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Recognizing chili plant varieties through chili leaf image samples
automatically at low costs represents an intriguing area of study. While
maintaining and protecting the quality of chili plants is a priority, classifying
leaf images captured randomly requires considerable effort. The quality of the
captured leaf images significantly impacts the development of the model. This
study applies a meta-learning approach to chili leaf image data, creating a
dataset and classifying leaf images captured using mobile devices with
varying camera specifications. The images were organized into 14
experimental groups to assess accuracy. The approach included 2-way and 3-
way classification tasks, with 3-shot, 5-shot, and 10-shot learning scenarios,
to analyze the influence of various chili leaf image factors and optimize the
classification and segmentation model's accuracy. The findings demonstrate
that a minimum of 10 shots from the meta-test dataset is sufficient to achieve
an accuracy of 84.87% using 2-way classification meta-learning combined

with the mix-up augmentation technique.
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1. INTRODUCTION

Deep learning has emerged as a critical technology in image-based plant identification, finding
applications in areas like plant variety recognition [1], [2], plant disease detection [3], [4], and species
classification [1], [5], [6]. While these methods offer transformative potential for improving agricultural
productivity and efficiency [7], [8], they also present challenges. Cutting-edge deep learning techniques enable
the development of image-processing models [9], [10], simulating human cognitive processes by processing
input data with weighted connections and biases. This approach facilitates accurate categorization and detailed
object descriptions in datasets [11], [12]. However, deep learning models heavily depend on the availability of
extensive datasets [4], [11], [13]. With limited data, achieving consistent and reliable results becomes
increasingly difficult. Neural networks require substantial and diverse datasets to grasp complex patterns
effectively [14], [15], making it challenging in domains like agriculture [6], [16] and environmental health
[17], [18], where data scarcity is common. Achieving optimal performance often necessitates iterative
experimentation. Notably, deep learning accuracy tends to improve with larger datasets [3], [5], [13]. To
mitigate challenges posed by limited data, researchers have utilized meta-learning [13], a strategy described by
[19], as "learning to learn." This approach systematically evaluates the performance of various machine-
learning algorithms across diverse tasks, reducing the number of trials needed to achieve better predictions in
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less time. By leveraging the outputs and metadata from existing models, meta-learning refines predictions
efficiently.

Several few-shot learning techniques are grounded in meta-learning, which emphasizes preparing
systems to operate effectively with limited training data a characteristic feature in these scenarios. Interestingly,
meta-learning has also been applied in other domains, such as adapting swiftly to variations in video tracking
tasks [20]. The methods utilized in meta-learning can generally be grouped into two distinct categories. The
first group leverages specialized network architectures to encapsulate knowledge obtained during the meta-
learning phase. Examples of such techniques include fast weights [21], neural plasticity values [22], custom
update rules [23], temporal convolutions [24], and long short-term memory (LSTM) memory modules [25],
[26]. This approach excels in refining architectures to efficiently encode meta-learning information.
Nonetheless, a key limitation lies in its dependency on specific architectural designs, which hampers the
seamless integration of novel network innovations with meta-learning frameworks. In systems employing these
custom architectures, the learning process deviates from traditional workflows, necessitating a robust strategy
to optimize the tailored encoding.

The use of transfer learning techniques has shown promising results in enhancing the detection of
plant diseases. Nevertheless, the challenge of identifying the most appropriate pre-trained model for a particular
task often demands significant time and computational resources [27]. Meta-learning methods provide a more
efficient alternative by drawing on insights from prior evaluations of models across various datasets to simplify
the selection process for new tasks. For example, studies [19], [28] utilized meta-learning approaches to
identify the optimal image segmentation algorithm tailored to specific image characteristics. This approach
involves deriving meta-features, such as the mean value of a channel, entropy within intensity channels, and
the Spearman correlation coefficient between different channels.

Another study, [29] explored meta-learning to utilize knowledge from comparable few-shot tasks,
aiming to enable fine-tuning of a base-learner for novel tasks using only limited samples. Their approach
involved consolidating available datasets and training a model capable of managing diverse examples across
various categories. Subsequently, the feature extraction module of the model was retained intact, while the
classifier portion was removed. The retained weights were then applied to initialize the meta-training phase for
a new task.

An alternative strategy proposed by [30] utilized meta-learning to address few-shot classification
problems in agriculture. This approach prioritized adapting convolutional neural network (CNN) models for
novel tasks by incorporating insights drawn from prior tasks. Similarly, Zhai and Wibowo [31], implemented
meta-learning to develop CNN models tailored for plant disease detection, emphasizing robust performance
against noisy data. Their innovative method featured a rectification module aimed at mitigating the influence
of biased image samples. While both strategies were centered on plant disease classification, their primary
focus lay in refining training methodologies for novel models. Unlike these approaches, the current study
highlights the creation of ranked recommendations for benchmark models applied to previously unseen plant
disease classification tasks.

The core idea of meta-learning is to accumulate knowledge from experience [19], or meta-data,
enabling the rapid acquisition of new tasks at a much faster pace than would be achievable otherwise. The
formalization of meta-learning can be expressed through mathematical frameworks, employing conventional
supervised machine learning concepts. Meta-learning effectively leverages knowledge from a limited set of
acquired examples, bridging gaps when dealing with small training datasets. In meta-learning, the approach
involves training multiple models rather than maintaining a single model, with the objective of optimizing
performance across various shot setups. One approach that stands out for its ability to achieve this without the
need to assemble numerous models and establish a network of relationships is the model agnostic meta-learning
(MAML) method. MAML aims to provide an adaptable foundation for meta-learning. The meta-learning
initialization presented in this paper is designed to generate structured output for the segmentation of chili leaf
images.

The study delves into generating tasks that incorporate synthetic reward functions, eliminating the
need for supervision. By using this approach, the policy network undergoes meta-training on these synthetic
tasks, which equips it to learn real-world tasks defined by manual reward functions with greater efficiency and
fewer data samples:

a. How can one investigate the impact of N-way and K-shot variations on the performance of few-shot
classification through an extensive series of experiments?

b. How can samples of a well-balanced dataset suitable for few-shot classification be generated?

€. Canthe MAML algorithm be applied to the chili image dataset?

The main contributions of this study are twofold. Firstly, it demonstrates the high potential of meta-
learning to enhance the accuracy of chili variety identification, even with limited datasets. Secondly, it
introduces augmentation techniques for generating samples to balance the chili image dataset.
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The paper is organized as follows: section 2 describes the proposed method, while section 3 introduces
the experimental validation and discussion. Finally, section 4 concludes by summarizing the findings and
highlighting potential future directions.

2. METHOD

In this research, an existing model, namely MAML [27], was utilized as the foundation for evaluating
the compatibility of the dataset with the MAML model. The objective of this approach was to initiate the
analysis process based on existing models. This decision was motivated by the limited dataset available.
Consequently, a meta-learning process was conducted to enhance the model's capability in accurately
identifying chili varieties. The process began with a dataset in which each sample was labeled with its
corresponding class. The training dataset was constructed by randomly selecting N distinct classes, denoted as
Cwi, and then selecting a random sample, Xi, from each of these chosen classes. Subsequently, for the
validation dataset, a distinct sample, X';, was chosen from the same class as the corresponding training sample
(refer to Figure 1). In this study, the meta-learner was an automated reweighting algorithm designed to
transform imbalanced data into a more balanced distribution by adjusting sample weights [19], [28].
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Figure 1. Chili leaf segmentation research method

2.1. Dataset

The dataset used in this study was obtained from an assembly garden of various chili plant varieties,
including large red chilies, curly red chilies, and cayenne peppers. The large red chilies consist of 9 varieties,
the curly red chilies consist of 7 varieties, and the cayenne peppers consist of 11 varieties. The data can be
accessed through the following link:
https://data.brin.go.id/dataset.xhtml?persistentld=hdl:20.500.12690/RIN/QSKTET. Table 1 provides details
on the grouping of leaves and the corresponding number of images. Additionally, the images in each
combination were divided into training and testing datasets using a 75:25 split ratio to evaluate the performance
of pre-trained models. Combinations labeled L1 to L10 were used to generate metadata and train the meta-
learner, while combinations labeled L11 to L14 were reserved for testing the proposed framework. The
selection of combinations for testing was based on specific factors that highlight the effectiveness and
practicality of the proposed framework.
L11: three morphological types characterized by a flat lancet shape, an evenly elongated form, and a serrated
lanceolate structure.
L12: three morphological variations defined by a flat lancet shape, an evenly elongated design, and a serrated
elongated structure.
L13: three morphological categories identified as flat elliptical, flat oval, and serrated elliptical forms.
L14: three morphological groups distinguished as flat elliptical, flat oval, and serrated ovate shapes.

2.2. Model agnostic meta-learning data training

In this research, a meta-task is defined as a training task involving sample data. When dealing with a
task with a limited amount of raw data, meta-learning can be categorized as either a few-shot learning challenge
or a zero-shot learning challenge.

For the MAML algorithm [27], the data needs to be in the form of (X, y), requiring a total of N-way *
K-shots of these pairs. In the context of MAML algorithm, the data is typically structured as pairs of (x, y),
where: ‘X’ represents the input data or features of a given example. In the context of meta-learning, 'x' is often
an input image, sequence, or any form of data relevant to the task at hand. For example, if you are working on
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an image classification task, 'x' would be the pixel values of an image. ‘y’ represents the corresponding label
or output associated with the input 'x'. In classification tasks, 'y' usually denotes the class or category to which
the input belongs. It could be a one-hot encoded vector for multi-class classification or a scalar value for binary
classification. So, for an N-way K-shot meta-learning task, you would need a total of N classes with K examples
each, resulting in N * K pairs of (X, y). Each pair corresponds to a single task in the meta-learning setup, where
the algorithm seeks to train a model capable of rapidly adapting to new tasks based on a limited number of
examples (K-shots) per class (N-way).

Table 1. Leaves grouping based on morphology combination

Combination Leaves morphology #lmages
L1 Lance-shaped and extended in length. 193
L2 Oval-shaped and egg-like. 232
L3 Lanceolate with serrated edges and elongated with serrated features. 105
L4 Elliptical shape with serrated edges and ovate shape with serrated edges. 94
L5 Lancet-shaped with a flat surface and evenly elongated shape. 264
L6 Elliptical shape with a flat surface and oval shape with a flat surface. 166
L7 Lancet-shaped with a flat surface, lanceolate with serrated edges, and elongated with serrated features. 75
L8 Evenly elongated shape, lanceolate with serrated edges, and elongated shape with serrated features. 140
L9 Elliptical shape with a flat surface, elliptical shape with serrated edges, and ovate shape with serrated 40

edges.
L10 Oval shape with a flat surface, elliptical shape with serrated edges, and ovate shape with serrated edges. 148
L11 Lancet-shaped with a flat surface, evenly elongated shape, and lanceolate shape with serrated edges. 151
L12 Lancet-shaped with a flat surface, evenly elongated shape, and elongated shape with serrated edges. 122
L13 Elliptical shape with a flat surface, oval shape with a flat surface, and elliptical shape with serrated edges. 157
L14 Elliptical shape with a flat surface, oval shape with a flat surface, and ovate shape with serrated edges. 87

During the meta-training phase, the specific labels used are not significant since they are discarded.
They can be substituted with artificial labels, which can be assigned from the set {1, 2, ..., N}. However, it is
crucial to ensure that these artificial labels maintain the distinctions between classes. In other words, simply
put, data points with the same label were assigned an identical artificial label, while those with different labels
were given distinct artificial labels.

2.3. Model agnostic meta-learning data validation

Within the framework of the MAML approach [27], it is important to highlight that the verification
data used in tasks designed for meta-training serves as input for the outer loop of training. Consequently, it is
necessary to create a validation dataset consisting of pairs such as (x’1, 1), (X2, 2), ..., (X’n, N) for every task.
Therefore, appropriate validation data must be generated for the artificial task.

One fundamental prerequisite for this verification data is that it must be precisely annotated within
the specified context. In practical terms, this implies that the synthetic numerical label must correspond to the
identical category in the unlabeled dataset in both instances. In other words, for a given class C, it should be
the case that both the training sample (x;) and its corresponding validation sample (x’;) belong to this same
class, represented as follows: for a class C, X;, and x’; should both fall within C.

2.4. Pre-training agnostic model

The study encompasses all major categories of pre-trained model-agnostic techniques, including
transfer learning (Matching-NET) and MAML with Cut-Out, Mix-Up, and Cut-Mix augmentation techniques,
to assess the effectiveness of the proposed framework for chili leaf variety classification tasks. Furthermore,
the meta-learner selects the top-performing models from these categories for each new task. Table 2 provides
details about the four model-agnostic techniques that have been trained.

Table 2. Trained model agnostic
Model Depth
Transfer learning 17
MAML-Cut-Out 20
MAML-Mix-Up 59
MAML-Cut-Mix 72

The augmentation techniques (Cut-Out, Mix-Up, and Cut-Mix) are employed to augment training data
and improve the performance, generalization, and robustness of deep learning models, particularly in the
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context of image classification tasks. Each technique introduces unique variations to the training process,
encouraging the model to become more adaptable and resistant to overfitting.

Cut-Out is an image augmentation technique commonly used in computer vision tasks, including deep
learning models for image classification [4]. During the training process, a random rectangular portion of the
image is removed or "cut out," creating a black region in that specific area. This aims to force the model to
focus on other parts of the image, promoting robust feature learning and preventing over-reliance on specific
details. The cut-out region is usually replaced with either zeros or the mean pixel values.

Mix-Up is a data augmentation technique that involves blending two or more images and their
corresponding labels during the training process [10]. This blending is done by taking a weighted sum of the
pixel values and labels of two randomly selected images. This method helps enabling the model to generalize
more effectively by introducing a combination of different patterns and features from multiple images. Mix-
Up is especially beneficial for avoiding overfitting and boosting the model's ability to handle variations in the
input data.

Cut-Mix is a combination of Cut-Out and Mix-Up techniques [10], [15]. It involves randomly
selecting a region (like Cut-Out) from one image and replacing it with the same region from another image
while mixing their labels. This process effectively combines the features of two different images, encouraging
the model to learn from the information present in both. Cut-Mix is designed to strengthen the robustness and
generalization abilities of the model, like Mix-Up, while also introducing local modifications through the cut-
out operation.

Similar to how the activations of a meta-model trained on a visual recognition task act as a rich
representation of input images, the weights acquired during the model's task-specific training provide valuable
representations of that task. Thus, in this study, these learned weights are used as meta-features to uniquely
represent the dataset.

2.5. Updating agnostic model

The primary objective of this research is to recommend suitable models for chili variety identification,
aiming to streamline the process and save time and resources. This involves reducing the number of models
under consideration while maintaining high predictive performance. To accomplish this, rank-biased overlap
(RBO) [29] is employed as a method to assess how well the predicted ranking of models aligns with the original
ranking generated by evaluating each model on the dataset. The RBO score varies from 0 to 1, with 1 indicating
that the two rankings are identical and 0 indicating no similarity between them. In (1) defines the RBO metric
for comparing two infinite ranked lists, denoted as L1 and L2:

RBO (Ly,L,p) = (1 —p) X p* 4, D

In (1), where d ranges from 1 to infinity (representing the depth of the ranking under consideration), Xa signifies
the size of the overlap between the rankings L; and L, up to a depth of d. A« is calculated as the ratio of Xa to
d, and the parameter p is a tunable parameter that falls within the range (0,1).

3. RESULTS AND DISCUSSION
3.1. Experimental setting

The performance of our method was evaluated across three chili image datasets, as depicted in
Table 2, which integrates leaf morphology information from the chili leaf dataset. Our evaluations
encompassed 2-way and 3-way classification tasks, spanning 3-shot, 5-shot, and 10-shot learning scenarios,
and employed a combination of conventional and sophisticated augmentation techniques. Furthermore, a
transfer-learning strategy was evaluated, where the model was initially trained on all meta-train classes and
subsequently fine-tuned using a few samples from the meta-test set. In meta-learning, standard augmentation
techniques like flipping and rotating offer limited extra information for model training. This is due to the fact
that, during meta-training, both images and classes are sampled. Therefore, it is necessary to create novel
classes with new images. It also involved an evaluation of augmentation techniques such as Cut-Out, Mix-Up,
and Cut-Mix for medical data (example images is illustrated in Figure 2).

As evident from Figure 2, these augmentation strategies are exclusively utilized during the meta-
training stage to mitigate the risk of overfitting. A brief explanation of the three augmentation techniques
employed - Cut-Out, Mix-Up, and Cut-Mix - will now be provided. Figure 2(a) displays the original chili leaf
dataset without any augmentation, serving as a baseline representation of the input data. The Cut-Out technique,
as described in reference [30], involves the random creation of a square mask, with pixel values within this
mask set to zero. An example of a batch of chili leaf images with Cut-Out augmentation is illustrated in
Figure 2(b). With the application of Cut-Out, features are removed at the initial input stage, ensuring that no
feature map includes features related to the masked area.
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Mix-Up is an augmentation technique aimed at enhancing the generalization capabilities of deep
learning models by generating virtual samples from the existing data distribution. It has been observed that
Mix-Up augmentation introduces subtle alterations to the images, which might go unnoticed without close
examination. Figure 2(c) displays images that have been augmented using Mix-Up, where pixel values from
two images are blended, leading to an intermediate representation of both samples.

Another augmentation process is Cut-Mix. The fundamental concept behind Cut-Mix is the generation
of a new sample by cutting out a portion of an image and incorporating it into a different image from the
training set. Additionally, the labels corresponding to the ground truth are combined in proportion to the area
of the cut sections. Figure 2(d) illustrates the application of Cut-Mix, where distinct portions of different leaf
images are merged, creating hybrid samples that enrich the dataset and improve model robustness.

Figure 2. Example chili leaf dataset with; (a) no augmentation (original), (b) Cut-Out, (c) Mix-Up, and
(d) Cut-Mix

3.2. Experimental result
3.2.1. Result of evaluation metric

Throughout all experiments, accuracy (%) was utilized as the primary evaluation metric, consistent
with standard practices in classification tasks. Importantly, the accuracy metric demonstrated robustness during
meta-testing, attributed to the balanced distribution of images across all classes, which minimized the effect of
class imbalance. The reported accuracy reflected the average performance across few-shot tasks that were
randomly sampled from the meta-testing dataset.

The model's performance was assessed in 3-shot, 5-shot, and 10-shot learning scenarios for both
2-way and 3-way classification tasks. For each of these k-shot, n-way scenarios, the evaluation was repeated
using three distinct augmentation techniques: Cut-Out, Mix-Up, and Cut-Mix. Additionally, transfer learning
evaluations were also conducted.

The evaluation focused on three separate leaf image datasets. Assessments were carried out for both
2-way and 3-way classification tasks, encompassing 3-shot, 5-shot, and 10-shot learning scenarios. Both
conventional and advanced augmentation techniques were applied during these evaluations. Furthermore, a
transfer learning approach was explored, wherein the model was initially trained on all meta-training classes
and subsequently fine-tuned using multiple samples from the meta-test set

Transfer learning is a widely recognized approach for developing deep learning classification models
in scenarios with limited data [16]. Consequently, transfer learning was chosen as the baseline method (refer
to Table 3 for a comparison between meta-learning and transfer learning). During the transfer learning process,
the entire meta-training dataset was employed for supervised learning across 500 epochs. After selecting the
best model, it was fine-tuned following the same approach followed during our meta-learning trials. Consistent
network architecture and hyperparameters were maintained across all experiments to ensure a fair comparison.

In Table 3, you can find the outcomes regarding the transfer learning technique displayed in the third
column for 2-way classification and the seventh column for 3-way classification. However, in the case of 3, 5,
and 10-shot learning problems, the transfer learning strategy failed to achieve the top test accuracy in either
the 2-way or 3-way classification tasks.
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Table 3. Experiment result of evaluation metric
2-way classification meta learning 3-way classification meta learning
Few-shot MAML- MAML- MAML- MAML- Transfer MAML- MAML- MAML- MAML- Transfer
task traditional Cut-Out  Mix-Up  Cut-Mix learning traditional Cut-Out Mix-Up Cut-Mix learning

(%) (%) (%) (*0) (%) (%) (%) (%) (%) (%)
3-shot 75.75 77.25 82.88 84.12 75.62 63.08 67.33 68.83 7058  61.25
5-shot 77.62 79.75 83.25 80.88  77.85 68.00 63.41 66.50 68.25  64.78
10-shot 79.75 83.37 84.87 8175  79.12 74.16 73.91 75.12 7424  69.98

3.2.2. The experiment investigated the impacts of Cut-Out, Mix-Up, and Cut-Mix

The results across various experiments on the Combination Leaves Morphology Grouping dataset,
spanning all magnification levels, suggest that the utilization of these advanced augmentation methods
generally contributes to improved accuracy. However, a few experiments did not demonstrate the same positive
impact. In both the two-combination leaves morphology and three-combination leaves morphology datasets,
incorporating augmentation markedly enhances the model's accuracy. While a conclusive winner is not evident
in the comparison among the three advanced augmentation techniques—Cut-Out, Mix-Up, and Cut-Mix—Cut-
Mix tends to outperform the others in most of the experiments. The application of advanced augmentation
introduces challenging samples to the model during meta-training, facilitating the learning of more effective
representations. A comparable impact of augmentation, specifically in mitigating the overfitting issue observed
in the chili leaves dataset, was noted.

Figure 3 illustrates the accuracy versus meta-iterations plot for 3, 5, and 10-shot learning in the context
of a 2-way classification task. The model was trained over the range of 5,000 to 30,000 epochs to obtain optimal
parameters and enhance accuracy. Figure 3(a) presents the results using the Cut-Out augmentation technigue,
where certain features are randomly removed, forcing the model to learn robust representations despite missing
information. Figure 3(b) shows the accuracy progression under the Mix-Up augmentation, which blends two
samples to generate virtual data points, improving generalization. Lastly, Figure 3(c) depicts the results using
Cut-Mix augmentation, where portions of different images are combined, leading to stronger feature
representations and enhanced model performance.

In Figure 3, the graph illustrates the dynamic changes in a model's accuracy as it undergoes multiple
meta-iterations, specifically in the context of various scenarios related to few-shot learning within a 2-way
classification task. The plot serves to visually showcase the model's performance evolution over time and
iterations during the meta-learning process. It provides a clear depiction of how the accuracy of the model
develops and adapts across different stages of meta-iterations. The graph not only captures the fluctuations in
accuracy but also highlights the correlation between the number of meta-iterations and the achieved accuracy
of the model. Essentially, meta learning iterations are conducted within the range of 5,000 to 30,000 with the
objective of enhancing accuracy, facilitating the acquisition of optimal parameter configurations. Meta learning
encompasses the adjustment of model or algorithm parameters. Through iterative processes within this range,
this research identifies optimal parameter values to augment accuracy. The iteration involves the continuation
of the learning process by incorporating additional data or training batches. The aim is to enhance the model's
capabilities by gaining a deeper understanding of a broader spectrum of data. In instances where the model
needs to adapt to dynamic changes in the data or environment, iteration proves beneficial, enabling the model
to continually update and enhance accuracy over time.

The depicted plot or graph is focused on scenarios related to 3, 5, and 10-shot learning. In these
scenarios, the plot provides information for three specific instances of few-shot learning, each involving a
different number of shots: 3-shot, 5-shot, and 10-shot. The term "few-shot learning" refers to a machine
learning paradigm where a model is trained and evaluated on a small number of examples per class. The crucial
aspect highlighted is that, within these scenarios, the model is subject to evaluation and adaptation based on a
limited number of examples, referred to as "shots," for each class. The mention of "N-way" signifies the number
of classes involved in the classification task. In this specific context, N is specified as 2, indicating that the
model is engaged in a 2-way classification task. In a 2-way classification task, the model categorizes input data
into one of two classes or categories. Therefore, the plot analyzes the model's performance under conditions
where it is evaluated and adapted with a restricted number of examples per class, focusing on scenarios
involving 3, 5, and 10 shots in the context of a 2-way classification task.

The analysis is conducted within the framework of a 2-way classification task. In this specific type of
classification task, the primary objective is to train the model to categorize input data into two distinct
categories or classes. The decision to adopt a 2-way classification task implies that there are only two possible
outcomes or labels for each example the model encounters. This choice of a 2-way classification task simplifies
the prediction task for the model, as it only needs to assign input data to one of the two predefined categories.
In contrast to tasks with multiple classes, where each example could belong to one of several categories, a 2-
way classification task reduces the complexity of the learning problem.

Chili leaf segmentation using meta-learning for improved model accuracy (Wiwin Suwarningsih)
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The outcomes across many experiments at various magnification levels suggest that employing
advanced augmentation is generally advantageous for enhancing accuracy, with only a few exceptions. The
substantial improvement in model accuracy is attributed to the use of augmentation. While there is no definitive
winner among the three advanced augmentation techniques Cut-Out, Mix-Up, and Cut-Mix it is observed that
Cut-Mix tends to outperform the others in most experiments. The application of advanced augmentation
introduces challenging samples during meta-training, enabling the model to acquire more robust
representations.
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Figure 3. Meta-iteration versus accuracy in 2-way classification for; (a) cut-out, (b) mix-up, and (c) cut-mix

3.3. Discussion

Based on the outcomes of the conducted experiments (refer to Table 3), it is evident that the 2-way
classification task consistently exhibits superior performance compared to the 3-way classification task across
all variations and scenarios of the few-shot task, encompassing 3-shot, 5-shot, and 10-shot setups. The inherent
complexity of the 3-way classification task contributes to its difficulty, as reflected in consistently lower
performance across different variations of the few-shot task. This suggests that the model faces increased
challenges in accurately classifying data into three distinct categories, making the 3-way classification
inherently more demanding than its 2-way counterpart.

Analyzing the performance of MAML compared to transfer learning reveals that, in all scenarios of
multiple-shot tasks (3-shot, 5-shot, 10-shot), 2-way classification with MAML-Cut-Mix consistently delivers
the most optimal results. Additionally, for 3-shot and 5-shot tasks, MAML-Cut-Out and MAML-Mix-Up
exhibit competitive performance. While transfer learning contributes positively, it does not consistently surpass
the effectiveness of MAML-Cut-Mix. On the other hand, in the context of 3-way classification, MAML-Cut-
Mix maintains its superior performance across all scenarios of few-shot tasks. Although transfer learning shows
positive contributions, particularly in the 10-shot scenario, its performance remains lower compared to MAML -
Cut-Mix.
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In the analysis of Few-shot Task Performance, across various few-shot tasks such as 3-shot, 5-shot,
and 10-shot scenarios, MAML-Cut-Mix consistently stands out by delivering the most optimal results. This
consistency highlights the effectiveness of the MAML-Cut-Mix technique in adapting to new tasks, particularly
those with a limited number of training samples. Furthermore, MAML-Mix-Up demonstrates commendable
performance, especially in the context of 2-way classification tasks, particularly in the challenging 10-shot
scenario. While transfer learning contributes significantly to the performance, it falls short compared to
MAML-Cut-Mix, especially evident in 3-way classification tasks where MAML-Cut-Mix maintains its
superior standing.

Therefore, the conclusion drawn is that MAML-Cut-Mix emerges as the most successful technique
across all variations and scenarios in the context of the few-shot task, demonstrating its superiority in the
context of this experiment. While transfer learning contributes positively, its effectiveness is contingent upon
the number of shots and the nature of the classification task. Specifically, in 3-way classification tasks, where
models often face challenges in learning intricate patterns, MAML-Cut-Mix continues to be the superior
choice.

The exploration of this study entails navigating through constraints associated with limited datasets.
The author has strategically utilized methods such as data augmentation combined with meta-learning
strategies to address challenges arising from a scarcity of variations in data and cultivation conditions. The
societal implications of this research carry substantial weight, given that the outcomes can play a pivotal role
in identifying superior chili seeds. Consequently, this identification has the potential to inspire farmers to
engage in the cultivation of high-quality chilies, ultimately resulting in more plentiful harvests.

4. CONCLUSION

This research demonstrated promising results, with the meta-learning approach achieving an accuracy
of 84.87% using a minimum of 10 shots from the meta-test dataset and leveraging the mix-up augmentation
method. A novel approach to meta-learning was introduced, framing leaf image classification as a few-shot
learning problem in scenarios with limited data. Advanced augmentation methods including CutOut, MixUp,
and CutMix were employed to enhance the model's ability to generalize. The success of this method was
evaluated on three intricate leaf image datasets. Comprehensive evaluation revealed that meta-learning
consistently outperformed leveraging transfer learning across all experimental datasets.

The transfer learning framework exhibited lower prediction reliability, raising potential concerns in
the plant domain. However, integrating advanced augmentation techniques improved test accuracy and model
consistency across datasets. Notably, transitioning from 3-shot to 5-shot, and subsequently to 10-shot
experiments, significantly enhanced model performance. The choice of optimizers, hyperparameters, and their
specific values played a crucial role in performance, underscoring the importance of these factors. This work
is anticipated to benefit researchers employing meta-learning techniques in plant science. The findings of this
study demonstrate the potential of leveraging modest datasets combined with combining data augmentation
and meta-learning to tackle challenges posed by restricted datasets and diverse growth conditions. Insights
from meta-learning enable accurate recognition of chili varieties even under these constraints, enhancing the
process's reliability and precision.

Future research will aim to validate the methodology across broader datasets and investigate more
robust regularization strategies beyond traditional image augmentation. Plans include extending this work to
address challenges such as noisy labels and automating parameter optimization during training. Building on
these results, further advancements in MAML techniques will focus on handling complex task distributions
with significant domain gaps. Additionally, developing tailored MAML approaches for multimodal scenarios
remains a key area of interest.
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