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 Food image recognition is essential for developing an elderly-friendly daily 

food recording application in Indonesia. However, existing datasets and 

models are limited and do not cover the diversity and complexity of 

Indonesian food. In this paper, we present a new dataset of 24,427 images of 

160 types of Indonesian food with higher variety and quality than previous 

datasets. We also train and compare the performance of 67 models based on 

16 state-of-the-art deep learning architectures on this dataset. We find that 

efficientnet_v2_l provides the best accuracy of 85.44%, followed by other 

models such as convnext_large and swin_s. We also discuss the trade-off 

between model size and performance, as well as the challenges and 

limitations of food image classification. Our dataset and models can serve as 

a basis for developing a user-friendly and accurate food recording 

application for the elderly population in Indonesia. 
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1. INTRODUCTION 

According to the latest census data, Indonesia has a growing proportion of older people. In 2021, the 

percentage of people aged 60 and above was 10.8%, up from 8.9% in 2010 [1]. This number is expected to 

rise to one-fifth of Indonesia's population in 2045 [1]. The demographic shift poses significant challenges for 

the health and nutrition sector, as older people have different and often more complex needs than younger 

people. Some of the common health issues faced by older people in Indonesia are chronic diseases, such as 

diabetes, hypertension, and cardiovascular diseases; mental health problems, such as depression, dementia, 

and anxiety; disability and malnutrition. These issues require adequate and accessible healthcare services, 

social support, and education to improve their quality of life. However, many older people in Indonesia face 

barriers to accessing health care, such as lack of insurance, high costs, long distances, and stigma. Moreover, 

many older people lack awareness and knowledge about healthy aging and nutrition, which can lead to poor 

dietary habits and increased risk of diseases. Therefore, there is a need for more research, advocacy, and 

intervention to address the health and nutrition challenges of older people in Indonesia. 

One critical factor affecting the life and health of older people is their daily dietary intake. By 

monitoring what and how much they eat, it is possible to obtain valuable information on their nutritional 

status, such as whether they are meeting their energy and nutrient requirements, whether they have any food 

intolerances or allergies, and whether they are at risk of developing malnutrition or chronic diseases such as 

diabetes, hypertension, or osteoporosis. Recording the daily food intake of older people can also help to 

https://creativecommons.org/licenses/by-sa/4.0/
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understand their dietary preferences, such as what foods they like or dislike, what foods they avoid or crave, 

and what foods they find difficult to chew or swallow. This can help caregivers and health professionals 

design appropriate interventions and recommendations to support their well-being, such as providing them 

with tailored menus, supplements, or counseling and educating them on the importance of a balanced and 

varied diet. 

Although recording daily food intake is essential for monitoring and improving older people's health 

and well-being, conventional food recording methods, such as paper diaries, can pose many challenges and 

limitations for this population group. These methods require a lot of time and effort to record, measure, and 

estimate portion sizes, food types, and nutrient contents. They also rely on the memory and literacy skills of 

the users, which may decline with age. Furthermore, these methods may not capture the diversity and 

complexity of food consumption patterns and preferences among older people with different dietary needs, 

cultural backgrounds, and social contexts. Therefore, there is a need for more efficient, reliable, and user-

friendly methods of food recording for the elderly population that can provide accurate and comprehensive 

information on their food intake and nutritional status. 

One approach to overcoming the above problems is to use information technology. An elderly-friendly 

daily food recording application that can help improve their quality of life can be developed. Based on previous 

research, many daily food recording mobile applications have been developed [2], [3]. Some apps even have a 

feature to record food products based on user images [3]. Nevertheless, most of the current mobile apps for food 

logging do not include or cover traditional Indonesian food, which is a significant part of the diet of older people 

and the majority of Indonesians. This poses a challenge for accurately assessing the population's nutritional intake 

and health status, especially in rural areas where traditional foods are more common than other types of food. 

Based on this background, one of our research objectives is to build a mobile application that can 

recognize traditional Indonesian food. We need to consider many factors in developing the application, such as 

usability, accessibility, user acceptance, and application functionality. In this study, we focused on one aspect of 

the application functionality, namely food recognition accuracy. A high-quality and diverse dataset of traditional 

Indonesian food is needed to develop an accurate food recognition model. However, this proved to be one of our 

biggest challenges. In previous research, [4], [5] have classified images of traditional Indonesian cakes using a 

deep learning approach. Unfortunately, their dataset only consists of cakes, so it does not cover most Indonesians' 

diets. Research by D. Sarwinda et al. [6] has also applied a convolutional neural network (CNN) to classify images 

of traditional Indonesian food. However, like [4], [5], even though the images they use do not only consist of 

cakes, they are limited to only ten types of food. Afrinanto [7] also shared a dataset of 9 kinds of dishes from 

Padang, Indonesia, while [8] published a dataset of high-resolution images of 34 traditional Indonesian foods. Even 

though there are many types of food in the dataset shared by [8], the food images tend to be uniform and less 

varied because they were taken in a very controlled environment. So, if a prediction model is trained using only 

this data, it tends not to generalize well and will fail to predict various new images. What we need is data with 

many types of food consisting of diverse images. Thus, it is necessary to collect a comprehensive food image 

dataset to be used as a basis for developing prediction models for our application development needs. 

The next challenge we face is choosing a suitable prediction method. In the last decade, deep 

learning algorithms, especially CNN and vision transformer (ViT), have become the de facto method for 

image classification. Deep learning has been applied in various fields and produces excellent performance. 

One factor determining deep learning's success in image classification is its architecture. Many deep learning 

architectures have been proposed and tested on the ImageNet dataset [9], a comprehensive image 

classification dataset consisting of 1000 classes, producing excellent performance, even exceeding human 

abilities in recognizing images. In previous research on food image recognition, deep learning has also been 

reported to produce good performance, for example, in [4], [5]. Unfortunately, only a few model 

architectures have been used and compared. Many new, recently developed model architectures have yet to 

be widely implemented and used. Thus, the question arises of how the latest architectures perform compared 

to older architectures that are more popular. Therefore, in this research, we propose a comparison of the 

performance of the latest deep learning architectures in classifying Indonesian food images. This comparison 

aims to find which architecture is best suitable for our dataset. 

Our contribution is as follows. We present a novel Indonesian food image classification dataset 

encompassing a broader spectrum of food types, quantities, and variations compared to existing datasets. 

Additionally, we conduct a comprehensive comparative evaluation of the latest deep learning architectures for their 

performance on our newly compiled dataset. Our work is laying the groundwork for future personalized dietary 

assessment tools that leverage image recognition for accurate food intake monitoring as well as demonstrating the 

potential for scaling this approach to other diverse food cultures and applications beyond Indonesian cuisine.  

The remainder of this paper will be organized as follows. Section 2 will discuss the methods we 

used in this research. The research results and discussion will be presented in section 3. Finally, conclusions 

and future work will be discussed in the last section. 
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2. METHOD 

2.1.  Data collection 

As shown in Figure 1, this research began with the data collection stage. At this stage, we first 

determine the list of foods that will be used to develop the model in this research. With the abundance of 

Indonesian food and limited time and resources, not all food can be used in this research. Therefore, in this 

research, we chose 160 Indonesian foods as priorities for use. As shown in Table 1, these foods include 16 

types of rice-based main dishes, 11 types of non-rice-based main dishes, 39 types of meat, chicken, egg, and 

fish-based side dishes, 17 types of vegetable-based side dishes, 23 types of soups, eight complementary 

foods, 19 traditional cakes, seven fruit and processed vegetables, ten drinks, and 11 snacks. Overall, the foods 

studied in this research have represented all the main islands in Indonesia, starting from Sumatra, Java, 

Kalimantan, Sulawesi, Bali, Nusa Tenggara, and Papua. 
 

 

 
 

Figure 1. Research method 
 

 

Once a list of foods was determined, we used an online search engine to collect images of those 

foods. The images obtained in this process are then divided and distributed to 10 human annotators in the 

manual sorting stage to label the images with the correct food class. Because the labeling is done manually 

by humans and one image is only handled by one person, there is the potential for errors in labeling food 

images. However, with the large number of images collected, this will not significantly affect the 

performance of the resulting model. 
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Table 1. The list of Indonesian foods used in this study 
Category Food items 

Rice-based main 
dishes 

nasi kuning, nasi tim ayam, nasi gandul, gudeg, nasi timbel, nasi liwet, nasi goreng, nasi uduk, nasi padang, 
nasi pecel, nasi campur, and nasi kucing 

Non-rice-based 

main dishes 

mie kangkung, mi aceh, nasi jagung, papeda, arem-arem, lemang, bakso, tau campur, karedok, mi kocok, 

bubur ayam, gado-gado, ketoprak, and kupat tahu 
Meat, chicken, 

egg, and fish-based 

side dishes 

sate lilit, sate udang, iga penyet, ayam popo, sate klatak, sate kerang, serudnneg daging, udang balado, 

dendeng balado, pallubasa, kepiting saus padang, ayam geprek, sate buntel, pecel lele, bebek goreng, babi 

guling, ikan bakar, rica-rica, ayam bakar, gulai ayam, kaledo, rendang daging, opor ayam, ayam pelalah, sate 
ayam, semur ayam, ayam betutu, cakalang fufu, ayam serundeng, babi panggang, sate kambing, ikan goreng, 

ayam penyet, semur daging, gulai kambing, rendang ayam, ayam goreng, tengkleng, and krengsengan daging 

Vegetable-based 
side dishes 

buntil, perkedel, pepes tahu, oncom, tempe goreng, tempe bacem, terong balado, botok, tempe kering, tumis 
kangkung, plecing kangkung, lawar, urap, lalapan, sambal, dabu-dabu, and bawang goreng 

Soups sayur asem, soto padang, soto ayam, soto lamongan, soto bandung, soto padang, sayu rlodeh, cap cai, rawon, 

soto ceker, tongseng, soto betawi, konro, soto medan, coto makasar, empal gentong, soto tangkar, soto babat, 
sop kambing, and sop saudara 

Complementary 

foods 

bubur ketan hitam, bubur kacang hijau, selat solo, tekwan, rujak cingur, kerak telor, tinutuan, and pempek 

Traditional cakes lapis legit, roti buaya, kue ape, wajik, roti canai, bakpia pathok, kue lapis, dadar gulung, kue cucur, kue putu, 

klepon, lemper, kue putu ayu, gethuk, kue nagasari, wingko, serabi, risoles, and klappertart 

Fruit and processed 
vegetables 

durian, petai, acar, rujak buah, asinan buah, asinan betawi, and kolak 

Drinks soda gembira, kopi terbalik, es teler, teh talua, sekoteng, wedang jahe, kopi tubruk, bajigur, and bandrek 

Snacks cilok, otak-otak, cireng, pisang goreng, tempe mendoan, singkong goreng, siomay, batagor, krupuk, kripik, 
and rengginang 

 

 

From this stage, 24,427 images were collected as the dataset used in this research. We divide the 

dataset into training and validation sets and test sets. The training and validation sets consist of 80% images 

from each food, totaling 19,475 images. While the remaining 4952 images (20%) will be used as the test set. 

Some examples of images in this dataset can be seen in Figure 2. 

 

 

 
 

Figure 2. Some examples of food images in our dataset 

 

 

2.2.  Model training 

We build image classification models at this stage using the latest deep learning architectures. We 

use 16 base deep learning architectures and their variants for a total of 67 model architectures, as shown in 

Table 2. We build one classification model for each model architecture. Model initialization is done by 

removing classification layers in the basic model and adding ones that suit our problem. Transfer learning is 

also carried out to speed up the training process. This is done by applying the weights of the model that has 

been previously trained using the ImageNet dataset to our model so that during training, we can focus on 

adjusting the weights in the classification layers and subsequent fine tunings. 
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Table 2. Deep learning architectures used in this study 
Base architecture Variants 

AlexNet [10] alexnet 
ConvNeXt [11] convnext_large, convnext_base, convnext_small, convnext_tiny 

DenseNet [12] densenet161, densenet201, densenet121, densenet169 

EfficientNet [13] efficientnet_b1, efficientnet_b2, efficientnet_b7, efficientnet_b0, efficientnet_b5, efficientnet_b6, 
efficientnet_b4, efficientnet_b3 

EfficientNetV2 [14] efficientnet_v2_l, efficientnet_v2_s, efficientnet_v2_m 

GoogLeNet [15] googlenet 
MobileNetV3 [16] mobilenet_v3_large, mobilenet_v3_small 

RegNet [17] regnet_y_3_2gf, regnet_y_16gf, regnet_x_32gf, regnet_x_16gf, regnet_x_8gf, regnet_y_32gf, 

regnet_y_8gf, regnet_x_3_2gf, regnet_y_1_6gf, regnet_y_800mf, regnet_x_800mf, regnet_x_1_6gf, 
regnet_y_400mf, regnet_x_400mf 

ResNet [18] resnet152, resnet101, resnet34, resnet50, resnet18 

ResNeXt [19] resnext101_64x4d, resnext101_32x8d, resnext50_32x4d 
ShuffleNet v2 [20] shufflenet_v2_x2_0, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x0_5 

SqueezeNet [21] squeezenet1_0, squeezenet1_1 

Swin transformer [22] swin_s, swin_b, swin_t 

Swin transformer V2 [23] swin_v2_b, swin_v2_s, swin_v2_t 

VGG [24] vgg16_bn, vgg19_bn, vgg13_bn, vgg11_bn, vgg19, vgg11, vgg16, vgg13 

Wide ResNet [25] wide_resnet50_2, wide_resnet101_2 

 

 

The training and validation set obtained in the previous stage is then separated. We use the training 

set, which takes up 80% of these data or 64% of the initial data, to adjust the model weights during training. 

Meanwhile, the validation set is used to determine whether the training process still needs to be continued or 

can be stopped. The training process is carried out in two stages. In the first stage, using the training set, we 

trained the model for a maximum of 100 epochs using a 1cycle policy [26] and a base learning rate of 0.001. 

During training, we use image augmentation to provide variations in the dataset used so that the model 

appears to see new data at each epoch. We use this to prevent overfitting so that the model can more accurately 

predict new data it has never seen before. The types of random transformations that we use in this augmentation 

process include rotation, mirroring, magnification, lighting, warping, and their combinations as shown in Table 3. 
 

 

Table 3. Image augmentation parameters used in this study 
Transformation Parameter Value Probability 

Flip direction horizontal 0.5 

Rotation max degree 10.0 0.75 

Zoom range (1.0, 1.1) 0.75 
Brightness and contrast change max scale 0.2 0.75 

Perspective warp magnitude 0.2 0.75 

 
 

At the end of each epoch, we validate the model against the validation set to obtain the validation 

loss. We apply early stopping to stop the training process if the validation loss at the end of an epoch does not 

improve in two consecutive epochs. After the first training stage ends, we look for a new learning rate by 

training the model for several iterations with different learning rates and recording the resulting loss. The 

learning rate that we use is at the midpoint of the longest valley in the learning rate vs loss curve. Next, we 

repeat the previous training procedure in the same way. Based on our experiments, this method consistently 

produces good results for our datasets. This training process is carried out using a system equipped with an 

NVIDIA GeForce RTX 4090 GPU and 32 GB RAM. During the training process, we also monitor training 

and validation loss at each epoch as well as training duration for further analysis. 

 

2.3.  Model testing 

The models trained in the previous stage will be tested using our prepared test set. The test results 

for each model will be summarized using a confusion matrix, as shown in Figure 3. Based on the confusion 

matrix, accuracy as well as precision and recall for each type of food can be calculated using as (1) to (4): 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑  𝑚

𝑖=1 𝑇𝑃𝑖

𝑛
 (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
 (2) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
 (3) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒𝑖 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖⋅𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑟𝑒𝑐𝑎𝑙𝑙𝑖
 (4) 
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where TPi is number of true positives for food i, FNi is number of false negatives for food i, FPi is number of 

false positives for food i, i is index of the food, m is number of classes, and n is number of data. 

We also calculate top-k accuracy for k=2, 3, 4, and 5 by computing the number of times the correct 

label is among the top k predicted labels. 
 

 

Actual 

Food_1 TP1 FP2/FN1 FP3/FN1 FP4/FN1 … FPm/FN1 

Food_2 FP1/FN2 TP2 FP3/FN2 FP4/FN2 … FPm/FN2 
Food_3 FP1/FN3 FP2/FN3 TP3 FP4/FN3 … FPm/FN3 

Food_4 FP1/FN4 FP2/FN4 FP3/FN4 TP4 … FPm/FN4 

… … … … … …  
Food_m FP1/FNm FP2/FNm FP3/FNm FP4/FNm  TPm 

 Food_1 Food_2 Food_3 Food_4 … Food_m 

 Prediction 

 

Figure 3. Sample confusion matrix 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Training results 

Figure 4 illustrates the relationship between the number of model parameters (the size of the 

models) and the total epoch, time per epoch, and total training time. There is no clear correlation between the 

number of model parameters and the total number of epochs, meaning that models with more parameters do 

not necessarily train for more or fewer epochs. On the contrary, there is generally a positive correlation 

between the number of model parameters and the time per epoch, indicating that larger models tend to take 

longer to train for one epoch. On the other hand, although the correlation between model parameters and total 

training time is positive, it is not as strong as the correlation between model parameters and time per epoch. 

Hence, the total training time is not solely dependent on the number of model parameters. Other factors, such 

as the model architecture, may also play a role. 
 
 

 
 

Figure 4. Relationship between the number of model parameters and total epoch, time per epoch, and total 

training time. Each dot represents a model. The red line is the trend line, while red shades show the 95% 

confidence interval 
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Figure 5 shows the training and validation loss curve for all models. As can be seen, training and 

validation loss successfully decreased, converged, and stabilized at the end of the training process for most of 

our models. However, some models, such as AlexNet, ShuffleNet v2, and swin transformer V2, failed to 

achieve this convergence, which indicates underfitting. Underfitting is a common issue in deep learning. In 

some cases, it can be a sign of insufficient data, noisy labels, or improper hyperparameters. In this study, we 

leave the investigation of underfitting for future works and focus on the models that have achieved 

satisfactory performance on the validation set. 

 

 

 
 

Figure 5. Training vs validation loss 

 

 

3.2.  Overall model performance 

Table 4 (in Appendix) shows the overall performance of our classification models. Most of the 

models show good performance in classifying Indonesian food images. The best performance was 

demonstrated by efficientnet_v2_l with an accuracy of 85.44% and a top-5 accuracy of 97.84%, but other 

models included in the top 10 also showed similar performance. Conversely, it is unsurprising that models 

that experience underfitting during the training process, such as AlexNet, ShuffleNet v2, and swin 

transformer V2, would demonstrate inferior performance compared to other models. This is particularly 

evident in the case of ShuffleNet v2, which exhibits very poor performance across all its variants. They can 
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only achieve accuracy between 9-13%, with top-5 accuracy between 27-34%. A plausible reason for this 

could be that the ShuffleNet v2 model variants, due to their small size and emphasis on efficiency, may not 

be sufficiently complex to tackle this classification problem, leading to underfitting. 

When grouped and averaged based on the model architecture, as shown in Table 5, it can be seen 

that, generally, swin transformer provides the best performance for all of its variants. This fact is quite 

surprising because in contrast to other architectures, such as EfficientNetV2, where the latest version tends to 

have better performance than the old one, swin transformer far outperforms its newer variant, swin 

transformer V2, which is included among the three worst architectures. More recent model architectures such 

as swin transformer, ConvNeXt, and EfficientNetV2 also tend to provide better average performance than 

older models such as AlexNet, GoogleNet, and VGG. This is unsurprising, considering that newer models are 

usually developed to improve on old ones and are based on more advanced techniques such as transformers, 

depthwise convolution, and neural architecture search. 

 

 

Table 5. Average performance of all classification models grouped by model architecture and ordered by best 

accuracy. The top five values are highlighted 

Model 
architecture 

Avg 

parameters 

(Million) 

Avg 
accuracy 

Avg top-2 
accuracy 

Avg top-3 
accuracy 

Avg top-4 
accuracy 

Avg top-

5 

accuracy 

Avg 

accuracy/para

meters 

Swin transformer 55.2 0.8408 0.9291 0.9534 0.9663 0.9734 0.0186 
ConvNeXt 91.3 0.8375 0.9255 0.9535 0.9664 0.9742 0.0148 

EfficientNetV2 64.7 0.8201 0.9103 0.9402 0.9577 0.9669 0.0199 
DenseNet 17.7 0.8174 0.9128 0.9421 0.9560 0.9648 0.0571 

RegNet 39.2 0.8015 0.8962 0.9305 0.9477 0.9594 0.0626 

ResNet 32.8 0.7963 0.8918 0.9261 0.9443 0.9554 0.0328 
ResNeXt 65.8 0.7944 0.8926 0.9276 0.9451 0.9560 0.0167 

Wide ResNet 97.9 0.7934 0.8896 0.9251 0.9444 0.9557 0.0089 

VGG 137.0 0.7805 0.8818 0.9203 0.9398 0.9528 0.0057 
EfficientNet 24.2 0.7726 0.8753 0.9146 0.9339 0.9475 0.0612 

MobileNetV3 4.0 0.7613 0.8607 0.9035 0.9247 0.9386 0.2202 

SqueezeNet 1.2 0.7295 0.8432 0.8907 0.9153 0.9300 0.6079 
GoogLeNet 6.6 0.7292 0.8350 0.8841 0.9124 0.9311 0.1105 

Swin transformer V2 55.3 0.6882 0.8085 0.8627 0.8907 0.9111 0.0150 

AlexNet 61.1 0.6454 0.7767 0.8364 0.8740 0.8964 0.0106 
ShuffleNet v2 3.7 0.1153 0.1850 0.2399 0.2810 0.3181 0.0430 

 

 

3.3.  Model size vs performance 

As shown in Tables 4 and 5, the architecture that provides the best performance is usually not the 

most efficient, as indicated by the ratio between accuracy and the number of parameters. Figure 6 shows the 

same thing. There is a tendency for accuracy to increase with an increasing number of parameters in the 

model. However, this is only partially true when seen from each model's base architecture point of view. 

Figure 7 shows the relationship between the number of parameters and the performance of each architecture 

variant. For some architectures, such as EfficientNetV2 and ConvNeXt, their larger variants tend to perform 

better than their smaller ones as measured by accuracy. However, this relationship is not always true for other 

architectures, and even the opposite is true. For example, regnet_y_3_2gf has better accuracy than 

regnet_y_16gf and regnet_y_32gf while having a much smaller number of parameters. Meanwhile, 

efficientnet_b1, the second smallest variant of EfficientNet, has better accuracy than any other EfficientNet 

variants. 

 

3.4.  Which architecture to choose? 

As explained in the previous section, a trade-off exists between model size and performance. 

Smaller models usually have lower accuracy, while larger models tend to perform better. On the other hand, 

smaller models are better suited for use in mobile devices because they require less memory and storage and 

can run more quickly and efficiently. Thus, we must balance this trade-off according to our needs and 

constraints. When requiring the highest accuracy without space, memory, and device limitations, 

efficientnet_v2_l can be used. On the other hand, if we want a small model that can run on low-end devices 

and we are not too concerned about performance, squeezenet1_0, squeezenet1_1, and mobilenet_v3_small 

can be used. 

One approach to selecting a suitable model is to define the threshold for each criterion that we 

require. For instance, in our scenario, we aim to choose a model that can operate on most devices while still 

achieving reasonably good accuracy. As depicted in Figure 8, we can establish the criteria that the model 
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must have an accuracy of at least 75%, and the number of parameters should not exceed 10 million. Then, 

any model that falls within the purple-shaded region, such as densenet121, efficientnet_b1, and 

regnet_y_800mf, can be selected. 

 

 

 
 

Figure 6. Relationship between the number of model parameters and accuracy. Each dot represents a model. 

The red line is the trend line, while red shades show the 95% confidence interval 

 

 

 
 

Figure 7. Relationship between the number of model parameters and accuracy grouped by model 

architecture. Each dot represents a model, while the red lines are the trend lines 
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Figure 8. Illustration of model selection with an accuracy of at least 75% and no more than 10 million 

parameters. The purple-shaded area contains all suitable candidate models 

 

 

3.5.  Beyond model performance 

Next, we analyze the test results of our best model, efficientnet_v2_l, to determine which types of 

food are most difficult for the model to predict. We use the results to evaluate our dataset and as input for 

future improvements. Table 6 shows the ten foods with the lowest F1 score. Our model generally has 

difficulty classifying bandrek, sop saudara, kuluban, and sop kambing, which are characterized by an F1 

score below 0.5. One thing that might explain this is that in our dataset, bandrek, a hot drink made from 

ginger and brown sugar, and sop saudara, a type of beef soup, only have a few images compared to other 

foods. Bandrek consists of only 53 images, while sop saudara only consists of 67 images, far below the 

dataset average of 152 images for each food. Our model also often confuses bandrek with bajigur, a similar 

drink with different ingredients. With the similar appearance of the two, and coupled with the smaller number 

of bandrek datasets compared to bajigur, it is not surprising that our model has difficulty distinguishing 

between the two. A similar case occurred with sop saudara, sop kambing, and kuluban. The first two belong 

to a family of soups with thick broth, with their main ingredients partially submerged. This causes our model 

to often confuse them with similar foods such as coto Makasar and konro. On the other hand, kuluban is also 

often confused with urap, a food with similar ingredients and appearance. 
 

 

Table 6. The performance of efficientnet_v2_l model on ten foods with the worst F1 score 
Food item F1 score Precision Recall 

Bandrek 0.3158 0.3750 0.2727 
Sop saudara 0.4211 0.6667 0.3077 

Kuluban 0.4211 0.4444 0.4000 

Sop kambing 0.4324 0.6154 0.3333 
Soto babat 0.5185 0.5385 0.5000 

Krengsengan daging 0.5313 0.5484 0.5152 

Gulai kambing 0.5672 0.5758 0.5588 
Soto tangkar 0.5789 0.7333 0.4783 

Tengkleng 0.5926 0.6667 0.5333 

Ayam goreng 0.6061 0.6250 0.5882 

 

 

Looking at Figure 9, we find other challenges that our model faces in classifying food images. First, 

the variations in food presentation. One of sate lilit's main characteristics is using lemongrass as a skewer. 

The first image in Figure 9 shows sate udang, which uses lemongrass instead of bamboo as the skewer. This 

deceives our model into predicting the image as sate lilit. 

Furthermore, our image sometimes consists of several food items, as shown by the second image in 

Figure 9. Our model predicts the image as nasi campur, which is correct because it consists of rice and 

various side dishes. On the other hand, our data verifier labeled the image as sate lilit in our dataset, which is 

also not entirely wrong because one of the components in the image is sate lilit. Here, we see the limitations 

of our model in making predictions. Our classification model can only provide one prediction result for each 

image. Instead of classification, the more suitable tasks for images containing several labels or objects are 

multilabel classification, object detection, or semantic segmentation. We will explore this in future research. 
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Figure 9. Three most confused test images by efficientnet_v2_l model 

 

 

4. CONCLUSION 

A good food image prediction model is crucial for developing an elderly-friendly daily food 

recording application in Indonesia. In this research, we introduce a novel dataset encompassing 24,427 

images across 160 unique Indonesian food types, surpassing existing datasets in both variety and image 

quantity. Through extensive benchmarking, we evaluated the performance of 67 models built upon 16 state-

of-the-art deep learning architectures on our curated dataset. Notably, efficientnet_v2_l emerged as the top 

performer, achieving an accuracy of 85.44% and a top-5 accuracy of 97.84%, followed closely by other 

models such as convnext_large and swin_s. While newer models often result in better performance due to the 

use of more advanced techniques, they are not always better, as shown by swin transformer, which 

outperforms its successor, swin transformer V2. Our findings highlight the trade-off between model size and 

performance, where smaller models tend to exhibit lower accuracy while larger ones generally demonstrate 

better performance. However, this relationship is not universally applicable across all architectures, as 

demonstrated by certain smaller models outperforming their larger counterparts. Additionally, we have 

discussed considerations for model selection, acknowledging challenges and limitations surrounding food 

image classification. These limitations include the quantity and variability of images, food presentation 

styles, image composition complexities, and constraints inherent to single-label classification models. In 

future work, we will focus on expanding our dataset to encompass a wider range of Indonesian foods. To 

ensure label quality, we will implement multi-annotator labelling and explore techniques like confident 

learning. Furthermore, we plan to investigate the application of object detection techniques within this domain. 

 

 

APPENDIX 

 

Table 4. Performance of all classification models ordered by best accuracy. The top ten values are 

highlighted 
Model 

architecture 
Variant 

Parameters 

(Million) 
Accuracy 

Top-2 

Accuracy 

Top-3 

Accuracy 

Top-4 

Accuracy 

Top-5 

Accuracy 

Accuracy/ 

Parameters 

EfficientNet
V2 

efficientnet_v2_l 118.5 0.8544 0.9317 0.9566 0.9719 0.9784 0.0072 

ConvNeXt convnext_large 197.8 0.8538 0.9370 0.9606 0.9719 0.9774 0.0043 

Swin 

transformer 

swin_s 49.6 0.8496 0.9319 0.9556 0.9675 0.9731 0.0171 

Swin 

transformer 

swin_b 87.8 0.8479 0.9344 0.9554 0.9707 0.9764 0.0097 

RegNet regnet_y_3_2gf 19.4 0.8389 0.9184 0.9465 0.9643 0.9733 0.0432 

ConvNeXt convnext_base 88.6 0.8358 0.9241 0.9529 0.9639 0.9733 0.0094 

DenseNet densenet161 28.7 0.8350 0.9255 0.9513 0.9639 0.9711 0.0291 
ConvNeXt convnext_small 50.2 0.8326 0.9227 0.9507 0.9659 0.9733 0.0166 

ConvNeXt convnext_tiny 28.6 0.8277 0.9184 0.9495 0.9639 0.9725 0.0289 

RegNet regnet_y_16gf 83.6 0.8265 0.9107 0.9435 0.9576 0.9669 0.0099 
ResNet resnet152 60.2 0.8257 0.9116 0.9426 0.9584 0.9665 0.0137 

Swin 

transformer 

swin_t 28.3 0.8249 0.9208 0.9493 0.9608 0.9707 0.0291 

DenseNet densenet201 20 0.8215 0.9152 0.9424 0.9544 0.9622 0.0411 

ResNet resnet101 44.5 0.8201 0.9097 0.9378 0.9546 0.9643 0.0184 

RegNet regnet_x_32gf 107.8 0.8189 0.9055 0.9382 0.9554 0.9659 0.0076 
RegNet regnet_x_16gf 54.3 0.8168 0.9073 0.9392 0.9542 0.9624 0.0150 

RegNet regnet_x_8gf 39.6 0.8158 0.9067 0.9370 0.9527 0.9620 0.0206 

RegNet regnet_y_32gf 145 0.8152 0.9073 0.9390 0.9558 0.9647 0.0056 

EfficientNet

V2 

efficientnet_v2_s 21.5 0.8146 0.9095 0.9384 0.9568 0.9663 0.0379 
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Table 4. Performance of all classification models ordered by best accuracy. The top ten values are 

highlighted (continue) 
Model 

architecture 
Variant 

Parameters 
(Million) 

Accuracy 
Top-2 

Accuracy 
Top-3 

Accuracy 
Top-4 

Accuracy 
Top-5 

Accuracy 
Accuracy/ 
Parameters 

DenseNet densenet121 8 0.8126 0.9111 0.9424 0.9574 0.9669 0.1016 

VGG vgg16_bn 138.4 0.8112 0.9039 0.9376 0.9517 0.9616 0.0059 

RegNet regnet_y_8gf 39.4 0.8106 0.9069 0.9400 0.9554 0.9647 0.0206 
RegNet regnet_x_3_2gf 15.3 0.8080 0.9025 0.9332 0.9479 0.9610 0.0528 

ResNeXt resnext101_64x4d 83.5 0.8059 0.8992 0.9338 0.9513 0.9594 0.0097 

RegNet regnet_y_1_6gf 11.2 0.8055 0.9004 0.9328 0.9493 0.9610 0.0719 
VGG vgg19_bn 143.7 0.8039 0.8970 0.9346 0.9511 0.9639 0.0056 

VGG vgg13_bn 133.1 0.8025 0.9023 0.9340 0.9527 0.9616 0.0060 

DenseNet densenet169 14.1 0.8005 0.8992 0.9324 0.9485 0.9588 0.0568 
Wide ResNet wide_resnet50_2 68.9 0.7952 0.8918 0.9281 0.9461 0.9582 0.0115 

VGG vgg11_bn 132.9 0.7940 0.8901 0.9269 0.9439 0.9544 0.0060 

ResNeXt resnext101_32x8d 88.8 0.7928 0.8936 0.9289 0.9437 0.9574 0.0089 
Wide ResNet wide_resnet101_2 126.9 0.7916 0.8875 0.9221 0.9426 0.9532 0.0062 

EfficientNet

V2 

efficientnet_v2_m 54.1 0.7914 0.8897 0.9257 0.9445 0.9562 0.0146 

EfficientNet efficientnet_b1 7.8 0.7908 0.8877 0.9253 0.9404 0.9546 0.1014 

ResNet resnet34 21.8 0.7904 0.8855 0.9237 0.9418 0.9548 0.0363 

RegNet regnet_y_800mf 6.4 0.7902 0.8910 0.9279 0.9443 0.9560 0.1235 
EfficientNet efficientnet_b2 9.1 0.7890 0.8859 0.9255 0.9429 0.9550 0.0867 

EfficientNet efficientnet_b7 66.3 0.7870 0.8873 0.9212 0.9390 0.9534 0.0119 
ResNeXt resnext50_32x4d 25 0.7843 0.8851 0.9202 0.9404 0.9513 0.0314 

ResNet resnet50 25.6 0.7813 0.8851 0.9178 0.9366 0.9495 0.0305 

RegNet regnet_x_800mf 7.3 0.7803 0.8849 0.9229 0.9404 0.9568 0.1069 
EfficientNet efficientnet_b0 5.3 0.7793 0.8813 0.9176 0.9368 0.9483 0.1470 

RegNet regnet_x_1_6gf 9.2 0.7744 0.8744 0.9134 0.9330 0.9489 0.0842 

MobileNetV3 mobilenet_v3_lar
ge 

5.5 0.7728 0.8724 0.9130 0.9334 0.9453 0.1405 

EfficientNet efficientnet_b5 30.4 0.7722 0.8762 0.9158 0.9392 0.9501 0.0254 

VGG vgg19 143.7 0.7722 0.8798 0.9144 0.9354 0.9511 0.0054 
EfficientNet efficientnet_b6 43 0.7680 0.8758 0.9103 0.9277 0.9433 0.0179 

RegNet regnet_y_400mf 4.3 0.7645 0.8667 0.9087 0.9295 0.9453 0.1778 

ResNet resnet18 11.7 0.7641 0.8671 0.9083 0.9301 0.9420 0.0653 

EfficientNet efficientnet_b4 19.3 0.7623 0.8621 0.9047 0.9265 0.9433 0.0395 

VGG vgg11 132.9 0.7597 0.8601 0.9039 0.9273 0.9431 0.0057 

VGG vgg16 138.4 0.7561 0.8673 0.9103 0.9321 0.9449 0.0055 
RegNet regnet_x_400mf 5.5 0.7559 0.8639 0.9045 0.9285 0.9433 0.1374 

MobileNetV3 mobilenet_v3_sm

all 

2.5 0.7498 0.8489 0.8940 0.9160 0.9319 0.2999 

VGG vgg13 133 0.7445 0.8538 0.9006 0.9243 0.9422 0.0056 

SqueezeNet squeezenet1_0 1.2 0.7347 0.8439 0.8916 0.9166 0.9328 0.6122 

EfficientNet efficientnet_b3 12.2 0.7320 0.8459 0.8966 0.9190 0.9319 0.0600 
GoogLeNet googlenet 6.6 0.7292 0.8350 0.8841 0.9124 0.9311 0.1105 

SqueezeNet squeezenet1_1 1.2 0.7244 0.8425 0.8897 0.9140 0.9273 0.6036 

Swin 
transformer 

V2 

swin_v2_b 87.9 0.7104 0.8277 0.8805 0.9097 0.9273 0.0081 

Swin 
transformer 

V2 

swin_v2_s 49.7 0.7056 0.8251 0.8790 0.9029 0.9223 0.0142 

swin 

transformer 

v2 

swin_v2_t 28.4 0.6486 0.7726 0.8286 0.8595 0.8839 0.0228 

AlexNet alexnet 61.1 0.6454 0.7767 0.8364 0.8740 0.8964 0.0106 
ShuffleNet v2  shufflenet_v2_x2_0 7.4 0.1282 0.2021 0.2559 0.3003 0.3407 0.0173 

ShuffleNet v2  shufflenet_v2_x1_0 2.3 0.1228 0.1961 0.2561 0.2962 0.3330 0.0534 

ShuffleNet v2  shufflenet_v2_x1_5 3.5 0.1141 0.1866 0.2399 0.2843 0.3233 0.0326 
ShuffleNet v2  shufflenet_v2_x0_5 1.4 0.0961 0.1551 0.2076 0.2431 0.2752 0.0687 
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