimization. Figure 5 represent the baseline wander and muscle artifact for ECG signal. Figures 6
and 7 represent the normal beats and premature ventricular contractions also the training data and its label,
respectively. The output from stacked autoencoder is computed in BiLSTM by using number of batch 256 and
steps 1000. These numbers are directly chose, the number of batches used to be 256, this is a representation of
2n, and the number 256 is considered sufficient for this process, including the number of steps of 1000 which
is considered neither too little nor too big. The choice of the number of batches and steps in this research are
needed to be explored for the future research because the focus of this research is the exploration of depth in
stacked autoencoders and the use of BiLSTM. This BiLSTM has advantages to process the sequential data.

Figure 4. Proposed method

Figure 5. Representation of baseline wander and muscle artifact

Figure 6. Representation of normal beats and premature ventricular contractions
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Figure 7. Representation of training data and its label

Figure 8. Representation of R-peak location in the normal beats

2.5. Performance metrics
In order to calculate the performance of the proposed method, the performance metrics are used as

(9)–(12):

F1− score =
2× Precision×Recall

Precision+Recall
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Accuracy =
TP + TN

TP + FN + TN + FP
(12)

where TP , TN , FP , and FN are true positive, true negative, false positive, false negative, respectively.

3. RESULT AND DISCUSSION
In this research, the exploration of hyperparameter (Depth) in stacked autoencoder is performed. The

exploration parameter that used in this research explained in this section. Furthermore, we used the number of
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epoch is 50 epoch because in this research, we concern to the investigating the impact of stacked autoencoder
when implementing to BiLSTM and also exploring the hyperparameter that suitable for QRS complex detection
case.

The results of this research is represented in Tables 1 and 2. In the Table 1, the results from hyper-
parameter (Depth) exploration of stacked autoencoder are served. In this table, we can see when the depth of
stacked autoencoder is deeper, small epoch cannot perform well. The example of this case can be seen for the
hyperparameters 128-32, 128-16, 64-16, 64-8, and 64-4. In these depths, the parameter performances such as
F1-score, precision, and recall cannot be generated because the training process cannot reach the convergence
condition. This is similar with the hyperparameter 64×32, even though the parameter performances can be cal-
culated, the results are extremely low. Furthermore, the hyperparameter 16-8 of stacked autoencoder performed
excellence with the accuracy training and testing are 99.89% and 99.94%, respectively. This condition is out
performed compared the proposed method (NSA: BiLSTM without stacked autoencoder), where the result only
achieve 99.61 for training accuracy and 99.54% for testing accuracy. The hyperparameter 16-8 also give best
result for other performance parameters (F1-score, precision, and recall) compared to the NSA and BiLSTM
using stacked autoencoder with other hyperparameter configuration. It is because the optimal hyperparameter
configuration for QRS complex detection case is 16-8, where this depth size is not much deeper.

In the Table 2, the best hyperparameter configuration result from Table 1 is selected and compared
to the other state of the art method QRS complex detection. We compared our proposed method with Pan
and Tompkins method [27], Chen and Chuang method [28], and Lu et al. [29]. Method that using adaptive
threshold for detect the QRS complex signal.

Table 1. Autoencoder performance evaluation (training/testing) with epoch 50
Autoencoder performance evaluation (training and testing)

Proposed F1-score Precision Recall Accuracy
128-64 89.87 89.87 91.45 93.02 88.36 86.94 99.51 99.47
128-32 0 0 0 0 0 0 99.53 97.40
128-16 0 0 0 0 0 0 99.53 97.40
128-8 90.03 90.69 91.75 92.12 88.42 88.16 99.52 99.50
128-4 89.20 90.68 90.67 92.32 87.79 89.09 99.47 99.52
64-32 13.48 64.13 18.56 79.80 11.56 53.65 97.71 98.44
64-16 0 0 0 0 0 0 97.52 97.40
64-8 0 0 0 0 0 0 97.52 97.39
64-4 0 0 0 0 0 0 97.52 97.39
32-16 91.06 91.24 92.31 93.74 89.84 88.88 99.56 99.56
32-8 90.39 90.87 91.81 92.24 89.02 89.54 99.53 99.53
32-4 91.30 90.61 92.17 92.69 90.47 88.62 99.58 99.52
16-8 92.22 91.02 92.95 93.23 91.50 88.91 99.89 99.94

16-4 91.61 90.57 92.33 92.56 90.91 88.66 99.59 99.52
8-4 90.56 90.09 91.61 91.56 89.55 88.68 99.54 99.49
NSA 91.97 91.00 92.73 92.69 91.22 89.37 99.61 99.54

Table 2. Performance comparison using other state-of-the-art method
Method Accuracy
Pan and Tompkins [27] 99.29
Chen and Chuang [28] 99.02
Lu et al. [29] 99.54
Proposed (NSA) 99.54
Proposed (16-8) 99.94

Based on the result comparison in the Table 2, our proposed method (usingstacked autoencoder and
without stacked autoencoder) are outperformed to the other state of the art method. Our proposed method
(using stacked autoencoder 16-8) achieved the accuracy parameter 0.54 better than Lu et al. [29]. Method that
using adaptive threshold and it is proved that BiLSTM performed very well to handle sequence data and also
by adding stacked autoencoder in the pre-processing step may improve the performance the original BiLSTM.

In this paper, BiLSTM is implemented for detecting QRS complex signal and by adding the stacked
autoencoder, the performance is improve. The exploration of hyperparameter in stacked autoencoder is a one of
focus of this paper. Based on the result, we may achieve high performance by using only small epoch. Because
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of this fact, our proposed method can save the computation resources. Future research for this topic also still
have opportunity such as the implementation to the low cost computational hardware and real time processing.

4. CONCLUSION
In this paper, QRS complex detection method based on BiLSTM and improved by using stacked au-

toencoder are proposed and validated with the MIT-BIH arrhythmia database. Moreover, the hyperparameter
exploration of the stacked autoencoder (Depth) is done. The performance of the proposed method gives the ac-
curacy of 99.54% and improved 0.4 when implemented BiLSTM with stacked autoencoder. This performance
also higher 0.54 than the other state of the art QRS complex detection method. By using only small epoch, our
proposed method may achieved very well result and proves that our proposed method can save computational
resources.
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