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 Recognizing chili plant varieties through chili leaf image samples 

automatically at low costs represents an intriguing area of study. While 

maintaining and protecting the quality of chili plants is a priority, classifying 

leaf images captured randomly requires considerable effort. The quality of the 

captured leaf images significantly impacts the development of the model. This 

study applies a meta-learning approach to chili leaf image data, creating a 

dataset and classifying leaf images captured using mobile devices with 

varying camera specifications. The images were organized into 14 

experimental groups to assess accuracy. The approach included 2-way and 3-

way classification tasks, with 3-shot, 5-shot, and 10-shot learning scenarios, 

to analyze the influence of various chili leaf image factors and optimize the 

classification and segmentation model's accuracy. The findings demonstrate 

that a minimum of 10 shots from the meta-test dataset is sufficient to achieve 

an accuracy of 84.87% using 2-way classification meta-learning combined 

with the mix-up augmentation technique. 
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1. INTRODUCTION 

Deep learning has emerged as a critical technology in image-based plant identification, finding 

applications in areas like plant variety recognition [1], [2], plant disease detection [3], [4], and species 

classification [1], [5], [6]. While these methods offer transformative potential for improving agricultural 

productivity and efficiency [7], [8], they also present challenges. Cutting-edge deep learning techniques enable 

the development of image-processing models [9], [10], simulating human cognitive processes by processing 

input data with weighted connections and biases. This approach facilitates accurate categorization and detailed 

object descriptions in datasets [11], [12]. However, deep learning models heavily depend on the availability of 

extensive datasets [4], [11], [13]. With limited data, achieving consistent and reliable results becomes 

increasingly difficult. Neural networks require substantial and diverse datasets to grasp complex patterns 

effectively [14], [15], making it challenging in domains like agriculture [6], [16] and environmental health 

[17], [18], where data scarcity is common. Achieving optimal performance often necessitates iterative 

experimentation. Notably, deep learning accuracy tends to improve with larger datasets [3], [5], [13]. To 

mitigate challenges posed by limited data, researchers have utilized meta-learning [13], a strategy described by 

[19], as "learning to learn." This approach systematically evaluates the performance of various machine-

learning algorithms across diverse tasks, reducing the number of trials needed to achieve better predictions in 

https://creativecommons.org/licenses/by-sa/4.0/
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less time. By leveraging the outputs and metadata from existing models, meta-learning refines predictions 

efficiently. 

Several few-shot learning techniques are grounded in meta-learning, which emphasizes preparing 

systems to operate effectively with limited training data a characteristic feature in these scenarios. Interestingly, 

meta-learning has also been applied in other domains, such as adapting swiftly to variations in video tracking 

tasks [20]. The methods utilized in meta-learning can generally be grouped into two distinct categories. The 

first group leverages specialized network architectures to encapsulate knowledge obtained during the meta-

learning phase. Examples of such techniques include fast weights [21], neural plasticity values [22], custom 

update rules [23], temporal convolutions [24], and long short-term memory (LSTM) memory modules [25], 

[26]. This approach excels in refining architectures to efficiently encode meta-learning information. 

Nonetheless, a key limitation lies in its dependency on specific architectural designs, which hampers the 

seamless integration of novel network innovations with meta-learning frameworks. In systems employing these 

custom architectures, the learning process deviates from traditional workflows, necessitating a robust strategy 

to optimize the tailored encoding. 

The use of transfer learning techniques has shown promising results in enhancing the detection of 

plant diseases. Nevertheless, the challenge of identifying the most appropriate pre-trained model for a particular 

task often demands significant time and computational resources [27]. Meta-learning methods provide a more 

efficient alternative by drawing on insights from prior evaluations of models across various datasets to simplify 

the selection process for new tasks. For example, studies [19], [28] utilized meta-learning approaches to 

identify the optimal image segmentation algorithm tailored to specific image characteristics. This approach 

involves deriving meta-features, such as the mean value of a channel, entropy within intensity channels, and 

the Spearman correlation coefficient between different channels. 

Another study, [29] explored meta-learning to utilize knowledge from comparable few-shot tasks, 

aiming to enable fine-tuning of a base-learner for novel tasks using only limited samples. Their approach 

involved consolidating available datasets and training a model capable of managing diverse examples across 

various categories. Subsequently, the feature extraction module of the model was retained intact, while the 

classifier portion was removed. The retained weights were then applied to initialize the meta-training phase for 

a new task. 

An alternative strategy proposed by [30] utilized meta-learning to address few-shot classification 

problems in agriculture. This approach prioritized adapting convolutional neural network (CNN) models for 

novel tasks by incorporating insights drawn from prior tasks. Similarly, Zhai and Wibowo [31], implemented 

meta-learning to develop CNN models tailored for plant disease detection, emphasizing robust performance 

against noisy data. Their innovative method featured a rectification module aimed at mitigating the influence 

of biased image samples. While both strategies were centered on plant disease classification, their primary 

focus lay in refining training methodologies for novel models. Unlike these approaches, the current study 

highlights the creation of ranked recommendations for benchmark models applied to previously unseen plant 

disease classification tasks. 

The core idea of meta-learning is to accumulate knowledge from experience [19], or meta-data, 

enabling the rapid acquisition of new tasks at a much faster pace than would be achievable otherwise. The 

formalization of meta-learning can be expressed through mathematical frameworks, employing conventional 

supervised machine learning concepts. Meta-learning effectively leverages knowledge from a limited set of 

acquired examples, bridging gaps when dealing with small training datasets. In meta-learning, the approach 

involves training multiple models rather than maintaining a single model, with the objective of optimizing 

performance across various shot setups. One approach that stands out for its ability to achieve this without the 

need to assemble numerous models and establish a network of relationships is the model agnostic meta-learning 

(MAML) method. MAML aims to provide an adaptable foundation for meta-learning. The meta-learning 

initialization presented in this paper is designed to generate structured output for the segmentation of chili leaf 

images. 

The study delves into generating tasks that incorporate synthetic reward functions, eliminating the 

need for supervision. By using this approach, the policy network undergoes meta-training on these synthetic 

tasks, which equips it to learn real-world tasks defined by manual reward functions with greater efficiency and 

fewer data samples: 

a. How can one investigate the impact of N-way and K-shot variations on the performance of few-shot 

classification through an extensive series of experiments? 

b. How can samples of a well-balanced dataset suitable for few-shot classification be generated? 

c. Can the MAML algorithm be applied to the chili image dataset? 
The main contributions of this study are twofold. Firstly, it demonstrates the high potential of meta-

learning to enhance the accuracy of chili variety identification, even with limited datasets. Secondly, it 

introduces augmentation techniques for generating samples to balance the chili image dataset. 
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The paper is organized as follows: section 2 describes the proposed method, while section 3 introduces 

the experimental validation and discussion. Finally, section 4 concludes by summarizing the findings and 

highlighting potential future directions. 

 

 

2. METHOD 

In this research, an existing model, namely MAML [27], was utilized as the foundation for evaluating 

the compatibility of the dataset with the MAML model. The objective of this approach was to initiate the 

analysis process based on existing models. This decision was motivated by the limited dataset available. 

Consequently, a meta-learning process was conducted to enhance the model's capability in accurately 

identifying chili varieties. The process began with a dataset in which each sample was labeled with its 

corresponding class. The training dataset was constructed by randomly selecting N distinct classes, denoted as 

CL-i, and then selecting a random sample, Xi, from each of these chosen classes. Subsequently, for the 

validation dataset, a distinct sample, X'i, was chosen from the same class as the corresponding training sample 

(refer to Figure 1). In this study, the meta-learner was an automated reweighting algorithm designed to 

transform imbalanced data into a more balanced distribution by adjusting sample weights [19], [28]. 

 

 

 
 

Figure 1. Chili leaf segmentation research method 

 

 

2.1.  Dataset 

The dataset used in this study was obtained from an assembly garden of various chili plant varieties, 

including large red chilies, curly red chilies, and cayenne peppers. The large red chilies consist of 9 varieties, 

the curly red chilies consist of 7 varieties, and the cayenne peppers consist of 11 varieties. The data can be 

accessed through the following link: 

https://data.brin.go.id/dataset.xhtml?persistentId=hdl:20.500.12690/RIN/QSKTET. Table 1 provides details 

on the grouping of leaves and the corresponding number of images. Additionally, the images in each 

combination were divided into training and testing datasets using a 75:25 split ratio to evaluate the performance 

of pre-trained models. Combinations labeled L1 to L10 were used to generate metadata and train the meta-

learner, while combinations labeled L11 to L14 were reserved for testing the proposed framework. The 

selection of combinations for testing was based on specific factors that highlight the effectiveness and 

practicality of the proposed framework. 

L11: three morphological types characterized by a flat lancet shape, an evenly elongated form, and a serrated 

lanceolate structure. 

L12: three morphological variations defined by a flat lancet shape, an evenly elongated design, and a serrated 

elongated structure. 

L13: three morphological categories identified as flat elliptical, flat oval, and serrated elliptical forms. 

L14: three morphological groups distinguished as flat elliptical, flat oval, and serrated ovate shapes. 

 

2.2.  Model agnostic meta-learning data training 

In this research, a meta-task is defined as a training task involving sample data. When dealing with a 

task with a limited amount of raw data, meta-learning can be categorized as either a few-shot learning challenge 

or a zero-shot learning challenge. 

For the MAML algorithm [27], the data needs to be in the form of (x, y), requiring a total of N-way * 

K-shots of these pairs. In the context of MAML algorithm, the data is typically structured as pairs of (x, y), 

where: ‘x’ represents the input data or features of a given example. In the context of meta-learning, 'x' is often 

an input image, sequence, or any form of data relevant to the task at hand. For example, if you are working on 
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an image classification task, 'x' would be the pixel values of an image. ‘y’ represents the corresponding label 

or output associated with the input 'x'. In classification tasks, 'y' usually denotes the class or category to which 

the input belongs. It could be a one-hot encoded vector for multi-class classification or a scalar value for binary 

classification. So, for an N-way K-shot meta-learning task, you would need a total of N classes with K examples 

each, resulting in N * K pairs of (x, y). Each pair corresponds to a single task in the meta-learning setup, where 

the algorithm seeks to train a model capable of rapidly adapting to new tasks based on a limited number of 

examples (K-shots) per class (N-way). 

 

 

Table 1. Leaves grouping based on morphology combination 
Combination Leaves morphology #Images 

L1 Lance-shaped and extended in length. 193 

L2 Oval-shaped and egg-like. 232 

L3 Lanceolate with serrated edges and elongated with serrated features. 105 
L4 Elliptical shape with serrated edges and ovate shape with serrated edges. 94 

L5 Lancet-shaped with a flat surface and evenly elongated shape. 264 

L6 Elliptical shape with a flat surface and oval shape with a flat surface. 166 
L7 Lancet-shaped with a flat surface, lanceolate with serrated edges, and elongated with serrated features. 75 

L8 Evenly elongated shape, lanceolate with serrated edges, and elongated shape with serrated features. 140 

L9 Elliptical shape with a flat surface, elliptical shape with serrated edges, and ovate shape with serrated 
edges. 

40 

L10 Oval shape with a flat surface, elliptical shape with serrated edges, and ovate shape with serrated edges. 148 
L11 Lancet-shaped with a flat surface, evenly elongated shape, and lanceolate shape with serrated edges. 151 

L12 Lancet-shaped with a flat surface, evenly elongated shape, and elongated shape with serrated edges. 122 

L13 Elliptical shape with a flat surface, oval shape with a flat surface, and elliptical shape with serrated edges. 157 
L14 Elliptical shape with a flat surface, oval shape with a flat surface, and ovate shape with serrated edges. 87 

 

 

During the meta-training phase, the specific labels used are not significant since they are discarded. 

They can be substituted with artificial labels, which can be assigned from the set {1, 2, ..., N}. However, it is 

crucial to ensure that these artificial labels maintain the distinctions between classes. In other words, simply 

put, data points with the same label were assigned an identical artificial label, while those with different labels 

were given distinct artificial labels. 

 

2.3.  Model agnostic meta-learning data validation 

Within the framework of the MAML approach [27], it is important to highlight that the verification 

data used in tasks designed for meta-training serves as input for the outer loop of training. Consequently, it is 

necessary to create a validation dataset consisting of pairs such as (x’1, 1), (x’2, 2), ..., (x’N, N) for every task. 

Therefore, appropriate validation data must be generated for the artificial task. 

One fundamental prerequisite for this verification data is that it must be precisely annotated within 

the specified context. In practical terms, this implies that the synthetic numerical label must correspond to the 

identical category in the unlabeled dataset in both instances. In other words, for a given class C, it should be 

the case that both the training sample (xi) and its corresponding validation sample (x’i) belong to this same 

class, represented as follows: for a class C, xi, and x’i should both fall within C. 

 

2.4.  Pre-training agnostic model 

The study encompasses all major categories of pre-trained model-agnostic techniques, including 

transfer learning (Matching-NET) and MAML with Cut-Out, Mix-Up, and Cut-Mix augmentation techniques, 

to assess the effectiveness of the proposed framework for chili leaf variety classification tasks. Furthermore, 

the meta-learner selects the top-performing models from these categories for each new task. Table 2 provides 

details about the four model-agnostic techniques that have been trained. 

 

 

Table 2. Trained model agnostic 
Model Depth 

Transfer learning 17 

MAML-Cut-Out 20 

MAML-Mix-Up  59 
MAML-Cut-Mix 72 

 

 

The augmentation techniques (Cut-Out, Mix-Up, and Cut-Mix) are employed to augment training data 

and improve the performance, generalization, and robustness of deep learning models, particularly in the 
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context of image classification tasks. Each technique introduces unique variations to the training process, 

encouraging the model to become more adaptable and resistant to overfitting. 

Cut-Out is an image augmentation technique commonly used in computer vision tasks, including deep 

learning models for image classification [4]. During the training process, a random rectangular portion of the 

image is removed or "cut out," creating a black region in that specific area. This aims to force the model to 

focus on other parts of the image, promoting robust feature learning and preventing over-reliance on specific 

details. The cut-out region is usually replaced with either zeros or the mean pixel values. 

Mix-Up is a data augmentation technique that involves blending two or more images and their 

corresponding labels during the training process [10]. This blending is done by taking a weighted sum of the 

pixel values and labels of two randomly selected images. This method helps enabling the model to generalize 

more effectively by introducing a combination of different patterns and features from multiple images. Mix-

Up is especially beneficial for avoiding overfitting and boosting the model's ability to handle variations in the 

input data. 

Cut-Mix is a combination of Cut-Out and Mix-Up techniques [10], [15]. It involves randomly 

selecting a region (like Cut-Out) from one image and replacing it with the same region from another image 

while mixing their labels. This process effectively combines the features of two different images, encouraging 

the model to learn from the information present in both. Cut-Mix is designed to strengthen the robustness and 

generalization abilities of the model, like Mix-Up, while also introducing local modifications through the cut-

out operation. 

Similar to how the activations of a meta-model trained on a visual recognition task act as a rich 

representation of input images, the weights acquired during the model's task-specific training provide valuable 

representations of that task. Thus, in this study, these learned weights are used as meta-features to uniquely 

represent the dataset. 

 

2.5.  Updating agnostic model 

The primary objective of this research is to recommend suitable models for chili variety identification, 

aiming to streamline the process and save time and resources. This involves reducing the number of models 

under consideration while maintaining high predictive performance. To accomplish this, rank-biased overlap 

(RBO) [29] is employed as a method to assess how well the predicted ranking of models aligns with the original 

ranking generated by evaluating each model on the dataset. The RBO score varies from 0 to 1, with 1 indicating 

that the two rankings are identical and 0 indicating no similarity between them. In (1) defines the RBO metric 

for comparing two infinite ranked lists, denoted as 𝐿1 and 𝐿2: 

 

𝑅𝐵𝑂 (𝐿1, 𝐿2, 𝑝) = (1 − 𝑝) ∑ 𝑝𝑑−1𝐴𝑑 (1) 

 

In (1), where 𝑑 ranges from 1 to infinity (representing the depth of the ranking under consideration), 𝑋𝑑 signifies 

the size of the overlap between the rankings 𝐿1 and 𝐿2 up to a depth of 𝑑. 𝐴𝑑 is calculated as the ratio of 𝑋𝑑 to 

𝑑, and the parameter 𝑝 is a tunable parameter that falls within the range (0,1). 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Experimental setting 

The performance of our method was evaluated across three chili image datasets, as depicted in  

Table 2, which integrates leaf morphology information from the chili leaf dataset. Our evaluations 

encompassed 2-way and 3-way classification tasks, spanning 3-shot, 5-shot, and 10-shot learning scenarios, 

and employed a combination of conventional and sophisticated augmentation techniques. Furthermore, a 

transfer-learning strategy was evaluated, where the model was initially trained on all meta-train classes and 

subsequently fine-tuned using a few samples from the meta-test set. In meta-learning, standard augmentation 

techniques like flipping and rotating offer limited extra information for model training. This is due to the fact 

that, during meta-training, both images and classes are sampled. Therefore, it is necessary to create novel 

classes with new images. It also involved an evaluation of augmentation techniques such as Cut-Out, Mix-Up, 

and Cut-Mix for medical data (example images is illustrated in Figure 2). 

As evident from Figure 2, these augmentation strategies are exclusively utilized during the meta-

training stage to mitigate the risk of overfitting. A brief explanation of the three augmentation techniques 

employed - Cut-Out, Mix-Up, and Cut-Mix - will now be provided. Figure 2(a) displays the original chili leaf 

dataset without any augmentation, serving as a baseline representation of the input data. The Cut-Out technique, 

as described in reference [30], involves the random creation of a square mask, with pixel values within this 

mask set to zero. An example of a batch of chili leaf images with Cut-Out augmentation is illustrated in  

Figure 2(b). With the application of Cut-Out, features are removed at the initial input stage, ensuring that no 

feature map includes features related to the masked area. 
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Mix-Up is an augmentation technique aimed at enhancing the generalization capabilities of deep 

learning models by generating virtual samples from the existing data distribution. It has been observed that 

Mix-Up augmentation introduces subtle alterations to the images, which might go unnoticed without close 

examination. Figure 2(c) displays images that have been augmented using Mix-Up, where pixel values from 

two images are blended, leading to an intermediate representation of both samples. 

Another augmentation process is Cut-Mix. The fundamental concept behind Cut-Mix is the generation 

of a new sample by cutting out a portion of an image and incorporating it into a different image from the 

training set. Additionally, the labels corresponding to the ground truth are combined in proportion to the area 

of the cut sections. Figure 2(d) illustrates the application of Cut-Mix, where distinct portions of different leaf 

images are merged, creating hybrid samples that enrich the dataset and improve model robustness. 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 2. Example chili leaf dataset with; (a) no augmentation (original), (b) Cut-Out, (c) Mix-Up, and  

(d) Cut-Mix 

 

 

3.2.  Experimental result 

3.2.1. Result of evaluation metric 

Throughout all experiments, accuracy (%) was utilized as the primary evaluation metric, consistent 

with standard practices in classification tasks. Importantly, the accuracy metric demonstrated robustness during 

meta-testing, attributed to the balanced distribution of images across all classes, which minimized the effect of 

class imbalance. The reported accuracy reflected the average performance across few-shot tasks that were 

randomly sampled from the meta-testing dataset. 

The model's performance was assessed in 3-shot, 5-shot, and 10-shot learning scenarios for both  

2-way and 3-way classification tasks. For each of these k-shot, n-way scenarios, the evaluation was repeated 

using three distinct augmentation techniques: Cut-Out, Mix-Up, and Cut-Mix. Additionally, transfer learning 

evaluations were also conducted. 

The evaluation focused on three separate leaf image datasets. Assessments were carried out for both 

2-way and 3-way classification tasks, encompassing 3-shot, 5-shot, and 10-shot learning scenarios. Both 

conventional and advanced augmentation techniques were applied during these evaluations. Furthermore, a 

transfer learning approach was explored, wherein the model was initially trained on all meta-training classes 

and subsequently fine-tuned using multiple samples from the meta-test set 

Transfer learning is a widely recognized approach for developing deep learning classification models 

in scenarios with limited data [16]. Consequently, transfer learning was chosen as the baseline method (refer 

to Table 3 for a comparison between meta-learning and transfer learning). During the transfer learning process, 

the entire meta-training dataset was employed for supervised learning across 500 epochs. After selecting the 

best model, it was fine-tuned following the same approach followed during our meta-learning trials. Consistent 

network architecture and hyperparameters were maintained across all experiments to ensure a fair comparison. 

In Table 3, you can find the outcomes regarding the transfer learning technique displayed in the third 

column for 2-way classification and the seventh column for 3-way classification. However, in the case of 3, 5, 

and 10-shot learning problems, the transfer learning strategy failed to achieve the top test accuracy in either 

the 2-way or 3-way classification tasks. 
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Table 3. Experiment result of evaluation metric 

Few-shot 
task 

2-way classification meta learning 3-way classification meta learning 

MAML-
traditional 

(%) 

MAML-
Cut-Out 

(%) 

MAML-
Mix-Up 

(%) 

MAML-
Cut-Mix 

(%) 

Transfer 
learning 

(%) 

MAML-
traditional 

(%) 

MAML-
Cut-Out 

(%) 

MAML-
Mix-Up 

(%) 

MAML-
Cut-Mix 

(%) 

Transfer 
learning 

(%) 

3-shot 75.75 77.25 82.88 84.12 75.62 63.08 67.33 68.83 70.58 61.25 
5-shot 77.62 79.75 83.25 80.88 77.85 68.00 63.41 66.50 68.25 64.78 

10-shot 79.75 83.37 84.87 81.75 79.12 74.16 73.91 75.12 74.24 69.98 

 

 

3.2.2. The experiment investigated the impacts of Cut-Out, Mix-Up, and Cut-Mix 

The results across various experiments on the Combination Leaves Morphology Grouping dataset, 

spanning all magnification levels, suggest that the utilization of these advanced augmentation methods 

generally contributes to improved accuracy. However, a few experiments did not demonstrate the same positive 

impact. In both the two-combination leaves morphology and three-combination leaves morphology datasets, 

incorporating augmentation markedly enhances the model's accuracy. While a conclusive winner is not evident 

in the comparison among the three advanced augmentation techniques—Cut-Out, Mix-Up, and Cut-Mix—Cut-

Mix tends to outperform the others in most of the experiments. The application of advanced augmentation 

introduces challenging samples to the model during meta-training, facilitating the learning of more effective 

representations. A comparable impact of augmentation, specifically in mitigating the overfitting issue observed 

in the chili leaves dataset, was noted. 

Figure 3 illustrates the accuracy versus meta-iterations plot for 3, 5, and 10-shot learning in the context 

of a 2-way classification task. The model was trained over the range of 5,000 to 30,000 epochs to obtain optimal 

parameters and enhance accuracy. Figure 3(a) presents the results using the Cut-Out augmentation technique, 

where certain features are randomly removed, forcing the model to learn robust representations despite missing 

information. Figure 3(b) shows the accuracy progression under the Mix-Up augmentation, which blends two 

samples to generate virtual data points, improving generalization. Lastly, Figure 3(c) depicts the results using 

Cut-Mix augmentation, where portions of different images are combined, leading to stronger feature 

representations and enhanced model performance. 

In Figure 3, the graph illustrates the dynamic changes in a model's accuracy as it undergoes multiple 

meta-iterations, specifically in the context of various scenarios related to few-shot learning within a 2-way 

classification task. The plot serves to visually showcase the model's performance evolution over time and 

iterations during the meta-learning process. It provides a clear depiction of how the accuracy of the model 

develops and adapts across different stages of meta-iterations. The graph not only captures the fluctuations in 

accuracy but also highlights the correlation between the number of meta-iterations and the achieved accuracy 

of the model. Essentially, meta learning iterations are conducted within the range of 5,000 to 30,000 with the 

objective of enhancing accuracy, facilitating the acquisition of optimal parameter configurations. Meta learning 

encompasses the adjustment of model or algorithm parameters. Through iterative processes within this range, 

this research identifies optimal parameter values to augment accuracy. The iteration involves the continuation 

of the learning process by incorporating additional data or training batches. The aim is to enhance the model's 

capabilities by gaining a deeper understanding of a broader spectrum of data. In instances where the model 

needs to adapt to dynamic changes in the data or environment, iteration proves beneficial, enabling the model 

to continually update and enhance accuracy over time. 

The depicted plot or graph is focused on scenarios related to 3, 5, and 10-shot learning. In these 

scenarios, the plot provides information for three specific instances of few-shot learning, each involving a 

different number of shots: 3-shot, 5-shot, and 10-shot. The term "few-shot learning" refers to a machine 

learning paradigm where a model is trained and evaluated on a small number of examples per class. The crucial 

aspect highlighted is that, within these scenarios, the model is subject to evaluation and adaptation based on a 

limited number of examples, referred to as "shots," for each class. The mention of "N-way" signifies the number 

of classes involved in the classification task. In this specific context, N is specified as 2, indicating that the 

model is engaged in a 2-way classification task. In a 2-way classification task, the model categorizes input data 

into one of two classes or categories. Therefore, the plot analyzes the model's performance under conditions 

where it is evaluated and adapted with a restricted number of examples per class, focusing on scenarios 

involving 3, 5, and 10 shots in the context of a 2-way classification task. 

The analysis is conducted within the framework of a 2-way classification task. In this specific type of 

classification task, the primary objective is to train the model to categorize input data into two distinct 

categories or classes. The decision to adopt a 2-way classification task implies that there are only two possible 

outcomes or labels for each example the model encounters. This choice of a 2-way classification task simplifies 

the prediction task for the model, as it only needs to assign input data to one of the two predefined categories. 

In contrast to tasks with multiple classes, where each example could belong to one of several categories, a 2-

way classification task reduces the complexity of the learning problem. 
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The outcomes across many experiments at various magnification levels suggest that employing 

advanced augmentation is generally advantageous for enhancing accuracy, with only a few exceptions. The 

substantial improvement in model accuracy is attributed to the use of augmentation. While there is no definitive 

winner among the three advanced augmentation techniques Cut-Out, Mix-Up, and Cut-Mix it is observed that 

Cut-Mix tends to outperform the others in most experiments. The application of advanced augmentation 

introduces challenging samples during meta-training, enabling the model to acquire more robust 

representations. 

 

 

 
(a) 

 

 
(b) 

 

(c) 
 

Figure 3. Meta-iteration versus accuracy in 2-way classification for; (a) cut-out, (b) mix-up, and (c) cut-mix 

 

 

3.3.  Discussion 

Based on the outcomes of the conducted experiments (refer to Table 3), it is evident that the 2-way 

classification task consistently exhibits superior performance compared to the 3-way classification task across 

all variations and scenarios of the few-shot task, encompassing 3-shot, 5-shot, and 10-shot setups. The inherent 

complexity of the 3-way classification task contributes to its difficulty, as reflected in consistently lower 

performance across different variations of the few-shot task. This suggests that the model faces increased 

challenges in accurately classifying data into three distinct categories, making the 3-way classification 

inherently more demanding than its 2-way counterpart. 

Analyzing the performance of MAML compared to transfer learning reveals that, in all scenarios of 

multiple-shot tasks (3-shot, 5-shot, 10-shot), 2-way classification with MAML-Cut-Mix consistently delivers 

the most optimal results. Additionally, for 3-shot and 5-shot tasks, MAML-Cut-Out and MAML-Mix-Up 

exhibit competitive performance. While transfer learning contributes positively, it does not consistently surpass 

the effectiveness of MAML-Cut-Mix. On the other hand, in the context of 3-way classification, MAML-Cut-

Mix maintains its superior performance across all scenarios of few-shot tasks. Although transfer learning shows 

positive contributions, particularly in the 10-shot scenario, its performance remains lower compared to MAML-

Cut-Mix. 
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In the analysis of Few-shot Task Performance, across various few-shot tasks such as 3-shot, 5-shot, 

and 10-shot scenarios, MAML-Cut-Mix consistently stands out by delivering the most optimal results. This 

consistency highlights the effectiveness of the MAML-Cut-Mix technique in adapting to new tasks, particularly 

those with a limited number of training samples. Furthermore, MAML-Mix-Up demonstrates commendable 

performance, especially in the context of 2-way classification tasks, particularly in the challenging 10-shot 

scenario. While transfer learning contributes significantly to the performance, it falls short compared to 

MAML-Cut-Mix, especially evident in 3-way classification tasks where MAML-Cut-Mix maintains its 

superior standing. 

Therefore, the conclusion drawn is that MAML-Cut-Mix emerges as the most successful technique 

across all variations and scenarios in the context of the few-shot task, demonstrating its superiority in the 

context of this experiment. While transfer learning contributes positively, its effectiveness is contingent upon 

the number of shots and the nature of the classification task. Specifically, in 3-way classification tasks, where 

models often face challenges in learning intricate patterns, MAML-Cut-Mix continues to be the superior 

choice. 

The exploration of this study entails navigating through constraints associated with limited datasets. 

The author has strategically utilized methods such as data augmentation combined with meta-learning 

strategies to address challenges arising from a scarcity of variations in data and cultivation conditions. The 

societal implications of this research carry substantial weight, given that the outcomes can play a pivotal role 

in identifying superior chili seeds. Consequently, this identification has the potential to inspire farmers to 

engage in the cultivation of high-quality chilies, ultimately resulting in more plentiful harvests. 

 

 

4. CONCLUSION 

This research demonstrated promising results, with the meta-learning approach achieving an accuracy 

of 84.87% using a minimum of 10 shots from the meta-test dataset and leveraging the mix-up augmentation 

method. A novel approach to meta-learning was introduced, framing leaf image classification as a few-shot 

learning problem in scenarios with limited data. Advanced augmentation methods including CutOut, MixUp, 

and CutMix were employed to enhance the model's ability to generalize. The success of this method was 

evaluated on three intricate leaf image datasets. Comprehensive evaluation revealed that meta-learning 

consistently outperformed leveraging transfer learning across all experimental datasets. 

The transfer learning framework exhibited lower prediction reliability, raising potential concerns in 

the plant domain. However, integrating advanced augmentation techniques improved test accuracy and model 

consistency across datasets. Notably, transitioning from 3-shot to 5-shot, and subsequently to 10-shot 

experiments, significantly enhanced model performance. The choice of optimizers, hyperparameters, and their 

specific values played a crucial role in performance, underscoring the importance of these factors. This work 

is anticipated to benefit researchers employing meta-learning techniques in plant science. The findings of this 

study demonstrate the potential of leveraging modest datasets combined with combining data augmentation 

and meta-learning to tackle challenges posed by restricted datasets and diverse growth conditions. Insights 

from meta-learning enable accurate recognition of chili varieties even under these constraints, enhancing the 

process's reliability and precision. 

Future research will aim to validate the methodology across broader datasets and investigate more 

robust regularization strategies beyond traditional image augmentation. Plans include extending this work to 

address challenges such as noisy labels and automating parameter optimization during training. Building on 

these results, further advancements in MAML techniques will focus on handling complex task distributions 

with significant domain gaps. Additionally, developing tailored MAML approaches for multimodal scenarios 

remains a key area of interest. 
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