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Food image recognition is essential for developing an elderly-friendly daily
food recording application in Indonesia. However, existing datasets and
models are limited and do not cover the diversity and complexity of
Indonesian food. In this paper, we present a new dataset of 24,427 images of
160 types of Indonesian food with higher variety and quality than previous

datasets. We also train and compare the performance of 67 models based on

16 state-of-the-art deep learning architectures on this dataset. We find that
efficientnet_v2_| provides the best accuracy of 85.44%, followed by other
models such as convnext_large and swin_s. We also discuss the trade-off
between model size and performance, as well as the challenges and
limitations of food image classification. Our dataset and models can serve as
a basis for developing a user-friendly and accurate food recording
application for the elderly population in Indonesia.
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1. INTRODUCTION

According to the latest census data, Indonesia has a growing proportion of older people. In 2021, the
percentage of people aged 60 and above was 10.8%, up from 8.9% in 2010 [1]. This number is expected to
rise to one-fifth of Indonesia's population in 2045 [1]. The demographic shift poses significant challenges for
the health and nutrition sector, as older people have different and often more complex needs than younger
people. Some of the common health issues faced by older people in Indonesia are chronic diseases, such as
diabetes, hypertension, and cardiovascular diseases; mental health problems, such as depression, dementia,
and anxiety; disability and malnutrition. These issues require adequate and accessible healthcare services,
social support, and education to improve their quality of life. However, many older people in Indonesia face
barriers to accessing health care, such as lack of insurance, high costs, long distances, and stigma. Moreover,
many older people lack awareness and knowledge about healthy aging and nutrition, which can lead to poor
dietary habits and increased risk of diseases. Therefore, there is a need for more research, advocacy, and
intervention to address the health and nutrition challenges of older people in Indonesia.

One critical factor affecting the life and health of older people is their daily dietary intake. By
monitoring what and how much they eat, it is possible to obtain valuable information on their nutritional
status, such as whether they are meeting their energy and nutrient requirements, whether they have any food
intolerances or allergies, and whether they are at risk of developing malnutrition or chronic diseases such as
diabetes, hypertension, or osteoporosis. Recording the daily food intake of older people can also help to
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understand their dietary preferences, such as what foods they like or dislike, what foods they avoid or crave,
and what foods they find difficult to chew or swallow. This can help caregivers and health professionals
design appropriate interventions and recommendations to support their well-being, such as providing them
with tailored menus, supplements, or counseling and educating them on the importance of a balanced and
varied diet.

Although recording daily food intake is essential for monitoring and improving older people's health
and well-being, conventional food recording methods, such as paper diaries, can pose many challenges and
limitations for this population group. These methods require a lot of time and effort to record, measure, and
estimate portion sizes, food types, and nutrient contents. They also rely on the memory and literacy skills of
the users, which may decline with age. Furthermore, these methods may not capture the diversity and
complexity of food consumption patterns and preferences among older people with different dietary needs,
cultural backgrounds, and social contexts. Therefore, there is a need for more efficient, reliable, and user-
friendly methods of food recording for the elderly population that can provide accurate and comprehensive
information on their food intake and nutritional status.

One approach to overcoming the above problems is to use information technology. An elderly-friendly
daily food recording application that can help improve their quality of life can be developed. Based on previous
research, many daily food recording mobile applications have been developed [2], [3]. Some apps even have a
feature to record food products based on user images [3]. Nevertheless, most of the current mobile apps for food
logging do not include or cover traditional Indonesian food, which is a significant part of the diet of older people
and the majority of Indonesians. This poses a challenge for accurately assessing the population’s nutritional intake
and health status, especially in rural areas where traditional foods are more common than other types of food.

Based on this background, one of our research objectives is to build a mobile application that can
recognize traditional Indonesian food. We need to consider many factors in developing the application, such as
usability, accessibility, user acceptance, and application functionality. In this study, we focused on one aspect of
the application functionality, namely food recognition accuracy. A high-quality and diverse dataset of traditional
Indonesian food is needed to develop an accurate food recognition model. However, this proved to be one of our
biggest challenges. In previous research, [4], [5] have classified images of traditional Indonesian cakes using a
deep learning approach. Unfortunately, their dataset only consists of cakes, so it does not cover most Indonesians'
diets. Research by D. Sarwinda et al. [6] has also applied a convolutional neural network (CNN) to classify images
of traditional Indonesian food. However, like [4], [5], even though the images they use do not only consist of
cakes, they are limited to only ten types of food. Afrinanto [7] also shared a dataset of 9 kinds of dishes from
Padang, Indonesia, while [8] published a dataset of high-resolution images of 34 traditional Indonesian foods. Even
though there are many types of food in the dataset shared by [8], the food images tend to be uniform and less
varied because they were taken in a very controlled environment. So, if a prediction model is trained using only
this data, it tends not to generalize well and will fail to predict various new images. What we need is data with
many types of food consisting of diverse images. Thus, it is necessary to collect a comprehensive food image
dataset to be used as a basis for developing prediction models for our application development needs.

The next challenge we face is choosing a suitable prediction method. In the last decade, deep
learning algorithms, especially CNN and vision transformer (ViT), have become the de facto method for
image classification. Deep learning has been applied in various fields and produces excellent performance.
One factor determining deep learning's success in image classification is its architecture. Many deep learning
architectures have been proposed and tested on the ImageNet dataset [9], a comprehensive image
classification dataset consisting of 1000 classes, producing excellent performance, even exceeding human
abilities in recognizing images. In previous research on food image recognition, deep learning has also been
reported to produce good performance, for example, in [4], [5]. Unfortunately, only a few model
architectures have been used and compared. Many new, recently developed model architectures have yet to
be widely implemented and used. Thus, the question arises of how the latest architectures perform compared
to older architectures that are more popular. Therefore, in this research, we propose a comparison of the
performance of the latest deep learning architectures in classifying Indonesian food images. This comparison
aims to find which architecture is best suitable for our dataset.

Our contribution is as follows. We present a novel Indonesian food image classification dataset
encompassing a broader spectrum of food types, quantities, and variations compared to existing datasets.
Additionally, we conduct a comprehensive comparative evaluation of the latest deep learning architectures for their
performance on our newly compiled dataset. Our work is laying the groundwork for future personalized dietary
assessment tools that leverage image recognition for accurate food intake monitoring as well as demonstrating the
potential for scaling this approach to other diverse food cultures and applications beyond Indonesian cuisine.

The remainder of this paper will be organized as follows. Section 2 will discuss the methods we
used in this research. The research results and discussion will be presented in section 3. Finally, conclusions
and future work will be discussed in the last section.
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2. METHOD
2.1. Data collection

As shown in Figure 1, this research began with the data collection stage. At this stage, we first
determine the list of foods that will be used to develop the model in this research. With the abundance of
Indonesian food and limited time and resources, not all food can be used in this research. Therefore, in this
research, we chose 160 Indonesian foods as priorities for use. As shown in Table 1, these foods include 16
types of rice-based main dishes, 11 types of non-rice-based main dishes, 39 types of meat, chicken, egg, and
fish-based side dishes, 17 types of vegetable-based side dishes, 23 types of soups, eight complementary
foods, 19 traditional cakes, seven fruit and processed vegetables, ten drinks, and 11 snacks. Overall, the foods
studied in this research have represented all the main islands in Indonesia, starting from Sumatra, Java,
Kalimantan, Sulawesi, Bali, Nusa Tenggara, and Papua.
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Figure 1. Research method

Once a list of foods was determined, we used an online search engine to collect images of those
foods. The images obtained in this process are then divided and distributed to 10 human annotators in the
manual sorting stage to label the images with the correct food class. Because the labeling is done manually
by humans and one image is only handled by one person, there is the potential for errors in labeling food
images. However, with the large number of images collected, this will not significantly affect the
performance of the resulting model.
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Table 1. The list of Indonesian foods used in this study

Category

Food items

Rice-based main
dishes
Non-rice-based
main dishes

Meat, chicken,
egg, and fish-based
side dishes

Vegetable-based
side dishes
Soups

Complementary
foods
Traditional cakes

Fruit and processed
vegetables

Drinks

Snacks

nasi kuning, nasi tim ayam, nasi gandul, gudeg, nasi timbel, nasi liwet, nasi goreng, nasi uduk, nasi padang,
nasi pecel, nasi campur, and nasi kucing

mie kangkung, mi aceh, nasi jagung, papeda, arem-arem, lemang, bakso, tau campur, karedok, mi kocok,
bubur ayam, gado-gado, ketoprak, and kupat tahu

sate lilit, sate udang, iga penyet, ayam popo, sate klatak, sate kerang, serudnneg daging, udang balado,
dendeng balado, pallubasa, kepiting saus padang, ayam geprek, sate buntel, pecel lele, bebek goreng, babi
guling, ikan bakar, rica-rica, ayam bakar, gulai ayam, kaledo, rendang daging, opor ayam, ayam pelalah, sate
ayam, semur ayam, ayam betutu, cakalang fufu, ayam serundeng, babi panggang, sate kambing, ikan goreng,
ayam penyet, semur daging, gulai kambing, rendang ayam, ayam goreng, tengkleng, and krengsengan daging
buntil, perkedel, pepes tahu, oncom, tempe goreng, tempe bacem, terong balado, botok, tempe kering, tumis
kangkung, plecing kangkung, lawar, urap, lalapan, sambal, dabu-dabu, and bawang goreng

sayur asem, soto padang, soto ayam, soto lamongan, soto bandung, soto padang, sayu rlodeh, cap cai, rawon,
soto ceker, tongseng, soto betawi, konro, soto medan, coto makasar, empal gentong, soto tangkar, soto babat,
sop kambing, and sop saudara

bubur ketan hitam, bubur kacang hijau, selat solo, tekwan, rujak cingur, kerak telor, tinutuan, and pempek

lapis legit, roti buaya, kue ape, wajik, roti canai, bakpia pathok, kue lapis, dadar gulung, kue cucur, kue putu,
klepon, lemper, kue putu ayu, gethuk, kue nagasari, wingko, serabi, risoles, and klappertart
durian, petai, acar, rujak buah, asinan buah, asinan betawi, and kolak

soda gembira, kopi terbalik, es teler, teh talua, sekoteng, wedang jahe, kopi tubruk, bajigur, and bandrek
cilok, otak-otak, cireng, pisang goreng, tempe mendoan, singkong goreng, siomay, batagor, krupuk, kripik,
and rengginang

From this stage, 24,427 images were collected as the dataset used in this research. We divide the
dataset into training and validation sets and test sets. The training and validation sets consist of 80% images
from each food, totaling 19,475 images. While the remaining 4952 images (20%) will be used as the test set.
Some examples of images in this dataset can be seen in Figure 2.

pallubasa
e

rujak_cingur bakpia_pathok

dendeng_balado

tempe_mendoan

tekwan

Figure 2. Some examples of food images in our dataset

2.2. Model training

We build image classification models at this stage using the latest deep learning architectures. We
use 16 base deep learning architectures and their variants for a total of 67 model architectures, as shown in
Table 2. We build one classification model for each model architecture. Model initialization is done by
removing classification layers in the basic model and adding ones that suit our problem. Transfer learning is
also carried out to speed up the training process. This is done by applying the weights of the model that has
been previously trained using the ImageNet dataset to our model so that during training, we can focus on
adjusting the weights in the classification layers and subsequent fine tunings.
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Table 2. Deep learning architectures used in this study

Base architecture Variants
AlexNet [10] alexnet
ConvNeXt [11] convnext_large, convnext_base, convnext_small, convnext_tiny
DenseNet [12] densenet161, densenet201, densenet121, densenet169
EfficientNet [13] efficientnet_b1, efficientnet_b2, efficientnet_b7, efficientnet_b0, efficientnet_b5, efficientnet_b6,
efficientnet_b4, efficientnet_b3
EfficientNetV2 [14] efficientnet_v2_l, efficientnet_v2_s, efficientnet_v2_m
GoogLeNet [15] googlenet
MobileNetV3 [16] mobilenet_v3_large, mobilenet_v3_small
RegNet [17] regnet_y 3 2gf, regnet_y_16gf, regnet_x_32gf, regnet_x_16gf, regnet_x_8gf, regnet_y_32gf,

regnet_y 8gf, regnet_x_3 2gf, regnet_y_1 6gf, regnet_y 800mf, regnet_x_800mf, regnet_x_1_6gf,

regnet_y 400mf, regnet_x_400mf

ResNet [18] resnet152, resnet101, resnet34, resnet50, resnetl8

ResNeXt [19] resnextl01_64x4d, resnext101_32x8d, resnext50_32x4d

ShuffleNet v2 [20] shufflenet_v2_x2_0, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x0 5
SqueezeNet [21] squeezenetl_0, squeezenetl 1

Swin transformer [22] swin_s, swin_b, swin_t

Swin transformer V2 [23] swin_v2_b, swin_v2_s, swin_v2_t

VGG [24] vggl6_bn, vggl9 bn, vggl3 bn, vggll bn, vggl9, vggll, vggl6, vggl3

Wide ResNet [25] wide_resnet50_2, wide_resnet101 2

The training and validation set obtained in the previous stage is then separated. We use the training
set, which takes up 80% of these data or 64% of the initial data, to adjust the model weights during training.
Meanwhile, the validation set is used to determine whether the training process still needs to be continued or
can be stopped. The training process is carried out in two stages. In the first stage, using the training set, we
trained the model for a maximum of 100 epochs using a 1cycle policy [26] and a base learning rate of 0.001.

During training, we use image augmentation to provide variations in the dataset used so that the model
appears to see new data at each epoch. We use this to prevent overfitting so that the model can more accurately
predict new data it has never seen before. The types of random transformations that we use in this augmentation
process include rotation, mirroring, magnification, lighting, warping, and their combinations as shown in Table 3.

Table 3. Image augmentation parameters used in this study

Transformation Parameter Value Probability
Flip direction horizontal 0.5
Rotation max degree  10.0 0.75
Zoom range (1.0,1.1) 0.75
Brightness and contrast change  max scale 0.2 0.75
Perspective warp magnitude 0.2 0.75

At the end of each epoch, we validate the model against the validation set to obtain the validation
loss. We apply early stopping to stop the training process if the validation loss at the end of an epoch does not
improve in two consecutive epochs. After the first training stage ends, we look for a new learning rate by
training the model for several iterations with different learning rates and recording the resulting loss. The
learning rate that we use is at the midpoint of the longest valley in the learning rate vs loss curve. Next, we
repeat the previous training procedure in the same way. Based on our experiments, this method consistently
produces good results for our datasets. This training process is carried out using a system equipped with an
NVIDIA GeForce RTX 4090 GPU and 32 GB RAM. During the training process, we also monitor training
and validation loss at each epoch as well as training duration for further analysis.

2.3. Model testing

The models trained in the previous stage will be tested using our prepared test set. The test results
for each model will be summarized using a confusion matrix, as shown in Figure 3. Based on the confusion
matrix, accuracy as well as precision and recall for each type of food can be calculated using as (1) to (4):

I, TP
accuracy = % 1)
TP;
recall; = ——— 2
TPi+FN;
.. TP;
precision; = - 3)
TP{+FP;
recision;-recall;
F1score; = 2 - PrecB0MTecdt 4

precisionj+recall;
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where TP; is number of true positives for food i, FN; is number of false negatives for food i, FP; is number of
false positives for food i, i is index of the food, m is number of classes, and n is number of data.

We also calculate top-k accuracy for k=2, 3, 4, and 5 by computing the number of times the correct
label is among the top k predicted labels.

Food 1 TP, FP,/FN;  FP3/FN;  FPJFN; ... FPn/FN;
Food 2  FPy/FN, TP, FPa/FN,  FP4JFN, ... FPn/FN;
FOOd_3 FP1/FN3 FleFN3 TP3 FP4/FN3 FPm/FN3
Actual Food 4  FPy/FN;  FP,/FN;  FP3/FN4 TP, ...  FPm/FNg
Food_ m FPy/FNn, FPJFNy FP3/FNn  FP4/FNp TPm
Food_1 Food_2 Food_3 Food_ 4 ... Food_m
Prediction

Figure 3. Sample confusion matrix

3. RESULTS AND DISCUSSION
3.1. Training results

Figure 4 illustrates the relationship between the number of model parameters (the size of the
models) and the total epoch, time per epoch, and total training time. There is no clear correlation between the
number of model parameters and the total number of epochs, meaning that models with more parameters do
not necessarily train for more or fewer epochs. On the contrary, there is generally a positive correlation
between the number of model parameters and the time per epoch, indicating that larger models tend to take
longer to train for one epoch. On the other hand, although the correlation between model parameters and total
training time is positive, it is not as strong as the correlation between model parameters and time per epoch.
Hence, the total training time is not solely dependent on the number of model parameters. Other factors, such
as the model architecture, may also play a role.
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Figure 4. Relationship between the number of model parameters and total epoch, time per epoch, and total
training time. Each dot represents a model. The red line is the trend line, while red shades show the 95%
confidence interval
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Figure 5 shows the training and validation loss curve for all models. As can be seen, training and
validation loss successfully decreased, converged, and stabilized at the end of the training process for most of
our models. However, some models, such as AlexNet, ShuffleNet v2, and swin transformer V2, failed to
achieve this convergence, which indicates underfitting. Underfitting is a common issue in deep learning. In
some cases, it can be a sign of insufficient data, noisy labels, or improper hyperparameters. In this study, we
leave the investigation of underfitting for future works and focus on the models that have achieved
satisfactory performance on the validation set.
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Figure 5. Training vs validation loss

3.2. Overall model performance

Table 4 (in Appendix) shows the overall performance of our classification models. Most of the
models show good performance in classifying Indonesian food images. The best performance was
demonstrated by efficientnet_v2_I| with an accuracy of 85.44% and a top-5 accuracy of 97.84%, but other
models included in the top 10 also showed similar performance. Conversely, it is unsurprising that models
that experience underfitting during the training process, such as AlexNet, ShuffleNet v2, and swin
transformer V2, would demonstrate inferior performance compared to other models. This is particularly
evident in the case of ShuffleNet v2, which exhibits very poor performance across all its variants. They can
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only achieve accuracy between 9-13%, with top-5 accuracy between 27-34%. A plausible reason for this
could be that the ShuffleNet v2 model variants, due to their small size and emphasis on efficiency, may not
be sufficiently complex to tackle this classification problem, leading to underfitting.

When grouped and averaged based on the model architecture, as shown in Table 5, it can be seen
that, generally, swin transformer provides the best performance for all of its variants. This fact is quite
surprising because in contrast to other architectures, such as EfficientNetV2, where the latest version tends to
have better performance than the old one, swin transformer far outperforms its newer variant, swin
transformer V2, which is included among the three worst architectures. More recent model architectures such
as swin transformer, ConvNeXt, and EfficientNetV2 also tend to provide better average performance than
older models such as AlexNet, GoogleNet, and VGG. This is unsurprising, considering that newer models are
usually developed to improve on old ones and are based on more advanced techniques such as transformers,
depthwise convolution, and neural architecture search.

Table 5. Average performance of all classification models grouped by model architecture and ordered by best
accuracy. The top five values are highlighted

Model Avg Avg Avg top-2 Avg top-3 Avg top-4 Avg top- Avg
- parameters 5 accuracy/para
architecture i, accuracy accuracy accuracy accuracy

(Million) accuracy meters
Swin transformer 55.2 0.8408 0.9291 0.9534 0.9663 0.9734 0.0186
ConvNeXt 91.3 0.8375 0.9255 0.9535 0.9664 0.9742 0.0148
EfficientNetV2 64.7 0.8201 0.9103 0.9402 0.9577 0.9669 0.0199
DenseNet 17.7 0.8174 0.9128 0.9421 0.9560 0.9648 0.0571
RegNet 39.2 0.8015 0.8962 0.9305 0.9477 0.9594 0.0626
ResNet 32.8 0.7963 0.8918 0.9261 0.9443 0.9554 0.0328
ResNeXt 65.8 0.7944 0.8926 0.9276 0.9451 0.9560 0.0167
Wide ResNet 97.9 0.7934 0.8896 0.9251 0.9444 0.9557 0.0089
VGG 137.0 0.7805 0.8818 0.9203 0.9398 0.9528 0.0057
EfficientNet 24.2 0.7726 0.8753 0.9146 0.9339 0.9475 0.0612
MobileNetV3 4.0 0.7613 0.8607 0.9035 0.9247 0.9386 0.2202
SqueezeNet 1.2 0.7295 0.8432 0.8907 0.9153 0.9300 0.6079
GoogLeNet 6.6 0.7292 0.8350 0.8841 0.9124 0.9311 0.1105
Swin transformer V2 55.3 0.6882 0.8085 0.8627 0.8907 0.9111 0.0150
AlexNet 61.1 0.6454 0.7767 0.8364 0.8740 0.8964 0.0106
ShuffleNet v2 37 0.1153 0.1850 0.2399 0.2810 0.3181 0.0430

3.3. Model size vs performance

As shown in Tables 4 and 5, the architecture that provides the best performance is usually not the
most efficient, as indicated by the ratio between accuracy and the number of parameters. Figure 6 shows the
same thing. There is a tendency for accuracy to increase with an increasing number of parameters in the
model. However, this is only partially true when seen from each model's base architecture point of view.
Figure 7 shows the relationship between the number of parameters and the performance of each architecture
variant. For some architectures, such as EfficientNetV2 and ConvNeXt, their larger variants tend to perform
better than their smaller ones as measured by accuracy. However, this relationship is not always true for other
architectures, and even the opposite is true. For example, regnet y 3 2gf has better accuracy than
regnet_y 16gf and regnet y 32gf while having a much smaller number of parameters. Meanwhile,
efficientnet_b1, the second smallest variant of EfficientNet, has better accuracy than any other EfficientNet
variants.

3.4. Which architecture to choose?

As explained in the previous section, a trade-off exists between model size and performance.
Smaller models usually have lower accuracy, while larger models tend to perform better. On the other hand,
smaller models are better suited for use in mobile devices because they require less memory and storage and
can run more quickly and efficiently. Thus, we must balance this trade-off according to our needs and
constraints. When requiring the highest accuracy without space, memory, and device limitations,
efficientnet_v2_I can be used. On the other hand, if we want a small model that can run on low-end devices
and we are not too concerned about performance, squeezenetl 0, squeezenetl 1, and mobilenet_v3_small
can be used.

One approach to selecting a suitable model is to define the threshold for each criterion that we
require. For instance, in our scenario, we aim to choose a model that can operate on most devices while still
achieving reasonably good accuracy. As depicted in Figure 8, we can establish the criteria that the model
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must have an accuracy of at least 75%, and the number of parameters should not exceed 10 million. Then,
any model that falls within the purple-shaded region, such as densenetl21, efficientnet_bl, and

regnet_y 800mf, can be selected.
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Figure 6. Relationship between the number of model parameters and accuracy. Each dot represents a model.
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parameters. The purple-shaded area contains all suitable candidate models

3.5. Beyond model performance

Next, we analyze the test results of our best model, efficientnet_v2_I, to determine which types of
food are most difficult for the model to predict. We use the results to evaluate our dataset and as input for
future improvements. Table 6 shows the ten foods with the lowest F1 score. Our model generally has
difficulty classifying bandrek, sop saudara, kuluban, and sop kambing, which are characterized by an F1
score below 0.5. One thing that might explain this is that in our dataset, bandrek, a hot drink made from
ginger and brown sugar, and sop saudara, a type of beef soup, only have a few images compared to other
foods. Bandrek consists of only 53 images, while sop saudara only consists of 67 images, far below the
dataset average of 152 images for each food. Our model also often confuses bandrek with bajigur, a similar
drink with different ingredients. With the similar appearance of the two, and coupled with the smaller number
of bandrek datasets compared to bajigur, it is not surprising that our model has difficulty distinguishing
between the two. A similar case occurred with sop saudara, sop kambing, and kuluban. The first two belong
to a family of soups with thick broth, with their main ingredients partially submerged. This causes our model
to often confuse them with similar foods such as coto Makasar and konro. On the other hand, kuluban is also
often confused with urap, a food with similar ingredients and appearance.

Table 6. The performance of efficientnet v2 | model on ten foods with the worst F1 score

Food item F1score Precision  Recall
Bandrek 0.3158 0.3750 0.2727
Sop saudara 0.4211 0.6667 0.3077
Kuluban 0.4211 0.4444 0.4000
Sop kambing 0.4324 0.6154 0.3333
Soto babat 0.5185 0.5385 0.5000
Krengsengan daging ~ 0.5313 0.5484 0.5152
Gulai kambing 0.5672 0.5758 0.5588
Soto tangkar 0.5789 0.7333 0.4783
Tengkleng 0.5926 0.6667 0.5333
Ayam goreng 0.6061 0.6250 0.5882

Looking at Figure 9, we find other challenges that our model faces in classifying food images. First,
the variations in food presentation. One of sate lilit's main characteristics is using lemongrass as a skewer.
The first image in Figure 9 shows sate udang, which uses lemongrass instead of bamboo as the skewer. This
deceives our model into predicting the image as sate lilit.

Furthermore, our image sometimes consists of several food items, as shown by the second image in
Figure 9. Our model predicts the image as nasi campur, which is correct because it consists of rice and
various side dishes. On the other hand, our data verifier labeled the image as sate lilit in our dataset, which is
also not entirely wrong because one of the components in the image is sate lilit. Here, we see the limitations
of our model in making predictions. Our classification model can only provide one prediction result for each
image. Instead of classification, the more suitable tasks for images containing several labels or objects are
multilabel classification, object detection, or semantic segmentation. We will explore this in future research.
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Figure 9. Three most confused test images by efficientnet_v2_I model

4. CONCLUSION

A good food image prediction model is crucial for developing an elderly-friendly daily food
recording application in Indonesia. In this research, we introduce a novel dataset encompassing 24,427
images across 160 unique Indonesian food types, surpassing existing datasets in both variety and image
quantity. Through extensive benchmarking, we evaluated the performance of 67 models built upon 16 state-
of-the-art deep learning architectures on our curated dataset. Notably, efficientnet_v2_| emerged as the top
performer, achieving an accuracy of 85.44% and a top-5 accuracy of 97.84%, followed closely by other
models such as convnext_large and swin_s. While newer models often result in better performance due to the
use of more advanced techniques, they are not always better, as shown by swin transformer, which
outperforms its successor, swin transformer V2. Our findings highlight the trade-off between model size and
performance, where smaller models tend to exhibit lower accuracy while larger ones generally demonstrate
better performance. However, this relationship is not universally applicable across all architectures, as
demonstrated by certain smaller models outperforming their larger counterparts. Additionally, we have
discussed considerations for model selection, acknowledging challenges and limitations surrounding food
image classification. These limitations include the quantity and variability of images, food presentation
styles, image composition complexities, and constraints inherent to single-label classification models. In
future work, we will focus on expanding our dataset to encompass a wider range of Indonesian foods. To
ensure label quality, we will implement multi-annotator labelling and explore techniques like confident
learning. Furthermore, we plan to investigate the application of object detection techniques within this domain.

APPENDIX
Table 4. Performance of all classification models ordered by best accuracy. The top ten values are
highlighted
Model Variant Parameters Accurac Top-2 Top-3 Top-4 Top-5 Accuracy/
architecture (Million) Y Accuracy  Accuracy  Accuracy  Accuracy  Parameters

EfficientNet efficientnet_v2_| 1185 0.8544 0.9317 0.9566 0.9719 0.9784 0.0072
V2

ConvNeXt convnext_large 197.8 0.8538 0.9370 0.9606 0.9719 0.9774 0.0043
Swin swin_s 49.6 0.8496 0.9319 0.9556 0.9675 0.9731 0.0171
transformer

Swin swin_b 87.8 0.8479 0.9344 0.9554 0.9707 0.9764 0.0097
transformer

RegNet regnet_y 3 2gf 194 0.8389 0.9184 0.9465 0.9643 0.9733 0.0432
ConvNeXt convnext_base 88.6 0.8358 0.9241 0.9529 0.9639 0.9733 0.0094
DenseNet densenet161 28.7 0.8350 0.9255 0.9513 0.9639 0.9711 0.0291
ConvNeXt convnext_small 50.2 0.8326 0.9227 0.9507 0.9659 0.9733 0.0166
ConvNeXt convnext_tiny 28.6 0.8277 0.9184 0.9495 0.9639 0.9725 0.0289
RegNet regnet_y_16gf 83.6 0.8265 0.9107 0.9435 0.9576 0.9669 0.0099
ResNet resnet152 60.2 0.8257 0.9116 0.9426 0.9584 0.9665 0.0137
Swin swin_t 28.3 0.8249 0.9208 0.9493 0.9608 0.9707 0.0291
transformer

DenseNet densenet201 20 0.8215 0.9152 0.9424 0.9544 0.9622 0.0411
ResNet resnet101 445 0.8201 0.9097 0.9378 0.9546 0.9643 0.0184
RegNet regnet_x_32gf 107.8 0.8189 0.9055 0.9382 0.9554 0.9659 0.0076
RegNet regnet_x_16gf 54.3 0.8168 0.9073 0.9392 0.9542 0.9624 0.0150
RegNet regnet_x_8gf 39.6 0.8158 0.9067 0.9370 0.9527 0.9620 0.0206
RegNet regnet_y_32gf 145 0.8152 0.9073 0.9390 0.9558 0.9647 0.0056
EfficientNet efficientnet_v2_s 215 0.8146 0.9095 0.9384 0.9568 0.9663 0.0379
V2
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Table 4. Performance of all classification models ordered by best accuracy. The top ten values are

highlighted (continue)

Model Variant Parameters Accurac Top-2 Top-3 Top-4 Top-5 Accuracy/
architecture (Million) Y Accuracy  Accuracy  Accuracy  Accuracy  Parameters

DenseNet densenet121 8 0.8126 0.9111 0.9424 0.9574 0.9669 0.1016
VGG vggl6_bn 138.4 0.8112 0.9039 0.9376 0.9517 0.9616 0.0059
RegNet regnet_y_8gf 39.4 0.8106 0.9069 0.9400 0.9554 0.9647 0.0206
RegNet regnet_x_3_2gf 15.3 0.8080 0.9025 0.9332 0.9479 0.9610 0.0528
ResNeXt resnext101_64x4d 83.5 0.8059 0.8992 0.9338 0.9513 0.9594 0.0097
RegNet regnet_y_1_6gf 11.2 0.8055 0.9004 0.9328 0.9493 0.9610 0.0719
VGG vggl9 bn 143.7 0.8039 0.8970 0.9346 0.9511 0.9639 0.0056
VGG vggl3_bn 133.1 0.8025 0.9023 0.9340 0.9527 0.9616 0.0060
DenseNet densenet169 14.1 0.8005 0.8992 0.9324 0.9485 0.9588 0.0568
Wide ResNet wide_resnet50_2 68.9 0.7952 0.8918 0.9281 0.9461 0.9582 0.0115
VGG vggll_bn 132.9 0.7940 0.8901 0.9269 0.9439 0.9544 0.0060
ResNeXt resnext101_32x8d 88.8 0.7928 0.8936 0.9289 0.9437 0.9574 0.0089
Wide ResNet wide_resnet101_2 126.9 0.7916 0.8875 0.9221 0.9426 0.9532 0.0062
EfficientNet efficientnet_v2_m 54.1 0.7914 0.8897 0.9257 0.9445 0.9562 0.0146
V2

EfficientNet efficientnet_b1 7.8 0.7908 0.8877 0.9253 0.9404 0.9546 0.1014
ResNet resnet34 21.8 0.7904 0.8855 0.9237 0.9418 0.9548 0.0363
RegNet regnet_y_800mf 6.4 0.7902 0.8910 0.9279 0.9443 0.9560 0.1235
EfficientNet efficientnet_b2 9.1 0.7890 0.8859 0.9255 0.9429 0.9550 0.0867
EfficientNet efficientnet_b7 66.3 0.7870 0.8873 0.9212 0.9390 0.9534 0.0119
ResNeXt resnext50_32x4d 25 0.7843 0.8851 0.9202 0.9404 0.9513 0.0314
ResNet resnet50 25.6 0.7813 0.8851 0.9178 0.9366 0.9495 0.0305
RegNet regnet_x_800mf 7.3 0.7803 0.8849 0.9229 0.9404 0.9568 0.1069
EfficientNet efficientnet_b0 53 0.7793 0.8813 0.9176 0.9368 0.9483 0.1470
RegNet regnet_x_1 6gf 9.2 0.7744 0.8744 0.9134 0.9330 0.9489 0.0842
MobileNetV3  mobilenet_v3_lar 55 0.7728 0.8724 0.9130 0.9334 0.9453 0.1405

ge
EfficientNet efficientnet_b5 304 0.7722 0.8762 0.9158 0.9392 0.9501 0.0254
VGG vggl9 143.7 0.7722 0.8798 0.9144 0.9354 0.9511 0.0054
EfficientNet efficientnet_b6 43 0.7680 0.8758 0.9103 0.9277 0.9433 0.0179
RegNet regnet_y_400mf 43 0.7645 0.8667 0.9087 0.9295 0.9453 0.1778
ResNet resnet18 11.7 0.7641 0.8671 0.9083 0.9301 0.9420 0.0653
EfficientNet efficientnet_b4 19.3 0.7623 0.8621 0.9047 0.9265 0.9433 0.0395
VGG vggll 1329 0.7597 0.8601 0.9039 0.9273 0.9431 0.0057
VGG vggl6 138.4 0.7561 0.8673 0.9103 0.9321 0.9449 0.0055
RegNet regnet_x_400mf 55 0.7559 0.8639 0.9045 0.9285 0.9433 0.1374
MobileNetVV3  mobilenet_v3_sm 25 0.7498 0.8489 0.8940 0.9160 0.9319 0.2999
all

VGG vggl3 133 0.7445 0.8538 0.9006 0.9243 0.9422 0.0056
SqueezeNet squeezenetl 0 1.2 0.7347 0.8439 0.8916 0.9166 0.9328 0.6122
EfficientNet efficientnet_b3 12.2 0.7320 0.8459 0.8966 0.9190 0.9319 0.0600
GoogLeNet googlenet 6.6 0.7292 0.8350 0.8841 0.9124 0.9311 0.1105
SqueezeNet squeezenetl 1 1.2 0.7244 0.8425 0.8897 0.9140 0.9273 0.6036
Swin swin_v2_b 87.9 0.7104 0.8277 0.8805 0.9097 0.9273 0.0081
transformer

V2

Swin swin_v2_s 49.7 0.7056 0.8251 0.8790 0.9029 0.9223 0.0142
transformer

V2

swin swin_v2_t 28.4 0.6486 0.7726 0.8286 0.8595 0.8839 0.0228
transformer

v2

AlexNet alexnet 61.1 0.6454 0.7767 0.8364 0.8740 0.8964 0.0106
ShuffleNet v2  shufflenet_v2_x2 0 7.4 0.1282 0.2021 0.2559 0.3003 0.3407 0.0173
ShuffleNet v2  shufflenet v2 x1 0 2.3 0.1228 0.1961 0.2561 0.2962 0.3330 0.0534
ShuffleNet v2  shufflenet v2_x1 5 35 0.1141 0.1866 0.2399 0.2843 0.3233 0.0326
ShuffleNet v2  shufflenet v2 x0 5 14 0.0961 0.1551 0.2076 0.2431 0.2752 0.0687
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