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 Forest ecosystems play a crucial role in providing a wide range of 

ecological, social, and economic benefits. However, the increasing 

frequency and severity of forest fires pose a significant threat to the 

sustainability of forests and their functions, highlighting the need for early 

detection and swift action to mitigate damage. The combination of drones 

and artificial intelligence, particularly deep learning, proves to be a cost-

effective solution for accurately and efficiently detecting forest fires in real-

time. Deep learning-based image segmentation models can not only be 

employed for forest fire detection but also play a vital role in damage 

assessment and support reforestation efforts. Furthermore, the integration of 

thermal cameras on drones can significantly enhance the sensitivity in forest 

fire detection. This study undertakes an in-depth analysis of recent 

advancements in deep learning-based semantic segmentation, with a 

particular focus on model’s mask region convolutional neural network 

(Mask R-CNN) and you only look once (YOLO) v5, v7, and v8 variants. 

Emphasis is placed on their suitability for forest fire monitoring using drones 

equipped with RGB and/or thermal cameras. The conducted experiments 

have yielded encouraging outcomes across various metrics, underscoring its 

significance as an invaluable asset for both fire detection and continuous 

monitoring endeavors. 
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1. INTRODUCTION 

The scourge of wildfires inflicts devastating damage worldwide, impacting not only natural 

ecosystems but also human communities. Apart from annihilating vegetation and wildlife across thousands of 

hectares, these fires release significant CO2 into the atmosphere, exacerbating global warming. This threat is 

particularly acute in Mediterranean regions, where hot and arid conditions foster the rapid spread of flames. 

Climate change renders these areas increasingly vulnerable to extended heatwaves, heightening the risk of 

catastrophic wildfires. Addressing this challenge requires an integrated approach involving enhanced 

prevention measures, sustainable land and forest management, as well as increased awareness of responsible 

human behavior concerning forest fires [1]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Early detection of forest fires is crucial for ecosystem preservation and public safety. Utilizing 

drones and deep learning has proven highly effective, overcoming the limitations of traditional methods. 

Advances in computer vision and deep learning allow algorithms to automatically identify fire indicators in 

drone-captured images, enabling swift detection of emerging fires. Drones' ability to cover challenging 

terrains amplifies monitoring and significantly improves forest fire detection and response efficiency [2]. 

Forest fire detection by drones relies on three main families of deep learning techniques, which are 

the result of a previous literature review [2]. Image classification categorizes drone-captured images into fire 

or non-fire classes. Object detection identifies flames and/or smoke in scenes, pinpointing their location 

accurately. Segmentation divides images, accurately outlining fire and smoke areas. These complementary 

deep learning approaches provide vital tools for precise fire detection, contributing to a rapid and targeted 

response during emergencies [3]. 

On the other hand, thermal images offer a unique perspective, enabling naked-eye detection of forest 

fires where traditional RGB cameras fall short. The heat emitted by fires creates visual contrasts in the 

infrared spectrum, captured by thermal cameras. This capability is crucial for disaster prevention and 

management [4]. To fully harness this technology, in-depth studies in computer vision are necessary, with 

deep learning algorithms tailored specifically for thermal image analysis. Integrating the richness of thermal 

data with deep learning capabilities powers advanced detection systems, significantly enhancing monitoring 

and swift response to forest fires. This contributes to environmental preservation and public safety. 

This paper broadens our study scope after addressing image classification and object detection. We 

shift focus to semantic segmentation, exploring effective deep learning models. Notably, our analysis extends 

beyond conventional RGB images, encompassing thermal images for a comprehensive understanding. 

 

 

2. BACKGROUNDS 

2.1.  Image segmentation 

Segmentation is a fundamental technique in the field of computer vision. It involves dividing an 

image into meaningful regions, allowing for analysis and understanding of the various elements within it. 

Segmentation provides fine granularity by identifying and isolating objects, boundaries, and structures in an 

image, facilitating further analysis [5].  

Segmentation finds numerous applications in various domains of computer vision. In medicine, for 

example, medical image segmentation enables the localization and delineation of anatomical structures such 

as organs, tumors, or lesions, aiding in diagnosis and patient monitoring [6]. In the field of autonomous 

driving, segmentation is used to detect pedestrians, vehicles, and obstacles on the road, contributing to safe 

decision-making by autonomous vehicles [7]. Segmentation is also utilized in augmented reality to 

realistically overlay virtual objects onto real-world images. It is useful in video surveillance for the detection 

of suspicious activities or facial recognition. In robotics, segmentation can enable precise object manipulation 

by identifying and locating objects [8]. 

Segmentation is very beneficial for forest fire detection and monitoring since it may offer 

information on the fire's size and impacted areas. It permits the discrimination of fire and non-fire regions in 

a picture, as well as the differentiation between different types of fires, such as controlled burns and 

uncontrolled wildfires [9]. Segmentation techniques include instant segmentation, semantic segmentation, 

and panoptic segmentation [10]: 

− Instant segmentation is ideal for real-time forest fire monitoring and early detection. It can rapidly 

analyze pictures acquired by drones and provide real-time information about the fire's size and growth, 

allowing authorities to respond swiftly and avert widespread damage. 

− Semantic segmentation is optimal for detecting the fire's extent and affected areas. It gives information 

regarding the semantic significance of the regions inside a picture, such as fire or non-fire regions, 

allowing authorities to make well-informed decisions regarding the best course of action (Figure 1). 

− Panoptic segmentation is best suited for providing a complete representation of a picture, including the 

location and size of the fire, as well as the objects and areas within the image. This type of segmentation 

can provide extensive information on the fire, making it important for making decisions regarding forest 

fire response. 

The optimal segmentation technique for forest fire detection will depend on the task's specific 

criteria, such as the necessity for real-time monitoring, the identification of the fire's extent, or a full image 

representation. In our research, we will concentrate on the extent of the fire, therefore semantic segmentation 

will be our method of choice. 
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Figure 1. Instant segmentation and semantic segmentation example 

 

 

2.2.  Thermal images 

Aerial photography or videography remains the most commonly performed tasks with drones. For 

this purpose, drones are equipped with one or multiple cameras, enabling them to capture their surroundings 

from the air. The possibilities for photographic equipment are vast, ranging from small action cameras to 

professional cameras with interchangeable lenses [11]. 

In the field of cameras, there are two main types of sensors: standard camera sensors and thermal 

camera sensors. Standard camera sensors, also known as visible-light cameras or RGB cameras, capture 

images using the visible spectrum of light with red, green, and blue channels to create full-color images. 

These cameras are commonly used for regular photography and videography in typical lighting conditions. 

On the other hand, thermal camera sensors, also called infrared cameras, detect infrared radiation emitted by 

objects based on their temperature, allowing visualization of heat variations in a scene [12]. Thermal cameras 

are valuable for applications like night vision, firefighting, search and rescue operations, industrial 

inspections, and identifying heat leaks in buildings. Each type of camera sensor serves specific purposes and 

is utilized across various industries accordingly. 

The thermal sensitivity of a thermal camera measures its ability to detect subtle temperature 

differences, thereby enabling visualization of objects with minimal thermal variations. These cameras can 

operate in different ranges of the infrared spectrum, typically categorized as near-infrared (NIR),  

mid-infrared (MIR), and far-infrared (FIR), each having specific applications. However, thermal images may 

be influenced by weather conditions, absorption, and reflection of infrared radiation, as well as the distance 

between the object and the camera, which can impact their quality and accuracy [13]. 

In scenarios where conventional RGB images encounter limitations due to dense vegetation and 

inherent variations in lighting within forest environments, thermal imaging emerges as a promising avenue 

for wildfire detection (Figure 2). By virtue of their capability to capture the distinctive heat emissions 

associated with combustion activities, thermal images transcend the constraints of traditional visual methods. 

By circumventing the visual impediments posed by dense foliage, thermal images enable a more accurate 

detection of fire hotspots, thereby facilitating early identification and swift response in managing emergency 

situations related to forest fires [14]. 
 

 

 
 

Figure 2. Advantages of thermal imaging for forest fire detection over RGB conventional images 

 

 

3. RELATED WORK 

Zhao et al. [15] introduced a groundbreaking saliency detection algorithm aimed at rapid core fire 

area localization and segmentation in aerial images. The suggested approach efficiently prevents feature loss 
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resulting from direct resizing, making it suitable for data augmentation and creating the 'UAV_Fire' dataset, a 

standard collection of fire images from drones. Next, they introduce 'Fire_Net,' a 15-layered DCNN 

architecture designed to serve as both a self-learning fire feature extractor and classifier. After evaluating 

various architectures and several essential parameters (such as drop-out ratio, and batch size) of the DCNN 

model concerning its validation accuracy, the suggested design surpassed previous approaches by achieving 

an impressive overall accuracy of 98%. Moreover, 'Fire_Net' ensured a remarkable average processing speed 

of 41.5 ms per image, enabling real-time wildfire inspection. 

Bulatov and Leidinger [16] used instance segmentation to accurately monitor and analyze the spatial 

and temporal distribution of deadwood, a significant factor in forest fires. This study highlights the 

impressive potential of achieving precise instance segmentation in both RGB and elevation domains, even 

with limited training data. By employing a high-performance Mask region convolutional neural network 

(Mask R-CNN) model, the researchers effectively mapped standing and fallen deadwood instances in 

German forests. The results were remarkable, achieving an impressive overall accuracy of 92.4%. 

Tran et al. [17] used images collected from a forest fire in Andong, the Republic of Korea, in April 

2020. Following that, they implemented two-patch-level deep-learning models. The first network, trained 

using the UNet++ architecture, operated at the patch-level 1. The output predictions from this initial network 

were then utilized as positional input for the second network, which employed UNet and refined the results 

based on the reference position from the first network. Subsequently, the robustness of the proposed method 

was demonstrated by comparing its final performance with state-of-the-art image-segmentation algorithms. 

Additionally, a comparative study of the loss functions was conducted. The proposed approach has certain 

limitations, including the need to train dual patch-level models on different locations and weather conditions 

for improved performance. Furthermore, its current local processing requires conversion into an online 

platform to enhance practicality and reduce time consumption. 

Muksimova et al. [18] undertook a groundbreaking project, developing an innovative model with 

two pathways that encodes and decodes information. This model aims to detect and accurately outline 

wildfires and smoke in real-time images captured by UAVs. The key innovation lies in their use of a nested 

decoder, which includes pre-activated residual blocks and an attention-gating mechanism. This approach 

substantially improves the accuracy of segmentation. To enhance the model's reliability and its ability to 

work across different scenarios, the researchers meticulously gathered a new dataset comprising actual 

incidents of forest fires and smoke, ranging from small to large areas. Their efforts paid off, as experimental 

results clearly demonstrated the exceptional performance of their method. It outperformed existing 

techniques for detection and segmentation while maintaining a lightweight design. 

Garcia et al. [19] conducted a study focusing on using various unsupervised segmentation methods 

to segment aerial thermal images of forest fires. In their research, they introduced an innovative approach that 

combines both global and local information through a multilayer level set formulation. At the global level, 

their method aimed to minimize an energy functional based on the widely-used Chan-Vese method, which is 

commonly used in image processing and computer vision tasks. The Chan-Vese model works by minimizing 

an energy function that considers both regions inside and outside the region of interest. To evaluate the 

effectiveness of their approach, they compared it with other common unsupervised segmentation methods, 

and the results were promising. Their method outperformed the alternatives, achieving impressive accuracy 

(96.2%), precision (87.1%), and intersection over union (77.5%). The evaluation involved comparing the 

outputs of their method with hand-drawn labels provided by the Portuguese Air Force, which served as the 

ground truth for the experiment. Despite its remarkable performance, their proposed method currently lacks 

real-time segmentation capabilities, with an inference time of 2.86 seconds per image. Nonetheless, their 

research represents a significant advancement in addressing the challenging task of segmenting aerial thermal 

images for forest fire analysis. 

 

 

4. PROPOSED METHOD 

4.1.  Methodology and target architecture 

In the context of forest fire detection and monitoring, the objective of this research is to investigate 

the adoption of you only look once (YOLO) and Mask R-CNN for segmentation. Particularly, we will 

experiment with several variations of YOLO to determine which version would be most suited for our 

purpose, taking accuracy and speed into account. In addition, we will investigate the segmentation 

capabilities of Mask R-CNN and contrast its efficacy to that of YOLO variants. 

To identify the most precise and efficient model suitable for deployment on an AI-IoT-enabled 

device, we will test multiple iterations of YOLO and Mask R-CNN. These include YOLOv5 [20], YOLOv7 

[21], YOLOv8 [22], and Mask R-CNN with ResNet50 [23]. The choice of Resnet50 as the backbone for the 

Mask R-CNN model was justified in a previous work [24]. Our experimentation will entail the training and 

evaluation of these models using a dataset comprising aerial photos captured by drones in forested 
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environments. This dataset will feature a diverse range of fire scenarios, including controlled burns, 

uncontrolled wildfires, and non-fire images, thus enriching the model's versatility. We will conduct analyses 

on all explored models using both conventional RGB images and thermal imagery. 

Once the optimal model is selected, it will be deployed on an AI-IoT-enabled device placed in a fog 

environment. Utilizing the RTMP protocol, the device will receive a video feed from the drone, enabling 

real-time forest fire detection and monitoring. The device will analyze the video feed using the deployed 

model to detect fire zones. When a fire is detected, the device will transmit a notification along with 

photographs and videos of the affected area to the cloud (authorities). The cloud will then provide a 

consolidated platform for authorities' surveillance and decision-making (see Figure 3). 

 

 

 
 

Figure 3. Proposed monitoring and detection system 

 

 

Whether it's the Mask R-CNN model or the YOLO variants, for normal or thermal RGB images, all 

models typically operate through a five-step process to achieve accurate image segmentation (Figure 4). 

Firstly, input images are provided to the model (step 1). Next, the model performs object detection to identify 

fire regions within the image (step 2). Following this detection step, segmentation is applied individually to 

each bounding box encompassing these regions, breaking down each object into its distinct components  

(step 3). Once the boxes are segmented, the outcomes are integrated back into the overall image, yielding a 

comprehensive and precise representation of objects and their boundaries within the original image (step 4). 

Lastly, output images are generated, showcasing a detailed and accurate segmentation of all objects present 

in the original images, thereby enhancing the understanding and analysis of visual scenes (step 5). 

 

 

 
 

Figure 4. Methodology for experimental research 
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4.2.  Datasets collection and preprocessing 

The primary phase of our proposed method involves assembling a dataset of images depicting 

instances of forest fires. This dataset comprises two distinct collections: one containing RGB images, and the 

other containing thermal images. The first dataset, which includes after data augmentation a total of 4236 

labeled images, incorporates photographs taken from ground-level cameras as well as aerial drones. These 

ground-level cameras have been employed to capture intricate real-time portrayals of forest fires, some of 

which were taken within our campus. In contrast, the aerial drone images offer a wider perspective, capturing 

expansive forested areas to facilitate monitoring of the fire's scope and magnitude. Additionally, we have 

incorporated images from publicly accessible datasets, such as those found in online image repositories and 

websites, to diversify and enhance the dataset with authentic depictions of real-world forest fire scenarios. 

For the second dataset, we combined the limited available thermal images sourced online with images 

simulating fires on our university campus. The augmented dataset for this second collection comprises a total 

of 1250 images. It's important to highlight our thorough measures to ensure a comprehensive range of 

images. These images encompass diverse fire types, varying intensities of fires, and an array of 

environmental settings where these incidents occurred. This strategic approach was taken to bolster the 

model's ability to accurately detect fires under a multitude of conditions, thus leading to an enhancement in 

its overall performance and generalization capacity. We streamlined the labeling process effectively by 

harnessing the power of Darwin, a robust training data platform widely recognized for its ability to create 

impactful AI solutions [25]. Packed with an array of exciting features, this platform simplifies tasks related to 

training data, dataset management, and model training. This venture entailed a significant investment of time 

and effort from our project team members. To optimize the workflow, we distributed the dataset among team 

members, enabling a smooth and swift resolution of the task. 

Our method involves preprocessing and augmenting collected datasets. Preprocessing includes 

resizing images to 640x640 and converting them to JPG format. This is essential for successful image 

segmentation. Augmentation adds distortions like rotations and flips to enhance dataset variety and system 

robustness. Resizing and augmenting data increase segmentation success chances. 

 

4.3.  Deep learning models for segmentation 

We will examine two classes of deep learning models used for segmentation: YOLO, encompassing 

versions v5, v7, and v8, as well as Mask R-CNN: YOLO, specifically in versions YOLO v5, v7, and v8, has 

ushered in a significant evolution within the realm of computer vision. Originally designed for object 

detection, these iterations have now transcended their initial purpose by incorporating image segmentation 

capabilities. This fusion of semantic segmentation represents a pivotal advancement in the field, seamlessly 

combining object detection with image segmentation. YOLO v5, v7, and v8 have successfully unified the 

extraction of information related to detected objects and their precise contours. This breakthrough unlocks a 

myriad of possibilities, from enhancing automated surveillance systems to enabling advanced environmental 

analysis. These developments underscore the unwavering dedication of the computer vision community to 

continually push the boundaries of innovation [26]. 

Mask R-CNN stands as a pivotal milestone in the realm of computer vision, representing a historic 

breakthrough by seamlessly amalgamating object detection and semantic segmentation. Emerged in 2017, 

Mask R-CNN evolved from its predecessor, faster R-CNN, by introducing a segmentation branch to the 

network, enabling precise identification and delineation of detected objects. The underlying principal hinges 

on harnessing convolutional neural networks to first detect object bounding boxes, then refining these 

detections by generating binary masks that intricately outline individual objects. This fusion of object 

detection and segmentation revolutionized applications like multi-instance object detection, object 

recognition, and contextual understanding. The evolution of Mask R-CNN has paved the way for ongoing 

enhancements in neural network architectures for computer vision, driving significant progress in how 

machines comprehend and interact with the visual world around them [27].  

 

4.4.  Models training and evaluation 

In our proposed method, we proceed with training segmentation models on preprocessed and 

augmented datasets. The datasets are divided into train (70%), validation (20%), and test (10%) subsets. 

Various models including YOLOv5, v7, and v8, as well as Mask R-CNN, are employed. We opt for Mask R-

CNN due to its efficiency and precision in handling complex images, learning high-level features with rapid 

inference speed [23]. YOLO, particularly its newer versions, is also recognized for its speed and accuracy 

[28]. The training process utilizes labeled data containing fire bounding boxes and class information. Mask 

R-CNN relies on tensorflow record (TFRecord) files for input, whereas YOLO uses TXT annotations and 

YAML config files. The primary objective here is to establish a dependable and highly accurate model for 

forest fire detection. Subsequently, the models' performance is assessed using the test set (10%) from the 

collected dataset. This evaluation phase is crucial as it gauges each model's performance and inference speed 
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on previously unseen data, providing insights into their overall efficiency in detecting diverse forest fire 

types. 

 

 

5. RESULTS AND DISCUSSIONS 

5.1.  Hardware characteristics 

In the model training process, we used TensorFlow v2.13.0 [29], an open-source data analysis and 

machine learning software library, on an HPC system with powerful hardware specifications, including 2x 

Intel Gold 6148 (2.4 GHz/20 cores) CPUs and 2x NVIDIA Tesla V100 graphics cards, each with 32GB of 

RAM. These specifications were necessary to provide us with the required computational power to train our 

deep learning models effectively. To further enhance the model's performance and prevent overfitting, we 

employed transfer learning techniques and data augmentation during training. 

The simulated fires on the university campus were filmed by a DJI Mavic Air drone and the team 

members’ mobile phone camera. For thermal image acquisition, we utilized a Fluke Ti90 camera from Fluke 

Corporation, renowned for its measurement and testing instruments. The Fluke Ti90 offers an impressive 

temperature range of -20°C to 250°C (-4°F to 482°F) and features a high-quality LCD screen for real-time 

thermal image display, aiding in thermal issue identification. Its infrared optics with a 35° x 26° field of view 

enable precise targeting of specific measurement areas, while its thermal sensitivity of 0.15°C at 30°C 

(0.27°F at 86°F) allows for detecting subtle temperature variations. Additionally, it offers advanced thermal 

imaging features such as visual and thermal image overlay for in-depth data analysis. For future 

deployments, we're considering the Raspberry Pi 4 for its popularity, cost-effectiveness, and machine 

learning capabilities, featuring a quad-core ARM Cortex-A72 processor, 4 GB of RAM, and various 

connectivity options like ethernet, Wi-Fi, and Bluetooth. 

 

5.2.  Metrics for segmentation evaluation 

The presence of a suitable evaluation metric holds significant importance in discerning the most 

optimal model throughout the training phase. Utilizing distinct metrics becomes imperative when evaluating 

deep learning models [30]. For image segmentation: 

− True positive (TP): pixels that the model accurately classifies as being members of the target object class. 

− True negative (TN): pixels that the model correctly recognizes as not being part of the target object class. 

− False positive (FP): pixels that the model erroneously categorizes as being part of the target object class, 

even when they are not. 

− False negative (FN): pixels that belong to the target object class but are inaccurately labeled as not 

belonging to it by the model. 

It's important to note that in segmentation, the primary focus is on TP and FP, as they are used to 

calculate precision and recall, which are metrics evaluating the quality of the model's segmentation 

performance. 

Precision: precision refers to the accuracy of accurately identifying and labeling only the relevant 

pixels as belonging to the target object or class [31]. Precision is defined as (1): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 (1) 

 

Recall: recall, or true positive rate, is the ratio of correctly identified positive pixels (true positives) 

to the total number of actual positive pixels, indicating the model's ability to capture and identify the entirety 

of the target object class [31]. It's calculated as (2): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (2) 

 

F1 score: the F1 score is a harmonic metric that combines precision and recall, thereby providing a 

balanced trade-off between the model's ability to accurately identify positive instances and its ability to avoid 

false negative classifications [31]. The F1 score is calculated as (3): 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

Inference time: the inference time is the time it takes for a deep learning model to analyze a single 

image and provide a prediction, specifically the elapsed time between inputting the image into the model and 

outputting the prediction [31]. 
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Average precision (AP): AP is a metric that assesses the quality of object delineation and 

classification in image segmentation. Its formula combines precision and recall at various similarity 

thresholds between predictions and annotations [32]. The formula for average precision is (4): 

 

𝐴𝑃 =  ∑ [𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘)  −  𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘 + 1)  ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠(𝑘)]𝑘=𝑛−1
𝑘=0  (4) 

 

Where recalls(n)=0, precisions(n)=1, and n is number of thresholds 

Mean average precision (mAP): mAP evaluates a segmentation model's performance holistically by 

computing the AP across various object classes. This metric is commonly presented at multiple confidence 

thresholds, such as 0.5 and 0.95, to offer a comprehensive understanding of the model's accuracy across 

different levels of confidence [32]. 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖𝑁

𝑖=1  (5) 

 

Where 𝐴𝑃𝑖 is the AP of class i and N is the number of classes. 

Intersection over union (IoU): IoU also known as the Jaccard Index, is a crucial metric in image 

segmentation that gauges the degree of overlap between a predicted object and its corresponding ground truth 

annotation. This is achieved by dividing the intersection area of the predicted region and the ground truth 

region by their combined area. IoU offers insight into how well a model's predicted segmentation aligns with 

the real object boundaries, making it a pivotal measure of segmentation accuracy and spatial precision [32]. 

 

𝐼𝑜𝑈 =  
(𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎) 

(𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎)
 (6) 

 

Where the "intersection area" is the overlapping region between the predicted and ground truth segments, and 

the "union area" is the combined area of both the predicted and ground truth segments. 

 

5.3.  Experimental results 

In Table 1 and Figure 5, we present the results obtained for various metrics, including accuracy, 

precision, recall, Intersection over Union, mAP at confidence thresholds of 0.5 and 0.95, as well as the 

inference time for each model, both for standard RGB and thermal images. To maximize effectiveness, we 

trained all of the models for seventy epochs. 

 

 

Table 1. Obtained results for the implemented models 

Deep learning model Stage 
IoU mAP mAP Inference Precision Recall F1-score 
% @0.5 % @0.95 % s/Image % % % 

Mask R-CNN real images Boxing 91.02 97.93 97.53 ~0.028 99.13 98.89 99.01 

Segmentation 92.14 97.91 96.42 ~0.0046 

Mask R-CNN ifrared images Boxing 91.11 98.52 98.12 ~0.028 99.17 99.07 99.12 
Segmentation 92.32 98.48 94.56 ~0.0046 

YOLOv5 real images Boxing 88.94 95.43 92.04 ~0.0051 98.18 97.95 98.06 

Segmentation 89.02 95.25 84.20 ~0.0039 
YOLOv5 ifrared images Boxing 89.04 95.49 88.23 ~0.0051 98.23 97.86 98.04 

Segmentation 88.91 92.37 83.01 ~0.0039 

YOLOv7 real images Boxing 89.17 95.10 95.96 ~0.0027 98.35 98.17 98.26 
Segmentation 89.14 94.90 85.00 ~0.0037 

YOLOv7 infrared images Boxing 89.18 95.42 93.63 ~0.0027 98.31 98.06 98.18 
Segmentation 88.72 95.23 88.83 ~0.0037 

YOLOv8 real images Boxing 89.36 96.50 96.28 ~0.0011 98.47 98.22 98.34 

Segmentation 90.54 96.37 89.61 ~0.0027 
YOLOv8 infrared images Boxing 89.41 96.46 96.19 ~0.0011 98.45 98.19 98.32 

Segmentation 90.16 96.36 93.31 ~0.0027 

 

 

The primary observation to emphasize is that all the models analyzed showed the potential to be 

trained for forest fire segmentation, regardless of whether utilizing RGB or thermal images. However, there 

was variance in the convergence time, with YOLO models notably demonstrating faster training, reaching 

convergence in fewer than ten epochs. Despite employing a substantially smaller number of images, the 

results achieved with thermal images were nearly comparable to those obtained through RGB training for all 

the models examined. Specifically, the thermal image dataset comprised less than one-third of the images 

used for RGB training. 
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Figure 5. Achieved mAP@0.5 over epochs on validation set for the implemented models 

 

 

The Mask R-CNN model excels in terms of image segmentation performance in both scenarios. For 

RGB images, it achieves an mAP@0.5 of 97.93% and an mAP@0.95 of 97.53% for object detection "Fire", 

along with an mAP@0.5 of 97.91% and an mAP@0.95 of 96.42% for fire segmentation, accompanied by an 

impressive F1 score of 99.01%. In the case of thermal images, the results are equally impressive, with an 

mAP@0.5 of 98.52% and an mAP@0.95 of 98.12% for object detection "Fire," as well as an mAP@0.5 of 

98.48% and an mAP@0.95 of 94.56% for fire segmentation, and an outstanding F1 score of 99.12%. Mask 

R-CNN stands out as the top-performing model among all the models examined. However, it also demands 

the highest computational resources, requiring approximately 0.028 seconds per frame for object detection 

and around 0.0046 seconds per frame for the segmentation operation. This translates to an overall processing 

time of 0.0346 seconds per frame for the entire image analysis pipeline.  

All variants of the YOLO model delivered slightly lower performance compared to the Mask  

R-CNN model, but offered significantly improved inference times. These results remain highly convincing, 

particularly those achieved by the YOLOv8 model, boasting an F1 score of around 98.3% for both RGB and 

thermal images. The model achieved a mAP@0.95 of 96.28% and 89.61% for object detection and 

segmentation, respectively, with RGB images, and 96.19% and 93.31% with infrared images. YOLOv8's 

performance is quite commendable, especially considering its rapid total inference time of 3.8 ms/image, 

making it an ideal choice for real-time detection. 

Across the majority of models under examination, the object detection phase consistently exhibits 

longer processing times compared to the segmentation stage, where the primary objective is to identify the 

fire's outline within the designated area. Notably, the segmentation time remains relatively consistent among 

different models and is largely unaffected by the choice of RGB or infrared imagery. Noteworthy 

advancements in both performance and speed within the object detection phase, particularly with the 

YOLOv8 model, have been observed. Figure 6 showcases several examples of normal and thermal RGB 

forest fire image segmentation carried out by the YOLOv8 model. 

While the speed of segmentation remains a crucial factor for achieving real-time processing 

capabilities on board a drone, our focus in this discussion is primarily directed towards the metric known as 

mAP@0.95. This choice stems from our broader exploration of segmentation's utility, which extends beyond 

merely fire detection. Instead, we aim to harness segmentation for comprehensive purposes, such as assessing 

post-fire damage and contributing to reforestation initiatives. In scenarios like these, the drone must operate 

at elevated altitudes to effectively survey expansive regions. Consequently, the segmentation process must 

attain a near-perfect level of precision to faithfully represent various aspects, including the extent of burnt 

areas and the count of trees burned. This precision is paramount to the accuracy of our mission, as it enables 

us to gather invaluable data for efficient post-fire rehabilitation and reforestation efforts. 

When assessing the use of infrared imagery, the results obtained are promising, especially 

considering the scarcity of training images and the inherent challenges of thermography. It's important to 
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recognize that thermal imaging cameras don't consistently capture, process, and display temperature data 

uniformly. As a result, the variations in color seen in thermal images primarily arise from differences in 

camera settings, color palette choices, and temperature variations within the scene being depicted. 

 

 

 
 

Figure 6. Forest fire segmentation - examples using YOLOv8 

 

 

6. CONCLUSION 

The combination of drones and deep learning proves cost-effective for the precise and efficient real-

time detection of forest fires. Deep learning-based image segmentation models not only play a pivotal role in 

fire detection but also in thorough environmental analysis. This advanced technological approach facilitates 

ecosystem monitoring, thus contributing to nature preservation and damage assessment from wildfires. 

Moreover, the integration of thermal cameras on drones can significantly enhance forest fire detection by 

boosting thermal sensitivity. This study explores recent advancements in deep learning-based semantic 

segmentation, with a specific focus on the Mask R-CNN and YOLO versions 5, 7, and 8 models. It highlights 

their significance in the context of forest fire monitoring, particularly when deployed on drones equipped 

with both RGB and thermal cameras. All models under scrutiny exhibit positive performance across various 

metrics, thereby establishing themselves as promising tools for semantic segmentation of forest fire images. 

While Mask R-CNN is slower than all YOLO variants, it excels in terms of image segmentation performance 

in both RGB and thermal image scenarios, achieving a remarkable F1 score exceeding 99%, along with an 

mAP@0.5 of nearly 97.5% for "Fire" object detection step and 98% for segmentation within the bounding 

boxes. YOLO models offer commendable performance coupled with exceptional inference speeds, rendering 

them optimal selections for real-time detection tasks. Notably, YOLOv8 boasts an impressive overall 

inference time of just 3.8 milliseconds per image. For the use of infrared imagery, the results obtained are 

quite promising, especially when considering the scarcity of training images and the inherent challenges of 

thermography. 

As future work, we intend to design and implement a comprehensive architecture for the detection 

and monitoring of forest fires. This architecture will rely on synergy between IoT sensor networks, drone 

networks, and advanced deep learning algorithms. 
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