Bulletin of Electrical Engineering and Informatics
Vol. 13, No. 4, August 2024, pp. 2979~2990
ISSN: 2302-9285, DOI: 10.11591/eei.v13i4.7520) 2979

Multi-priority scheduling algorithm for scientific workflows
in cloud

Alaa Albtoush!'?, Farizah Yunus!, Noor Maizura Mohamad Noor!
! Department of Computer Science, Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Kuala
Terengganu, Terengganu, Malaysia
2Department of Computer Science, Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an, Jordan

Article Info ABSTRACT
Article history: The public cloud environment has emerged as a promising platform for exe-
Received Sep 6, 2023 cuting scientific workflows. These executions involve leasing virtual machines

(VMs) from public services for the duration of the workflow. The structure of
the workflows significantly impacts the performance of any proposed scheduling
approach. A task within a workflow cannot begin its execution before receiving
all the required data from its preceding tasks. In this paper, we introduce a
Keywords: multi-priority scheduling approach for executing workflow tasks in the cloud.
The key component of the proposed approach is a mechanism that logically or-
ders and groups workflow tasks based on their data dependencies and locality.

Revised Feb 2, 2024
Accepted Feb 28, 2024

Cloud computing

He.urti.stics Using the proposed approach, the number of available VMs influences the num-
Scientific workflows ber of groups (partitions) obtained. Based on the locality of each group’s tasks,
Task scheduling the priority of each group is determined to reduce the overall execution delay
Workflow scheduling and improve VM utilization. As the results demonstrate, the proposed approach
achieves a significant reduction in both execution costs and time in most scenar-
ios.
This is an open access article under the CC BY-SA license.
Corresponding Author:
Alaa Albtoush

Department of Computer Science, University Malaysia Terengganu
Kuala Terengganu, Terengganu, Malaysia
Email: alaa_ahu@yahoo.com

1. INTRODUCTION

The public cloud has emerged as a promising execution environment for resource-intensive applica-
tions [1]. An example of such applications is large-scale scientific workflows, which are resource-intensive
and cover several application domains, such as physics (LIGO workflows), astronomy (Montage workflow),
and bioinformatics (SIPHT workflow) (see Figure 1). Because of the demanding characteristics of these appli-
cations, a high-performance computing environment is a crucial requirement for achieving reliable execution
duration. In cloud environments, users can rent preconfigured virtual machines (VMs) from public cloud ser-
vice providers on demand. Scientific workflows consist of hundreds of tasks with data dependency constraints.
Using cloud-computing environments, the execution of such workflows can be performed promptly, whereby
the VMs required for execution can be leased in an on-demand fashion. Accordingly, to execute a scientific
workflow, the user has to determine the number of required VMs and the execution schedule. The number of
VMs used and the order of execution influence the efficiency of the obtained schedule. Consequently, increas-
ing the number of VMs increases the execution cost, whereas reducing this number increases the execution
time (makespan).

Journal homepage: http://beei.org

2980) ISSN: 2302-9285

To optimize workflow task execution schedules, several proposals have investigated using nature-
inspired optimization techniques such as simulated annealing (SA) and particle swarm optimization (PSO) [2].
Other proposals [3]-[5] have employed heuristic approaches to scheduling workflows. Some of these proposals
[6]-[10] have employed greed-based mechanisms to reduce the overall execution time. Others have considered
the entire workflow structure, using different strategies to extract structure-related features and establish semi-
balanced task groups with similar computational requirements [11]. These proposals are distinguished by the
strategies employed to benefit from the extracted structure-related features. Unlike earlier studies, in this work,
extracted workflow structure features are used to establish a multi-priority strategy that logically orders the
execution schedule of workflow tasks. Using task locality information, the proposed strategy aims to determine
an execution schedule that minimizes the execution time and improves the use of VMs.

In this work, we propose a multi-priority scheduling approach to achieve a tradeoff between execution
cost and the time of the obtained schedule. The proposed approach divides the workflow into a predetermined
number of partitions. The number of partitions can be determined based on the available number of VMs. The
partition with the highest priority was designed to include the critical path task, whereby this path is designed to
be the longest in terms of the execution time, connecting the exit task to one of the entry-level tasks. This path
can be considered the backbone of the workflow, since the execution of its tasks must be prioritized. Figures
1(a) to (d) shows examples of scientific workflows.

(©)
Figure 1. Examples of scientific workflows: (a) cybershake, (b) LIGO, (c) montage, and (d) SIPHT

The remainder of this article is structured as follows. The most closely related literature is discussed in
section 2. Section 3 involves details of the system model and problem formulation. The algorithmic solution is
presented in section 4, whereas section 5 discusses the experimental settings and results. Finally, the conclusion
is presented in section 6.

2. RELATED WORKS

The problem of scheduling scientific workflows in the cloud environment has been extensively stud-
ied. Several proposals have addressed the minimization of execution cost and/or time, whereas others have
investigated multi-objective optimization criteria that involve balancing the execution load. Accordingly, Ali

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2979-2990

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 2981

et al. [12] introduced a grouping-based algorithm that reduces the total execution time of workflow tasks by
categorizing them based on their attributes, such as task dimension and task dependency. The proposed process
then determines the execution order of each task’s class. In their study, Braun et al. [13] used the min-min
algorithm for workflow scheduling, prioritizing small tasks and delaying larger tasks for an extended period.

For the same purpose, Kumar and Verma [14] integrated the max-min and min-min algorithms with
genetic algorithm functions to enhance the effectiveness of scheduling multiple tasks across multiple virtual
machines. Kumar and Verma [14] proposed evolutionary multi-objective optimization (EMO) to simultane-
ously reduce both the makespan and cost. The authors proposed an encoding scheme that addresses scheduling
sequences and task assignments. The authors also proposed a series of new genetic evaluation functions and
population operators to tackle this problem. Besides, Manasrah and Ali [15] introduced a hybrid GA-PSO
algorithm to decrease the total execution time and cost and balance the workload of interrelated tasks across
heterogeneous virtual machines in cloud environments. The suggested algorithm employs the standard devia-
tion to choose the optimal solution, minimizing the distributed load variance over the VMs.

Song et al. [16] proposed a new model for scientific workflow scheduling in the cloud. The proposed
approach models computationally intensive tasks as assembled tasks and allocates multiple resources to per-
form them. The authors employed a nested PSO algorithm to enhance the scheduling sequence of tasks and
resources. Further, Rodriguez and Buyya [17] developed a PSO algorithm that considered VM boot times to
reduce the total workflow tasks execution cost, taking into consideration the deadline constraint in clouds.

Moreover, Kchaou et al. [18] proposed a method for task scheduling and data placement to minimize
data transfers between cloud data centers. Their proposed approach employs an algorithm rooted in fuzzy
clustering, specifically the interval type-2 fuzzy C-means (IT2FCM), along with the meta-heuristic optimization
technique known as PSO. The goal is to optimize data movements during the execution of the workflow.

Furthermore, Charrada et al. [19] suggested a hybrid approach that determines whether to execute
tasks on private or public clouds based on the execution cost, with the assumption that privacy-related con-
straints are not a concern. For the same purpose, Bossche et al. [20] introduced a hybrid approach to minimize
the overall execution cost by considering both computational and communication costs and choosing the most
cost-efficient cloud that also meets the workflow task’s deadline. In their study, Byun et al. [21] presented a
balanced-time-scheduling algorithm, which calculates the approximate minimum number of virtual machines
needed to execute a workflow within a user’s deadline while decreasing the execution cost over the entire life-
time of an application. In addition, Wu et al. [22] introduced a two-stage approach for DAG applications
deployed on the cloud. The proposed method includes a minimal distance algorithm and minimal slack time,
aiming to minimize all idle-time slots during the workflow execution while also meeting deadline constraints.

Also, Abrishami et al. [23] introduced IaaS cloud partial critical paths (IC-PCPs) to reduce the overall
execution cost of workflows while meeting deadline constraints. The authors presented two distinct algorithms
for scheduling workflows: a one-phase algorithm that schedules the workflow in a single phase by assigning
each partial critical path to a specific instance of a computation service, and a two-phase algorithm that first
distributes the overall deadline across the tasks within the workflow and then schedules each task based on its
specified sub-deadline. Both algorithms have polynomial time complexity, which makes them suitable for large
extensive workflows.

Researchers [3], [5], considered minimizing both the execution time and cost. Almi’ani and Lee [3],
suggested a partitioning-based algorithm (PBWS) to determine the priority of each objective using a slack
parameter (B); when B = 0, the proposed method prioritizes minimizing the total execution time, but when B =
1, it focuses on minimizing the overall execution cost. The proposed algorithm follows a sequential partitioning
approach, starting with entry-level tasks. The number of VMs allocated per partition is determined based on
the B value, ensuring that each task is performed at the earliest starting time (EST) possible. Similarly, the
resource demand aware scheduling (RDAS) algorithm proposed in [5] employs a fair allocation strategy to
distribute VMs among workflow tasks. The objective is to minimize the makespan and optimize the use of
VMs, resulting in reduced overall execution costs.

Sahni and Vidyarthi [24] proposed a just-in-time (JIT-C) method to reduce the total cost of workflow
execution under deadline constraints. The proposed algorithm addresses three challenges commonly encoun-
tered in cloud platforms: variations in virtual machine performance, delays in acquiring resources, and diverse
characteristics of cloud resources. With its potential to address these issues effectively, the algorithm has the
potential to become a good choice for integration into cloud resource management.

To reduce the overall execution time, Topcuoglu et al. [6] proposed the HEFT algorithm, which works

Multi-priority scheduling algorithm for scientific workflows in cloud (Alaa Albtoush)

2982) ISSN: 2302-9285

by initially assigning priority rankings to tasks based on their computational requirements and their workflow
locality. Following this prioritization, each task is then scheduled using a VM that minimizes the makespan of
the entire workflow. Furthermore, Sandokji and Eassa [25] enhanced the HEFT algorithm by adding a dynamic
step that can adjust the scheduling of tasks based on new dynamic scheduling requirements.

As a critical factor in determining the efficiency of the proposed schedule, several proposals have
considered the structure of the workflow and the presence of the critical path scheduling solution designs [26],
[27]. However, unlike the solutions proposed in the literature, in this work, we use available information to
establish a logical order of execution for workflow tasks. An execution schedule is thereby designed to reduce
execution time while maximizing the use of VMs.

3. PROBLEM STATMENT

The input to the presented problem in this paper is a workflow represented as a direct acyclic graph
(DAG) G =< V, E >. Set V represents the tasks of the workflows, and set E represents the data interdepen-
dence restrictions between the tasks. In addition, we are provided with a set of virtual machines hosted on a
public cloud: VM = vmq,vmae, ..., vm,,. VMs are divided into two types: R; and Rs. vm; € R is twice
as fast and more expensive than vm; € R,. Each task (v; € V) can only begin its execution once it receives
all the necessary data from its parent tasks, and the last parent task to provide data is called the most influential
parent (MIP) for v;. The task has to use either the initial data provided with the workflow or the intermediate
data received from its parent tasks to start its execution. When data are transmitted between two tasks, this
incurs a communication cost, which is the time required for the data to travel. If two interdependent tasks are
assigned to the same virtual machine, the communication cost is considered to be zero.

The objective of the problem presented in this work is to schedule workflow task executions using the
available VMs such that the overall execution costs and time are minimized. Decreasing the execution costs
means minimizing the total billing cycle of the rented virtual machines, which might increase the execution
time. Therefore, the proposed solution in this paper aims to enhance the use of the available VMs to attain the
desired objective. By improving the virtual machines’ usage, it is expected that the number of billing cycles
will decrease, leading to lower costs. Furthermore, improving VM use is also expected to enhance the execution
time, as the virtual machines will work more efficiently.

4. ALGORITHMIC SOLUTION

The effectiveness of a scheduling method is influenced by inter-task data dependency constraints.
Therefore, the structure of the workflow must be considered when constructing the execution schedule. This
section presents a multi-priority scheduling algorithm.

4.1. Multi-priority scheduling algorithm (M-priority)

The multi-priority scheduling algorithm involves three steps: 1) attribute extractions, ii) priority cal-
culation, and iii) task scheduling. These three steps operate sequentially to determine the workflow execution
schedule.

4.1.1. Attribute extractions

In this step, for each task, the earliest starting time (EST) and the earliest finishing time (EFT) values
are calculated (1) and (2). The EST depends on the locality of the task in the workflow, and the EFT depends
on the speed of the virtual machine used (R; or R2). For a given task (v; € V), the EST and the EFT are
calculated as (1) and (2):

EST(v;) = 0 v; 18 entFy task (1)
EFT(MIP;) otherwise
EFT(v;) = EST(v;) + r(v;) @

where M1 P; refers to the most influential parent for task v;, and r(v;) denotes the running time of
task v;. Once the EST and EFT for each task are calculated, these values are used to calculate the latest starting
time (LST) and the latest finishing time (LFT) (3) and (4). These two values are introduced to determine if the

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2979-2990

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 2983

execution time of any given task can be delayed without impacting the overall execution time. The calculation
of these values starts with the exit task, and values are obtained as (3) and (4):

LST(v;) = EST(v;) v; 18 ex1F task 3)
MIN(EST(ANS;)) otherwise
LFT(v;) = LST(v;) + r(v;) &)

where MIN(EST(ANS;)) denotes the minimum EST for task v;’s direct ancestor; a direct ancestor for task
v; is a task that is connected to v; via a single edge. As discussed, the LST and LFT represent a safe gap that
can be used to determine if a given task must be scheduled without any delay.

4.1.2. Priority calculation
This step starts with calculating the allowable execution delay for each task (d(v;)); this value is
calculated as (5):

The d > 0 value of each task impacts its execution order. For instance, in situations where a task
has a zero d value, the execution of this task has to be prioritized. Accordingly, this step uses the delay value
to calculate the task priority values. From a priority perspective, the workflow tasks are divided into a set of
partitions based on their priorities, where the partition ID number represents its task priority. The number of
partitions used is a parameter that depends on the available number of VMs. The first partition (pr7) is designed
to host the tasks with the highest priorities (d=0). Regarding each task with a delay of d > 0, the identity of its
partition is calculated by first determining the partition delay range as (6):

B [MAX(d)W

Ng = m 6)

where M AX (d) refers to the maximum allowable delay for a task, and N P denotes the number of partitions.
By dividing the maximum delay by the number of partitions, n4 represents the time window for each partition
in terms of delay. For instance, if the value of M AX (d) is 20, and the number of partitions is 3, the value of
ng is 10. This range value denotes that, in any partition, the difference between any two tasks in terms of delay
should be < 10. Once the value of n, is calculated, a task (v; € V') partition ID is determined as (7):

d(v;)
{ (na) J

accordingly, a task priority value is controlled by its delay value, d, and the number of partitions used, where
increasing the value of d results in reducing the task priority.

pr(v;) = @)

4.1.3. Task scheduling

Algorithm 1 illustrates the task-scheduling step process. Scheduling workflow tasks is performed
level-by-level in a sequential fashion, where the entry-level tasks are the first to be scheduled. Each level’s
tasks are ordered based on their priority value. In situations where multiple tasks share the same priority value,
these tasks will be ordered based on their EST. Scheduling tasks is performed using a greedy strategy, where a
task is scheduled on the first VM that results in an actual starting time less than or equal to the LST. During the
process of scheduling tasks, the VMs with the lowest speeds (R1) are the first to be examined. Accordingly,
if no VM from the standard category can satisfy the starting time constraints, the VMs with the highest speed
(R2) will also be considered for task executions. Delaying the use of high-speed VMs reduces the execution
cost, since the cost of using this type of VM is typically higher.

4.2. Discussion and limitations

To clarify the process of the presented approach, consider the example shown in Figures 2(a) and (b).
The task characteristics are shown in Table 1. In this example, for simplicity, we assume that we have a single
VM from R; and a single VM from R,. Additionally, the number of partitions used is limited to two. Once the
priority calculation is performed, the tasks with a priority equal to one are identified to be 1,4 and 6,8, whereby
the reset values of the tasks are assigned a priority equal to two.

Multi-priority scheduling algorithm for scientific workflows in cloud (Alaa Albtoush)

2984) ISSN: 2302-9285

Algorithm 1 Task scheduling

Input: G, R(available VMs)
Output: S (schedule)

1: procedure TASKSCHEDULING(G, R)

2 L + sortTasksBasedonLevel(G)

3 forl; € L do

4: V' « order Basedon Priorityand EST(l;)
5: for v; € V' do
6.
7

8
9

r < findV M (v;, R1)
if r is empty then
r < findV M (v;, R1)
add < r,v; >to S
10: return S

At the beginning of the task-scheduling step, the entry-level tasks are considered for scheduling. Task
vy is scheduled on vm; € Ry, and task vy is scheduled on vmg € Rs. Then, while scheduling the other
levels’ tasks, vm is scheduled to execute tasks v4,vg, and vg, whereas tasks vs,vs, and v are scheduled to be
executed on vme. In this example, the execution time (makespan) is 66s. Based on this example, we can see
the importance of considering VMs with the lowest speeds as the first option for scheduling tasks, since all task
attribute values are calculated based on this speed. Additionally, speeding up the execution of the tasks with the
highest priority will not help reduce the makespan since these tasks depend on data generated by lower-priority
tasks. The ability to bind the workflow makespan with the LFT of the exit task is impacted by the number and
the speed of the available VMs, in situations where such bounding is mandatory, the following condition must
be satisfied for each workflow-level task:

r(li) —r(pr1)
|R1| -1+ ‘R2| X 2

) < r(pr1) ®)

where r(pry) denotes the running time of the task with priority one located at level I;, and r(I;) refers
to the running time of the entire level’s tasks. Additionally, |R; | refers to the number of available vims from the
R; category, and | Ry| refers to the number of available vms from the Ry type. In this calculation, the number
of vms from type R?; is reduced by one, since a single VM of this type is reserved to execute the task with a
priority equal to one. In situations where workflow tasks are divided into more than two partitions, the same
condition will hold since priority-one tasks influence the rest of the task executions.

The available number of VMs impacts the efficiency of the proposed approach. To clarify this depen-
dency, consider the example shown in Figure 2. In this example, if the number of available VMs is increased
to three, the M-Priority will obtain a better schedule since vs will be assigned to a third group, which allows
the execution of task v3 any delay.

& &

O O
(a) (b)

Figure 2. Workflow scheduling example: (a) input workflow and (b) priority calculation

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2979-2990

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 2985

Table 1. Attribute calculation

TaskId Runtime MIP EST EFT LST LFT d
1 15 0 0 15 0 15 0
2 12 0 0 12 3 15 3
3 16 1 15 31 21 37 7
4 22 1 15 37 15 37 0
5 14 2 12 26 23 37 11
6 18 4 37 55 37 55 0
7 13 4 37 50 42 55 5
8 11 6 55 66 55 66 0

Regarding the communication cost, although the proposed approach does not consider this cost during
the scheduled construction, considering this cost is not expected to reduce the overall performance of the
presented approach. The M-Priority aims to reduce the data dependency between the constructed groups.
Therefore, data-dependency tasks will likely to be executed on the same VM, and communication costs between
tasks assigned to the same VM is zero. Furthermore, when the workflow has a balanced structure, the efficiency
of the proposed approach is expected to increase since the computational and communication requirements of
the obtained groups are expected to be the same.

In dynamic environments, the presented approach is expected to be highly impacted by the probability
of hardware failure. In the M-Priority, VMs are divided between the groups based on their computational re-
quirements. Thus, when hardware failure occurs, the performance of the proposed approach might be degraded
since groups that lost some of their assigned VMs might create a performance bottleneck.

5. RESULTS AND DISCUSSION

This section provides a detailed discussion of the experimental settings and outcomes used to evaluate
the effectiveness of the proposed multi-priority scheduling algorithm (M-priority). In the presented results, four
real-world applications (LIGO, CyberShake, Montage, and SIPHT [28]) were used as input workflows. Each
of the workflows used consisted of 1000 tasks, and each experiment was repeated 10 times using 10 different
workflows (the average is displayed). The experiments used two types of VMs: R; and Ry. Ro was designed
to be twice as fast as 21, and the charge rates of R; and Ry were 0.10 and 0.20 USD per hour, respectively. In
line with [1], to evaluate the performance of the presented algorithm, we used the following evaluation metrics:

- Makespan (m): the makespan represents the total time taken to complete all workflow tasks, and it is indicated
by the AFT (actual finishing time) of the final task being executed (also known as the exit task (v.)). The
makespan can be expressed as m = AFT (v.);

- Cost (c): cost refers to the total expenses incurred for using the VMs, and it is determined using the billing
cycle formulation (bc), which is based on an hourly rate. The cost (¢) is calculated as (9):

c= > bewm)x10+ > bewm;) x 20 ©)

vm;ERy vm; € Ra

To validate the effectiveness of the proposed algorithm, comparisons were made against four bench-
mark algorithms from the literature namely, HBA [1], RDAS [8], PBWS [3], and HEFT [6]. The HBA
algorithm applies a lookahead strategy that aims to minimize the data dependency between the constructed
partitions. The RDAS algorithm partitions workflow tasks based on the workflow’s structure and divides the
available VMs between the partitions using a fair division strategy to minimize both the cost and makespan. The
PBWS algorithm determines the number of VMs and the execution schedule based on predetermined weights
for each objective (makespan or cost). The HEFT algorithm employs a greedy approach to sequentially sched-
ule tasks, selecting the VM that can minimize the AFT of each task. To ensure a fair comparison, the PBWS
algorithm was run first, and the number of VMs used by the PBWS algorithm was then used as input for the
M-priority, HBA, RDAS, and HEFT algorithms. To determine the number of partitions used by the M-priority
algorithm, we performed a sensitivity analysis. Based on the number of available VMs, two partitions achieved
the best performance. Accordingly, in the presented experiments, two partitions were used by the M-priority
algorithm. The results of the performed experiments are summarized in Table 2.

Multi-priority scheduling algorithm for scientific workflows in cloud (Alaa Albtoush)

2986) ISSN: 2302-9285

Table 2. Results summary
Workflow Algorithm Makespan Cost

LIGO M-priority 1495 1640
PBWS 1594 4659
RDAS 1643 4243
HEFT 1300 4974
HBA 1578 1640
CyberShake ~ M-priority 692 380
PBWS 550 294
RDAS 750 541
HEFT 712 516
HBA 533 315
Montage M-priority 211 1500
PBWS 956 497
RDAS 720 410
HEFT 815 446
HBA 242 1500
SIPHT M-priority 3163 1760
PBWS 8465 3282
RDAS 6991 2862
HEFT 7516 2974
HBA 4464 2320

LIGO: Figures 3(a) and (b) shows that the M-priority algorithm demonstrated a significant improve-
ment in terms of cost compared with other algorithms. This is due to the priority mechanism employed by
the M-priority algorithm, which works by scheduling tasks based on their data dependency constraints. Such
mechanisms improve the use of VMs. In addition, the M-priority algorithm outperforms the PBWS, HBA and
RDAS algorithms in terms of makespan, wherein the best performance is achieved by the HEFT algorithm. To
understand the factors behind this performance, let us consider the structure of the LIGO workflow. The struc-
ture of this workflow can be considered balanced, with the middle level introducing a high level of dependency.
The presence of this task level limits the benefit of the M-priority algorithm in terms of the makespan since it
reduces the overall delay value, >,y d(v;).

1800 -

1600 - 6000 -
1400 -
5000 |
1200 -
1000 - 4000 -
800 - 3000 |
600 -
2000 |
400 -
T - J I
0 T 0 T T
M- Pnonty PBWS RDAS HEFT M- Pnonty HBA PBWS RDAS HEFT
() (b)

Figure 3. LIGO workflow experiment results: (a) makespan and (b) cost

CyberShake: Figures 4(a) and (b) shows the results achieved by the M-priority algorithm compared
with the other benchmark algorithms. These results show that the proposed algorithm achieved a 20% cost
reduction and a 5% reduction in execution time compared with the RDAS and HEFT algorithms. However,
the PBWS and the HBA algorithms managed to achieve a better performance compared with the M-priority
algorithm. The CyberShake workflow had a shallow structure, which resulted in it having a significant number
of tasks located at some of its levels. Such a structure increases the delay sensitivity of the M-priority algorithm,
since tasks with small execution time windows are expected to degrade the M-priority algorithm.

Montage: the internal structure of the Montage workflow is not balanced; the number of tasks located
in the workflow levels varies significantly. This structure increased the execution cost of the schedule obtained
by the M-priority algorithm, since not all of the VMs were fully utilized. In contrast, in terms of the makespan,

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2979-2990

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 2987

such a structure highlights the benefits of the delay strategy employed by the M-priority algorithm, since it
established an efficient logical order of execution for the workflow tasks. Such factors are responsible for
the performance shown in Figures 5(a) and (b), whereby prioritizing the execution of tasks with high priority
helped reduce the overall execution time.

800
700 -

500 -

600 -
500 - 400 -
400 - 300 -

300 -
200 -

200 -
100 100 -
0 o

M- Prlorlty HBA PBWS RDAS HEFT M- Prlorlty HBA PBWS RDAS HEFT

(@) (b)

Figure 4. Cybershake workflow experiment results: (a) makespan and (b) cost

SIPHT: as presented in Figures 6(a) and (b), the M-priority algorithm significantly outperformed all
other algorithms in the SHIPT workflow experiment. The results show that the M-priority algorithm achieved
a time and cost reduction of over 20% compared with other algorithms. The SIPHT workflow also had an
unbalanced structure, which resulted in emphasizing the advantages of the mechanism employed by the M-
priority algorithm in reducing the execution time. Regarding the execution cost, in the SIPHT workflow, the
lower level had the highest number of tasks, and this increased the use of VMs.

1200 -
1000 -
800
600
400 |
B 7___IIII IIII

D -

M- Prlonty HBA PBWS RDAS HEFT
(a)

1600 -
1400 -
1200 -
1000 -
800
600 -
400 |
200 7 I

0 a3

M- Prlorlty HBA PBWS RDAS HEFT
(b)

Figure 5. Montage workflow experiment results: (a) makespan and (b) cost

Multi-priority scheduling algorithm for scientific workflows in cloud (Alaa Albtoush)

2988) ISSN: 2302-9285

9000
8000 -
7000
6000 -
5000 -
4000 -
3000
2000 -
1000
0 5
M- Prlorlty HBA PBWS RDAS HEFT
(a)
3500 -
3000 -
2500 -
2000 4
1500 -
1000 4
500
0 A v
M- Prlorlty HB. PBWS RDAS HEFT
(b)

Figure 6. SIPHT workflow experiment results: (a) makespan and (b) cost

6. CONCLUSION

Data dependency in workflow tasks plays a critical role in determining the efficiency of a resulting
schedule. In this work, we presented a multi-priority scheduling approach that establishes a logical order of
execution for workflow tasks. The method groups workflow tasks based on their locality, with the priority
of each partition determined based on its task’s order of execution. The results show that the number of
available VMs influences the schedule’s performance, as having a relatively high number of VMs highlights
the advantages of the approach. In future work, we plan to incorporate communication costs into the proposed
approach to determine its performance in more realistic settings. Additionally, we plan to expand the proposed
method to address dynamic scheduling scenarios, where the availability of resources and the priority of tasks
may change dynamically. We also plan to enhance our method to better handle such dynamic changes.

REFERENCES

[11 A. Albtoush, F. Yunus, K. Almi’ani, and N. M. Noor, “Structure-aware scheduling methods for scientific workflows in cloud,”
Applied Sciences, vol. 13, no. 3, p. 1980, Feb. 2023, doi:10.3390/app13031980.

[2] M. Farid, R. Latip, M. Hussin, and N. A. W. Abdul Hamid, “Scheduling Scientific Workflow Using Multi-Objective Algorithm
With Fuzzy Resource Utilization in Multi-Cloud Environment,” in IEEE Access, vol. 8, pp. 24309-24322, 2020, doi: 10.1109/AC-
CESS.2020.2970475.

[3] K. Almi’ani and Y. C. Lee, “Partitioning-Based Workflow Scheduling in Clouds,” 2016 IEEE 30th International Conference on
Advanced Information Networking and Applications (AINA), 2016, pp. 645-652, doi: 10.1109/AINA.2016.83.

[4] A. Pasdar, Y. C. Lee, and K. Almi’ani, “Toward cost efficient cloud bursting,” Service-Oriented Computing, pp. 299-313, 2019,
doi:10.1007/978-3-030-33702-5_23.

[S] K. Almi’ani, Y. C. Lee, and B. Mans, “Resource demand aware scheduling for workflows in clouds,” 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 2017, pp. 1-5, doi:
10.1109/NCA.2017.8171368.

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2979-2990

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 2989

[6]
(71
(8]
[9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

H. Topcuoglu, S. Hariri, and M. -Y. Wu, “Performance-effective and low-complexity task scheduling for heterogeneous computing,”
in IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274, March 2002, doi: 10.1109/71.993206.

R. N. Calheiros and R. Buyya, “Cost-effective provisioning and scheduling of deadline-constrained applications in hybrid clouds,”
Web Information Systems Engineering - WISE 2012, pp. 171-184, 2012, doi:10.1007/978-3-642-35063-4_13.

K. Almi’ani, Y. C. Lee, and B. Mans, “On efficient resource use for scientific workflows in clouds,” Computer Networks, vol. 146,
pp. 232-242, Dec. 2018, doi:10.1016/j.comnet.2018.10.003.

S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-constrained workflow scheduling algorithms for infrastructure as a
service clouds,” Future Generation Computer Systems, vol. 29, no. 1, pp. 158-169, Jan. 2013, doi:10.1016/j.future.2012.05.004.
A. Albtoush, N. M. M. Noor and F. Yunus, “Utility-based Scheduling Solution for Scientific Workflow on Cloud,” 2021 International
Symposium on Networks, Computers and Communications (ISNCC), 2021, pp. 1-6, doi: 10.1109/ISNCC52172.2021.9615698.

G. K. Toussi, M. Naghibzadeh, S. Abrishami, H. Taheri, and H. Abrishami, “EDQWS: An enhanced divide and conquer algorithm
for workflow scheduling in cloud,” Journal of Cloud Computing, vol. 11, no. 1, May 2022, doi:10.1186/s13677-022-00284-8.

H. G.E.D. H. Alj, I. A. Saroit, and A. M. Kotb, “Grouped tasks scheduling algorithm based on QoS in cloud computing network,”
Egyptian Informatics Journal, vol. 18, no. 1, pp. 11-19, Mar. 2017, doi:10.1016/j.€ij.2016.07.002.

T. D. Braun et al., “A comparison of eleven static heuristics for mapping a class of independent tasks onto Heterogeneous
Distributed Computing Systems,” Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810-837, Jun. 2001,
doi:10.1006/jpdc.2000.1714.

P. Kumar and A. Verma, “Scheduling using improved genetic algorithm in cloud computing for independent tasks,”
Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Aug. 2012,
doi:10.1145/2345396.2345420.

A. M. Manasrah and H. B. Ali, “Workflow scheduling using hybrid GA-PSO algorithm in cloud computing,” Wireless Communi-
cations and Mobile Computing, vol. 2018, pp. 1-16, 2018, doi:10.1155/2018/1934784.

A. Song, W. -N. Chen, X. Luo, Z. -H. Zhan, and J. Zhang, “Scheduling Workflows With Composite Tasks: A Nested Particle Swarm
Optimization Approach,” in IEEE Transactions on Services Computing, vol. 15, no. 2, pp. 1074-1088, 1 March-April 2022, doi:
10.1109/TSC.2020.2975774.

M. A. Rodriguez and R. Buyya, “Deadline Based Resource Provisioningand Scheduling Algorithm for Scientific Work-
flows on Clouds,” in IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 222-235, 1 April-June 2014, doi:
10.1109/TCC.2014.2314655.

H. Kchaou, Z. Kechaou, and A. M. Alimi, “A PSO task scheduling and IT2FCM Fuzzy data placement strategy for scientific cloud
workflows,” Journal of Computational Science, vol. 64, p. 101840, Oct. 2022, doi:10.1016/j.jocs.2022.101840.

F. B. Charrada and S. Tata, “An Efficient Algorithm for the Bursting of Service-Based Applications in Hybrid Clouds,” in IEEE
Transactions on Services Computing, vol. 9, no. 3, pp. 357-367, 1 May-June 2016, doi: 10.1109/TSC.2015.2396076.

R. V. Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-Efficient Scheduling Heuristics for Deadline Constrained Workloads on
Hybrid Clouds,” 2011 IEEE Third International Conference on Cloud Computing Technology and Science, 2011, pp. 320-327, doi:
10.1109/CloudCom.2011.50.

E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized provisioning of Elastic Resources for application workflows,”
Future Generation Computer Systems, vol. 27, no. 8, pp. 1011-1026, Oct. 2011, doi:10.1016/j.future.2011.05.001.

H. Wu, X. Hua, Z. Li and S. Ren, “Resource and Instance Hour Minimization for Deadline Constrained DAG Applications Using
Computer Clouds,” in IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 3, pp. 885-899, 1 March 2016, doi:
10.1109/TPDS.2015.2411257.

S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-constrained workflow scheduling algorithms for infrastructure as a
service clouds,” Future Generation Computer Systems, vol. 29, no. 1, pp. 158-169, Jan. 2013, doi:10.1016/j.future.2012.05.004.

J. Sahni and D. P. Vidyarthi, “A Cost-Effective Deadline-Constrained Dynamic Scheduling Algorithm for Scientific Work-
flows in a Cloud Environment,” in IEEE Transactions on Cloud Computing, vol. 6, no. 1, pp. 2-18, 1 Jan.-March 2018, doi:
10.1109/TCC.2015.2451649.

S. Sandokji and F. Eassa, “Dynamic variant rank heft task scheduling algorithm toward Exascle Computing,” Procedia Computer
Science, vol. 163, pp. 482-493, 2019, doi:10.1016/j.procs.2019.12.131.

L. Teylo, U. de Paula, Y. Frota, D. de Oliveira, and L. M. A. Drummond, “A hybrid evolutionary algorithm for task scheduling and
data assignment of data-intensive scientific workflows on clouds,” Future Generation Computer Systems, vol. 76, pp. 1-17, Nov.
2017, doi: 10.1016/j.future.2017.05.017.

M. Farid, R. Latip, M. Hussin, and N. A. W. Abdul Hamid, “Scheduling Scientific Workflow Using Multi-Objective Algorithm
With Fuzzy Resource Utilization in Multi-Cloud Environment,” in IEEE Access, vol. 8, pp. 24309-24322, 2020, doi: 10.1109/AC-
CESS.2020.2970475.

S. Kaur, P. Bagga, R. Hans, and H. Kaur, “Quality of service (qos) aware workflow scheduling (WFS) in Cloud computing: A
systematic review,” Arabian Journal for Science and Engineering, vol. 44, no. 4, pp. 2867-2897, Nov. 2018. doi:10.1007/s13369-
018-3614-3.

Multi-priority scheduling algorithm for scientific workflows in cloud (Alaa Albtoush)

2990) ISSN: 2302-9285

BIOGRAPHIES OF AUTHORS

Alaa Albtoush © &4 E € is currently a lecturer in the Information Technology School of Computer
Science at the University of Al-Hussein Bin Talal, Ma’an, Jordan where he has been a faculty member
since 2010. He received the B.Sc. degree in computer science from Mu’tah University, Al-Karak,
Jordan, in 2001, and the M.Sc. degree in computer science from AABFS University, Amman, Jordan,
in 2009, is currently a Ph.D. student in the Department of Computer Sciences, University Malaysia
Terengganu, Kuala Terengganu, Malaysia. His research interests include the cloud computing and
workflow scheduling. He can be contacted at email: alaa_ahu@yahoo.com.

Farizah Binti Yunus |2 i:d B © received her B.Sc. degree in electrical engineering (telecommu-
nication) and Ph.D. degrees in telecommunication engineering from Universiti Teknologi Malaysia
(UTM). She is a Senior Lecturer of Computer Science at Faculty of Ocean Engineering Technology
and Informatics, Universiti Malaysia Terengganu (UMT). Her research interests include wireless sen-
sor network, networking, cloud computing, and internet of things (IoT). She is a member of MBOT
and BEM. She has worked as researcher in several national funded R&D projects. She can be con-
tacted at email: farizah.yunus @umt.edu.my.

Noor Maizura Mohamad Noor -/ 4 B 2 obtained her Diploma and Bachelor of Computer Science
from Universiti Pertanian Malaysia, Serdang Selangor in 1991 and 1994 respectively. She earned
her Master of Science (Computer Science) from Universiti Putra Malaysia in 1997. Later in 2005,
she acquired her doctoral degree in Computer Science from the University of Manchester, the United
Kingdom. Her outstanding accomplishments led to her appointment as a professor in 2017. Her
recent research work focuses on improving organizational decision-making practices using technolo-
gies. This includes research interests in the design, development, and evaluation of decision support
systems for analyzing and improving decision processes. Her research interests also focus on the
areas of computer science, intelligent decision support systems, clinical decision support systems,
and information systems. She has presented and published over two hundred of papers on the deci-
sion support system at various international and local refereed journals, conferences, seminars, and
symposiums. She can be contacted at email: maizura@umt.edu.my.

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2979-2990

https://orcid.org/0009-0003-2384-9496
https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=j1N3i-0AAAAJ#d=gs_hdr_drw&t=1716473653859
https://orcid.org/0000-0002-6102-7392
https://scholar.google.com/citations?user=e5MK-_EAAAAJ&hl=en
https://orcid.org/0000-0001-9960-571X
 https://scholar.google.com.my/citations?user=ra41nNQAAAAJ&hl=en

	Introduction
	 Related Works
	 Problem Statment
	 Algorithmic Solution
	Multi-priority scheduling algorithm (M-priority)
	 Attribute extractions
	 Priority calculation
	Task scheduling

	 Discussion and limitations

	Results and Discussion
	conclusion

