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The paper introduces a hybrid control strategy for optimised active power
management in Algeria's Kabertene wind farm, crucial for the pole insalah-
adrar-timimoune (PIAT) grid's stability. This strategy merges simultaneous
interconnection and damping assignment (SIDA) passivity theory, passivity-
based control (PBC), and multivariable proportional-integral-derivative
(PID) controllers. This combined approach ensures frequency and voltage
stability within the PIAT grid, which encompasses various elements like
wind farms, solar plants, gas turbines, and dynamic impedance (Z), current
(1), and active power (P) (D-ZIP), load model. By tailoring controllers for
doubly fed induction generators (DFIGs) using SIDA-PBC principles and
optimising internal parameters, the strategy achieves precise control of
active power output. Additionally, particle swarm optimisation (PSO)
refines power scheduling, which is especially beneficial for intermittent
renewable sources like DFIGs. This comprehensive strategy offers numerous
advantages: improved network stability, minimized voltage deviations,
reduced frequency fluctuations, and enhanced integration of renewable
energy sources. The paper emphasises practical implementation
considerations, providing valuable guidance for efficient Kabertene wind
farm operation and integration. This research contributes significantly to
fostering cleaner and more reliable energy systems, facilitating the PIAT
grid's transition towards sustainable energy generation.
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1. INTRODUCTION

The ecosystem has been irreparably damaged by the historical preponderance of fossil fuels in
global energy production; this is evidenced by climate change, air and water pollution, and biodiversity loss
[1]. With the increasing severity of these environmental issues, the adoption of renewable energy sources is
no longer merely a choice, but an imperative. Integration of variable renewable energy (VRE) sources, such
as wind and solar power, into extant electricity grids [2], [3] is a critical component of this transition.
Nevertheless, the sporadic characteristics of VRE generation pose a unique array of obstacles. By storing
excess energy during periods of high generation and releasing it during periods of low generation, energy
storage systems have become an indispensable technology for managing this intermittency and assuring grid
stability by maintaining a constant balance between supply and demand.
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For this energy transition, the pole insalah-adrar-timimoune (PIAT) power network in southern
Algeria is an illustrative case study. PIAT operates autonomously from the national infrastructure, utilising
renewable electricity generated locally, predominantly from wind and solar sources (as illustrated in
Figure 1) [4]. Regarding the 153 GWh of annual energy demand anticipated in 2023, VRE sources are
anticipated to provide 18.67% [5]. The considerable dependence on renewable energy sources possesses the
capacity to generate noteworthy ecological advantages, such as diminished carbon emissions [6], fortified
environmental safeguarding, and enhanced energy accessibility for nearby communities [7]-[9].
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Figure 1. The PIAT electrical grid section study: Kabertene photovoltaic (PV) and wind farms

Algeria's progress towards establishing an energy infrastructure that is more ecologically sustainable
is exemplified by the PIAT network [10], [11]. This network takes advantage of the country's indigenous
renewable resources to tackle urgent environmental issues. This case study highlights the potential of
renewable energy to promote environmental preservation and ensure equitable access to energy, in addition
to mitigating climate change.

Wind turbines are of utmost importance in the realm of renewable energy owing to their negligible
ecological footprint. However, these systems are accompanied by intricacies, such as dynamic power
consumption patterns and non-linear load models [12], [13]. The comprehension and representation of these
behaviours are fundamental in the field of grid management. Wind turbines, (doubly fed induction generators
(DFIGS) in particular), are susceptible to grid malfunctions as a result of their direct stator-grid connection
[14]. For turbine safety and stability, robust control strategies are crucial [15], particularly in locations such
as the Kabertene PV and Wind Parks in Algeria as illustrated in Figure 1.

Due to their susceptibility to rotor winding problems brought about by overvoltage and overcurrent,
which are predominantly induced by negative sequence voltage, DFIG systems present a unique challenge.
The adverse sequence voltage has the potential to induce rotor slip, thereby causing detrimental overvoltage
and overcurrent in the winding. Such conditions can compromise the turbine's dependability and
effectiveness. Notwithstanding these obstacles, DFIGs present numerous benefits as prevalent varieties of
wind turbines, such as the ability to operate at variable speeds and efficient power conversion [16], [17].

Despite this, stability concerns may arise during transient events due to the complexity of their
components, including the rotor, stator, slip rings, and alternating current-direct current (AC-DC)-AC
conversion [18]. Passive control methods for managing active and reactive power production, integration,
and power flow analysis in DFIG systems are the primary focus of our research. We evaluated the efficacy of
these control strategies by implementing them on the 10.2 MW Kabertene wind farm, which is connected to
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Algeria's PIAT grid. The outcomes of our study demonstrate that the control strategy we have suggested
modulates the power outputs of DFIGs [19], [20].

In addition, grid stability is improved with the incorporation of a, especially in the face of
disturbances [21], [22]. As the PIAT grid increasingly incorporates renewable energy sources such as wind
and solar, frequency regulation becomes even more crucial. With average wind velocities ranging from 3 to 5
metres per second as showed in Figure 2, the region has a significant wind energy potential; this emphasises
the need for effective control strategies [23].
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Figure 2. The mean wind speed at 10 m in kabertene and Adrar region, Algeria

Grid stability relies on frequency management, which is crucial for variable renewable energy
(VRE) systems [24]. Insufficient production of renewable energy can lead to decreases in frequency, while
excessive production can generate increases in frequency. It is crucial to maintain this balance in order to
guarantee the stability of the power system [25]. Figure 3 illustrates the block design of the wind DFIG
construction, which incorporates maximum power point tracking (MPPT), interconnection and damping
assignment passivity-based control (IDA-PBC), and SIDA-PBC [26], [27].

Prer >SIDA-PBC
Go, |31pA-PBC A0
 HilL] ¢
’éggf" ‘k .
5

o’ ~ — Kabertene
(R =+ M
DFIG ri
Py —_—

RSC GSC

i \ 2
i Kabertene
MPPT control % WIRGFErM

Figure 3. Block diagram of wind DFIG structure with MPPT, SIDA-PBC, and IDA-PBC control

The work we have conducted makes important contributions to the comprehension of control system
design for DFIGs in wind farms. The proposed inner-droop control technique with SIDA-PBC has multiple
benefits, such as increased resistance to wind speed variations and improved responsiveness to sudden
changes [28]. Moreover, Figure 4 illustrates the progression of the daily load profile for PQ buses,
highlighting the distinct patterns of electricity consumption during peak and off-peak periods [29]. There is a
rise in demand between the morning and evening, which aligns with times of intense residential and
commercial activity. This is evident from the swings observed on weekdays [30].

Our study offers a comprehensive understanding of the challenges and control strategies in wind
energy, specifically within the Kabertene wind farm in the PIAT grid. It underscores the potential of
renewable energy sources to shape a sustainable and eco-friendly energy landscape [31]. By addressing VRE
integration complexities, grid stability, and control strategies, we contribute to the ongoing shift towards
cleaner and more reliable energy systems, advancing the path to a sustainable energy future [32].
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Figure 4. Evolution of the daily load profile in grid study

2. MATERIALS AND FORMULATION
2.1. Wind turbine port-controlled hamiltonian modeling

The paper delves into a comprehensive analysis of control for DFIGs in wind energy systems,
emphasizing the critical role of stability in wind farm reliability. The paper introduces various mathematical
equations and models to describe the behavior and control of DFIGs in wind turbines. Key equations and
concepts presented in the paper are summarized:
— ZIP model (1): describes the general form of the ZIP (impedance-current-active power) model, commonly

used in power system analysis. It characterizes power consumption as a function of voltage and frequency.

P="p, [ap (\)’—0)2 + by, (;’—0) + cp] [1 = kpeAf]

1)
'A% \
Q=Q [aq (%) +ba () + cq] [1— kqetf]
— Wind power (2): defines wind power generation as a function of wind speed.
P, =§0‘.S.173 2

— Aerodynamic power (3): describes the aerodynamic power of a wind turbine, which depends on the
coefficient of aerodynamic power (Cp) and environmental factors like air density and wind speed.

1
Paero = Cp.Pv = Cp(/l,ﬁ)zp.s.lﬁ (3)

— Coefficient of aerodynamic power (4): provides a formula for Cp, considering factors such as tip-speed
ratio (1) and blade pitch angle (B).

1 0.035
Jeo

o B) = C1 (Co3— Cp — €4 — Cy) o~ lmomr i @

— Torque and mechanical speed (5)-(8): describe the relationship between torque, mechanical power, and
mechanical speed in a wind turbine.

P, 1 p.Sv3¢,(AB)
Thec = % = ETIJ )
dn
]% = Tec (6)
/= ]_turabme + Jpric )
Thec = Tg = Tem — Tyis (8)

— DFIG PCH model (9): presents the model of a in the d-q reference frame, considering voltage and current
components.
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— Equations of flux linkages (10)-(12): describes the dynamics of flux linkages in the DFIG model.

( des = Vds_RsIds + wsLqus + wSMIqr
d)qs = Vqs_Rqus - msLsIds - msMIdr (10)
@gr = Var—Rplgr + (w5 — w)]-‘rlqr + (w5 — (*))MIqs
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&, = V.—R, L1, — (ws — w)Mlz — (w5 — w)LJ, 1, (11)
do _
JpFiGc 7 P LerId], 1, — Cew
T
X = [CDST' ‘DrT' ]DFIG(‘)] = [Xg:Xm]T (12)

— Energy function (13) and (14): defines the energy function for the DFIG system, considering both
electrical and mechanical components.

H(x) = —xe T %, + 2]D1FIG X2, (13)
() () I [ —
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The partially differentiated of energy given by:
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— Interconnection and depreciation matrices (15) and (16): introduces matrices for system interconnection
and depreciation.

—wsLs]z —wsMJ, 021
®) = |~wsLs]2 —(ws — w)LgJ, MJ;lg
01x2 MI{]J, 0 (15)
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Finally, the interconnection, depreciation and control matrices are:
( —0sLs], —wsMJ, 021 Rslz 0zx2 0251 I; O2x2  02x17| V.
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— SIDA passivity-based control (17): outlines the SIDA-PBC design for wind system modeling, focusing on
matrix solutions and energy functions.

VS 02><2
[](IS' (U) - R]aH + 02)(1 + 12 Vr = Fd(x)Pdf (17)
Cem 01><2

— Control voltages (18): provides expressions for the control voltages of the DFIG in closed-loop systems,
considering various parameters like damping and mechanical speed.

Vo =R + (ws - w)]Z(M[s + Lr[r) - Ks(Lsis + Mir) - Kr(Lrir + Mis) + K)o, s (18)

With: K. >0,K, = Pe/pre o g p g 5 M
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— Closed-loop system (19): describes the dynamics of the closed-loop system, incorporating controller matrices.

D312 K,

f) +g)u = (Ja(x) = Ra(x))9H, (x) (19)
Ja(x) =J(x) + Jo(x)
Where: { R;(x) = R(x) + R (x)
Hy(x) = H(x) + Hq(x)

— Command voltages (20)-(22): presents equations for the rotor voltages of the DFIG, including the effects
of controller actions and mechanical speed.

]rm(x) = M]ZIS (20)

The closed-loop dynamic system is always of the form (19) with:

—wsLsf; —wsM]; 03 R, 02x2 02x1
Ja(x) = |—wsM];  —wrLg], Mplg|; Ry(x) = |02x2 (R + 1)1 021 (21)
012 MI{], 0 01%2 01x2 Ty + §(x)

Finally, the rotor voltages of the order are written by:

{Vr V' = (@ — @) (Lolo 17 + MJoL) — Mw'J,(g = I5) — (I, — 1) 22)
Vr* = (ws - w*)(l‘rjzl;k + M]ZIS) + Rr1217f
The paper’s mathematical framework and models contribute to the understanding and control of
DFIGs in wind energy systems, ensuring stable and reliable performance.

3. RESULTS AND DISCUSSION

The simulation results were analyzed and represented using the stability analysis of small signals,
dynamic voltage, and resolution with PSO algorithms method. The study was conducted on the 220 KV and
the 60 KV on of the electrical PIAT grid region in southen Algeria (Figure 1). The software used for the
analysis and representation of the results were MATLAB 2021a and ETAP 2019.

3.1. Frequency and voltage grid result

Figures 5(a) to (c) displays the evolution of the synchronism frequency correction f,. at the
integration point of Kabertene (bus 4) alongside the frequency prediction model f,. Figure 6 presents a
depiction of the highest voltage levels registered at both the 220 KV transmission and 30 KV distribution
buses. This representation takes into account the deployment of frequency control methodologies under two
scenarios: one involving PV sources integrated with MPPT for PV production, and the other without PV
sources. The graph specifically illustrates the pinnacle voltage values recorded throughout the operational
phases of the electrical system.
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Figure 6. Voltages evolution in the 220 KV transmission and 30 KV distribution with PV injection bus

3.2. Doubly fed induction generator results

In order to assess the robustness of the DFIG, it is common practice to modify the internal resistance
parameter and then observe the responses of the control approaches being used. It is necessary to carefully
examine important parameters such as stability, transient responsiveness, power efficiency, and other
relevant performance benchmarks.

Examining the results of using the SIDA passivity-based control method in wind system modeling
under different weather conditions is crucial for determining the stability of internal parameter variations.
The model of the DFIG and wind turbine includes several characteristics, which are presented in Table 1.
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Table 1. DFIG parameters used in simulation model

Parameter  Value Unit Wind turbine (WT)
Pn 100 kW R 35.25 m
Rs 0.455 Q S .12 m?
Rr 0.19 Q P 122 Kg/m?
Ls 0.07 H G 90 /

Lr 0.0213 H Jturbine 1000 Kg/m?
Lm 0.034 H
JDFIG 0.53 Kg.m2
f 0.0024 N.m.s/rad
p 2 /

In this context, Figures 7 to 9 illustrate the findings related to the durability of the SIDA-PBC method
concerning its resilience to the influence of varying weather conditions and electrical loads (D-ZIP), while
concurrently addressing changes in the internal resistance and inductance values of the DFIG. Figure 8 displays
the outcomes concerning the resilience assessment of the SIDA-PBC approach in response to variations in the
inductance value of the DFIG. The ensuing figure, denoted as Figure 9, encapsulates the obtained results
pertaining to the SIDA-PBC technique’s performance in terms of active and reactive power generation.
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Figure 7. Effect of variations in internal resistances on the P; and Q, powers of the DFIG with SIDA-PBC
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Figure 8. Effect of variations in internal inductance on the P; and Q, powers of the DFIG with SIDA-PBC

The provided content extensively discusses crucial aspects pertaining to the operational and stability
aspects of the power grid at the integration point in Kabertene. The primary focus encompasses measures
related to frequency and voltage control, the integration of renewable energy resources, and the efficacy of
control methodologies. Illustrative figures, namely Figures 5 and 6, portray the efficacy of a frequency-
tuning model designed to precisely rectify synchronization issues at the Kabertene integration point. The
integration of the AFRR is revealed to exert a substantial positive impact on the overall system stability,
effectively adhering to the stipulated frequency regulations mandated in Algeria. Notably, the infrastructure
for electricity generation is engineered to endure rapid frequency fluctuations, ensuring seamless connection
and synchronization, even in demanding circumstances. The regimen of frequency control strategies
encompasses automatic voltage regulation and reactive power compensation, which collectively uphold
voltage stability within permissible thresholds, thereby lending robust support to the dependable operation of
the grid. Highlighting the influence of PV sources on voltage levels, Figure 5 captures temporal voltage
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deviations within the 220 KV and 30 KV systems. Furthermore, Figure 6 provides a visual representation of
the highest voltage levels observed in the 220 KV and 30 KV buses, a parameter influenced by the interplay
of frequency control strategies and the integration of renewable energy sources, including PV and wind.
Table 1 and Figure 7 collaborate to furnish analytical insights into active loss reduction strategies. Rigorous
data analysis guides these strategies, as the DFIG undergoes regulatory testing, culminating in interventions
aimed at diminishing active losses and enhancing overall system efficiency.
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Figure 9. P; and Q. powers production regulation with SIDA-PBC method

The strategy draws on SIDA-PBC directives, aptly tracking reference trajectories during pursuit
trials depicted in Figure 8. This approach effectively maintains power output within prescribed ranges,
thereby averting persistent faults. The resilience of the system under fluctuating parameters is extensively
examined through transient state durability assessments, vividly illustrated in Figures 8 and 9.

These evaluations vividly demonstrate the system’s adaptability and unwavering performance, even
when subjected to extreme parameter variations in dynamic conditions. Furthermore, the study introduces a
state-feedback control strategy, adept at quelling disturbances, achieving convergence to reference
trajectories, facilitating MPPT, and adeptly managing fluctuations in wind speed. This strategy emerges as a
superior performer when navigating through challenging scenarios.

4. CONCLUSION

To summarize, the effective integration of Kabertene wind energy into the PIAT network involves
implementing various control techniques for DFIGs. These techniques include passivity control,
decentralized multivariable PID controllers, MPPT, frequency and voltage control, and PSO-based power
optimization. These methods successfully address the challenges associated with integrating wind energy into
the PIAT network.

These approaches enhance stability, reduce frequency and voltage variations, and ensure smooth
integration of renewable energy. Applying PSO optimization to D-ZIP load profiles not only reduces active
power losses, but also helps maintain voltage stability. The study provides practical insights into constructing
a more environmentally friendly energy system. It highlights the impact of passivity-based control on active
energy production and the importance of SIDA-PBC for Kabertene energy. Comparisons are concisely
summarized. These findings provide valuable insights into the best way to incorporate renewable energy
sources into the PIAT program. This will help in creating a sustainable energy landscape in Kabertene.
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