
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 5, October 2025, pp. 4036~4049

ISSN: 2302-9285, DOI: 10.11591/eei.v14i5.8087  4036

Journal homepage: http://beei.org

An improved round robin time sharing algorithm for

optimizing data mapping in cloud computing environments

Afaf Abdelkader1, Asmaa Mohamed1, Nermeen Ghazy2
1Department of Mathematics, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt

2Department of Information System, Al-Alson Higher Institute, Cairo, Egypt

Article Info ABSTRACT

Article history:

Received Dec 25, 2023

Revised Aug 16, 2025

Accepted Sep 1, 2025

 Cloud computing in recent years has been widely applied in a wide number

of applications and fields. However, allocating tasks to virtual machines

(VMs) remains a part that needs enhancement. Task scheduling algorithms

in heterogeneous computing system are required to satisfy high-performance

data mapping requirements. The efficient allocation between resources and

tasks decreases waiting time (WT), turnaround time (TT) and maximizes

resource utilization. Various task scheduling algorithms, including round

robin (RR) and some improved RR algorithm are used for cloud

environment. A novel time-sharing algorithm (NRRTSA) is introduced,

demonstrating enhancements in WT and TT. Simulation findings indicate

that the NRRTSA algorithm effectively schedules multiple requests

(cloudlets) among several VMs, the proposed NRRTSA outperforms RR and

other algorithms in terms of the average of both TT and WT. The average

turnaround time (ATT) is enhanced with a ratio of 10.8% to 45%, the

average waiting time (AWT) is enhanced with a ratio of 10.9% to 45%.

Keywords:

Cloud computing

Novel round robin task

scheduling algorithm

Round robin

Scheduling

Time quantum

Time-sharing algorithm
This is an open access article under the CC BY-SA license.

Corresponding Author:

Nermeen Ghazy

Department of Information System, Al-Alson Higher Institute

Cairo, Egypt

Email: nermeen.a2025@gmail.com

1. INTRODUCTION

A cloud constitutes a technological framework that connects several users to multiple systems over a

network. Cloud computing employs hardware and software to deliver services via the internet. In cloud

computing, users can gain access to files and utilize apps from any internet-enabled device. In a cloud

environment, users can store and manage their data easily [1]. The components of cloud computing are

available to clients of the cloud on a demand basis. Consumers consistently seek to utilize services that are

cost-effective and uninterrupted. The three major types of components available in cloud computing are

generally platform as a service (PaaS), software as a service (SaaS), and infrastructure as a service (IaaS) [2].

To optimize a system is to modify it so that it does more of its features, produces results faster, or use less

number of resources. Samples of optimization are such as minimizing of waiting time (WT) for clients in a

bank before they're addressed by the bank worker; here, the resources are bank worker, the windows, the

clients, and the computers. Given that cloud users can access files and applications through the internet from

any platform, a primary function of the cloud is resource allocation for processing (i.e., process scheduling),

which involves assigning available resources to the necessary cloud applications online to optimize various

required parameters [3].

A primary concern in cloud computing is task scheduling. It signifies employing an efficient

algorithm to allocate client tasks to suitable and available resources. Scheduling i tasks on j resources is

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader)

4037

classified as an NP-hard issue with a runtime complexity of O(ji). Utilizing an efficient task scheduling

method is crucial for optimizing system performance. In a cloud computing system, one of the various task

scheduling strategies is classical algorithms, such as round robin (RR) [4]. The RR algorithm is a scheduling

preemptive technique. It functions effectively in time-sharing. These environments must guarantee

acceptable response times (RT) for interactive users. Time slice, or time quantum (TQ), is given to each

process in the ready queue (RQ) by the RR scheduling algorithm. Upon the expiration of the TQ, the existing

process is moved to the conclusion of this RQ. RR reduces both the average waiting time (AWT) and average

turnaround time (ATT). The TQ length is the main problem with the RR approach. Setting a TQ too short

result an excessive number of context shifts, which reduces central processing unit (CPU) efficiency. If the

TQ is excessively prolonged, the process tends to resemble the first come first served (FCFS) algorithm,

potentially resulting in increased reaction time [4]. It is essential to optimize the RR algorithm to decrease

AWT and ATT.

This paper's primary contribution is the enhancement of the RR method through the use of TQ in

cloud computing to address task scheduling issues. A unique algorithm for progressively altering TQ at

different phases of the RQ is proposed. A model of mathematics is constructed to illustrate that the suggested

method surpasses the conventional RR technique across various performance parameters, including AWT,

and ATT. The results of the experiment show that the more optimized edition of the RR algorithm surpasses

the conventional RR algorithm. This suggested technique addresses the issue by employing a progressive TQ,

which is derived from the median task burst time in a dynamic fashion. Moreover, the tasks are organized in

increasing order, and the proposed algorithm is subsequently implemented for each operation to enhance WT

and turnaround time (TT). Relative to the other RR algorithms examined in this research, the drawbacks of

the algorithms such as improved round robin (IRR) [5], round robin remaining time (RRRT), and ameliorated

round robin algorithm (ARRA) are their propensity to yield elevated AWT and ATT. The objective of this

effort is to minimize AWT and reduce ATT. This study consists of five primary sections, with section 2

dedicated to a literature review. Section 3 elucidates the proposed algorithm. The procedure outlined in

section 4. Section 5 examines the collected results and discussion, while section 6 addresses the conclusion

and future scope.

2. RELATED WORK

Cloud computing presents a vast distributed environment; many algorithms for cloud computing are

outlined above. Based Balharith and Alhaidari [4], the RR algorithm distributes CPU time to all processes

sequentially, each receiving an equal time interval referred to as TQ. A procedure is obstructed and relegated

to the end of the RQ upon the conclusion of a TQ. This procedure is applied to all subsequent processes until

their execution is complete, at which point any completed process will be removed from the RQ. RR is

effective in the cloud computing environment, enhancing the quality of service (QoS) and system

performance for clients. The efficacy of RR is entirely contingent upon the specified TQ. If TQ is chosen to

be exceedingly large, the RR algorithm will effectively resemble FCFS. If TQ is excessively small, it will

generate significant overhead, resulting in increased average waiting and TTs. Consequently, advancements

in technology have led to the establishment of numerous RR algorithms grounded in static or dynamic TQ.

The dynamic TQ may be altered either following a cycle or upon the arrival of a new process in the RQ.

Mishra and Khan [5] presented a method known as the IRR. It resembles RR with a minor

enhancement, as it chooses the first process that goes into the RQ and assigns it to the CPU for a duration of

up to one TQ. Upon the TQ's conclusion, the executing process's remaining duration is assessed; if it is less

than one TQ, the CPU is reassigned to the currently executing process for the remainder of the duration. If

not, the process will be relegated to the end of the RQ, and the subsequent process will be chosen. It performs

more effectively than RR by decreasing both WT and TT. Hiranwal [6] suggested a priority scheduling

approach predicated on the burst time of processes. It consists of two phases. The processes are organized

based on burst time, prioritizing the process with the shortest burst time. This method selects the optimal time

slicing according to the quantity of processes. When the number of processes is even, the optimal time slice

will equal the mean of the burst times of all processes. If the number of processes is odd, the optimal time

slice corresponds to the burst duration of the mid- process.

According to Sharma and Kakhani [7], the RRRT is presented. It posited that all processes arrive

concurrently in the RQ and are subsequently organized in decreasing order according to their burst time. TQ

has been calculated using the formula Σpi/2n. If the remainder time of the ongoing process is less than the

TQ, the CPU is reallocated to the presently executing process. Otherwise, the process will be relegated to the

ending of the RQ. The algorithm priority based dynamic round robin (PBDRR) is introduced, which

computes an adaptive time slicing for each process and adjusts it subsequent each execution round. The

results of experiments showed that the proposed approach surpassed alternative algorithms in decreasing

context switches, as well as in reducing both AWT and ATT in [8]. Joshi and Goswami [9] have created an

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 4036-4049

4038

optimal algorithm termed the “Modulo Based Round Robin Algorithm”. Their algorithm computed a

sophisticated TQ. Subsequently, it allocated priorities to the processes and, based on these priorities,

calculated the context switches, WT, and TT. The experimental results indicate that, regarding the number of

context shifts, as well as the AWT and ATT, the suggested approach outperforms the simple RR approach.

The approach developed in [10] rectified all the deficiencies of the RR CPU scheduling mechanism.

Furthermore, it provides an analysis that compares the proposed method with the existing RR scheduling

algorithm, emphasizing the averages of both WT and TT.

ElDahshan et al. [11] presented an algorithm that enhanced the efficacy of certain RR algorithms

and devised a TQ that attained stability for the averages of both WT and TT. Stephen et al. [12], introduced

an improved RR algorithm (RAST ERR approach) to reduce waiting and TTs by utilizing average burst time.

The suggested approach surpasses the current RR and alternative algorithms. The proposed approach in [13]

simultaneously reduces WT, TT, context shifts, and RT. The calculation of TQ use (1):

𝑇𝑖𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 (1)

where mean and median are the average and the median of execution times of processes respectively. This

algorithm reduced the WT, TT, and the number of context switches which in turn improved the system

overall performance.

The algorithm referenced in [14] is a dynamic CPU scheduling algorithm. The determination of an

appropriate TQ relies on the numeric outlier detection technique and geometric mean when the burst times of

processes entering the RQ contain outliers. The experimental results of their method were compared with

enhanced variants of RR, demonstrating that the suggested algorithm outperformed the others in terms of

AWT and ATT. Dash et al. [15] devised an optimized RR CPU scheduling algorithm with a dynamic TQ. It

employs a dynamic TQ rather than the static TQ utilized in RR scheduling. The efficacy of the suggested

strategy is empirically evaluated against traditional RR and several contemporary alternatives to RR. The

findings of our methodology demonstrated enhanced performance in AWT, ATT, and context switching.

Shafi et al. [16] introduced an innovative CPU scheduling method called amended dynamic round

robin (ADRR), based on CPU burst time. This approach intends to enhance the traditional RR scheduling

algorithm with the principle of an active TQ. It periodically modified the TQ in accordance with CPU burst

duration. They evaluated the efficacy of their proposed algorithm based on characteristics such as WT and

return time. Their simulation findings and numerical analysis in MATLAB indicate that ADRR surpasses

other established techniques. Chen et al. [17] suggested resource oriented scheduling algorithm (ROSA),

which amalgamates both proactive and reactive tactics. Simulation studies were conducted to compare ROSA

with five standard algorithms, and the findings indicate that ROSA outperforms the five algorithms in terms

of costs, deviation, resource consumption, and fairness.

Alsheikhy et al. [18] provide an enhanced dynamic RR scheduling technique utilizing a modified

quantum time. A novel enhanced dynamic RR scheduling technique was introduced to reduce AWT, ATT,

and the frequency of context shifts, thereby improving overall system performance. It also conducted a

comparative analysis of various existing RR algorithms based on AWT, ATT, and the frequency of context

switches.

Souza et al. [19] suggested an optimal RR CPU scheduling algorithm utilizing Euclidean distance.

This offers a novel technique for determining the TQ autonomously by uncovering the correlation between

the burst times of all processes in the RQ, utilizing a metric known as Euclidean distance. The similarity

metric is employed to identify patterns in the burst times of processes present in the RQ. Arunarani et al. [20]

examined unique scheduling methodologies to identify which qualities should be incorporated into a certain

system and which should be excluded. The literature review is structured according to three distinct

perspectives: methodologies, applications, and parameter-based metrics employed. Furthermore, prospective

research topics concerning cloud computing-based scheduling are delineated.

According to Rasheed et al. [21], cloud-fog infrastructure has transformed the contemporary world

by offering low latency, great efficiency, enhanced security, expedited decision-making, and reduced

operational costs. The integration of smart grids (SGs) with a cloud-fog platform provides a high-quality

source and secure generation, communication, and distribution of power, together with continuous control of

demand-supply sequences. This study proposes the use of SG practices into a cloud-fog environment to

enhance resource allocation. Six fogs are meticulously analyzed throughout various geographical locations.

Each fog is associated with clusters, and each cluster comprises 500 smart homes. To meet the energy

demands of residences, fogs accommodate multiple requests, employing various load balancing strategies on

virtual machines (VMs) to ensure optimal RT and processing time (PT). The authors propose the max-min

algorithm for load balancing with a progressive service broker strategy. Upon evaluating the proposed load

balancing algorithm against RR through simulations, we determine that the intended load balancing methods

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader)

4039

surpass RR in performance. Chen et al. [22] suggested a job scheduler utilizing a dynamic grouping

integrated neighboring search technique, which optimizes resource consumption and enhances performance

and data locality in heterogeneous computing settings.

Ghazy et al. [23] developed a modified multi-level round robin (MMRR) algorithm to substantially

improve the efficacy of the standard RR algorithm. The suggested technique determines an appropriate TQ

and generates it for each cluster based on the remainder burst time of the processes. The performance has

improved regarding latency, PT, and context switching. The results of experiments indicate that the

suggested method surpasses alternative algorithms. Jaber et al. [24] suggested an optimization model

utilizing a multi-objective improved cuckoo search algorithm (MOICS) to enhance task scheduling in a cloud

setting by automating the assignment of work to nodes in a colud. This approach diminished the processing

duration for the tasks and the total expenditure. Computational resources for professional use on nodes in a

cloud are allocated according to the proposed technique. The proposed technique reduces both cost and

makespan.

A hybrid max-min genetic algorithm (HMMGA) is presented in [25] for job scheduling and load

balancing. Each VM undergoes an initial load assessment; if the load is elevated, HMMGA is employed for

load balancing. The jobs are transferred from the overloaded VMs to the underloaded VMs utilizing the

proposed technique HMMGA. In the cloud context, HMMGA significantly mitigates the action imbalance

resulting from workload disparity. Ali et al. [26] examine studies on CPU scheduling processes to determine

the most effective algorithm. Following our examination of the RR, shortest job first, FCFS, and priority

algorithms, we discovered that numerous researchers have proposed diverse methodologies for enhancing

CPU optimization metrics, such as WT, RT, and TT; however, no single algorithm excels across all criteria.

Sharma and Sharma [27] have presented a native task scheduling strategy based on the optimization of the

RR scheme. The new approach efficiently enhances CPU utilization by actively establishing an optimal

quantum time interval. Experimental results have validated the efficacy of the proposed method compared to

conventional RR and its current optimized versions.

Krishnadoss et al. [28] introduced the CCSA, an efficient hybrid scheduling method designed to

enhance the job scheduling process. It emulates the parasitic behavior of the cuckoo and the food-gathering

habits of the crow. The crow consistently monitors its surroundings to identify a superior food source than its

current one.

In certain cases, the crow even goes so far as to seize its neighbor's food. The CCSA was developed

for use in cloud environments to choose a suitable VM for executing the job scheduling process, inspired by

the characteristics of these birds. The planned CCSA decreased both the makespan and cost. Khatri [29], the

authors endeavor to devise a novel method that enhances the traditional RR algorithm. The newly suggested

method, enhanced round robin (ERR), is compared with the conventional RR algorithm and the improved RR

algorithm, with research findings indicating it yields a minimal AWT and ATT.

Abdelkader et al. [30] presented a modified median mean round robin (MMMRR) method to

improve the efficacy of the RR algorithm. The proposed algorithm determines an optimal dynamic TQ

└(median+mean)/2┘. The system act has been improved regarding WT, TT, and context switching. The

results of experiments demonstrate that the proposed method outperoms alternative methods. An algorithm is

developed in [31] that is a highly efficient scheduling mechanism consistent with the relevant computer

paradigms. A novel job scheduling mechanism for cloud computing, termed the ARRA, is introduced. The

developed approach optimizes the TQ by averaging task burst times through both static and dynamic

methods. The investigational results indicated that the ARRA substantially surpassed alternative algorithms,

including improved RR, enhanced RR, dynamic TQ approach (ARR), and enhanced RR (RAST ERR), in

terms of AWT, ATT, and reaction time. The drawback of numerous algorithms, including RR, IRR, RRRT,

and ARRA, is that they result in elevated AWT and ATT. The suggested approach is designed to compute the

TQ, assigning it the value of the median, which represents the central execution time. Its objective is to

diminish: 1 the mean turnaround duration and the mean waiting duration. This paper primarily proposes a

novel method, termed the novel RR time sharing method in cloud computing novel round robin task

scheduling algorithm (NRRTSA), which aims to mitigate the limitations of the RR algorithm by enhancing

performance metrics through the reduction of AWT and ATT for certain algorithms. This is accomplished by

selecting an ideal TQ that minimizes WT and TT.

Zohora et al. [32] introduced an optimized NRRTSA adapted for cloud computing environments.

The implemented algorithm intends to improve efficiency by dynamically adjusting the TQ for each task

execution cycle. The NRRTSA alleviates the disadvantages linked to static TQ allocation, such as heightened

context switching and augmented ATT and AWT in cloud computing. The algorithm fundamentally depends

on its dynamic TQ computation, which considers the discrepancies among the three maximum burst times of

tasks in the RQ for each iteration. The assessment of NRRTSA was performed using three principal metrics:

ATT, AWT, and number of context switches (NCS). The results of experiments indicated that NRRTSA

significantly reduced ATT, AWT, and NCS across all assessed datasets compared to other recognized RR

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 4036-4049

4040

methodologies. The study shows that NRRTSA has enhanced performance, acceptability, and optimality in

cloud environments, owing to its ability to dynamically alter TQ, leading to improved resource usage and

reduced WT and TT for tasks.

Biswas et al. [33] presented an enhanced RR with dynamic time quantum (ERRDTQ) method for

task scheduling in cloud computing environments, specifically aimed at managing real-time processes

characterized by asymmetric burst lengths. Task scheduling is essential in cloud computing for managing the

dynamic execution of user requests and resource allocation, significantly contributing to the development of

an optimal cloud environment. Traditional RR algorithms frequently encounter difficulties in determining an

optimal TQ, resulting in elevated context switching (CS) and diminished CPU efficiency. The main goal of

ERRDTQ is to reduce AWT, minimize the number of context switches (CS), decrease ATT, and achieve a

balanced distribution of context switches. Experimental results indicate that ERRDTQ surpasses current

enhanced RR task scheduling methods in cloud computing environments, achieving a 15.77% reduction in

AWTs and a 20.68% decrease in context switching relative to five other improved RR approaches. The

research highlights its cost-effectiveness, efficiency, and feasibility in task scheduling and resource allocation

within cloud environments.

Al-Shammare and Al-Otaiby [34] implemented a RR algorithm with a smart time quantum (RR-

STQ) in a cloud computing environment, utilizing the CloudSim program. The RR-STQ showed a significant

increase in average RT, superior performance in TT, WT, and RT compared to the conventional RR

algorithm. The dynamic time quantum (DTQ) approach demonstrated superior performance compared to a

static TQ. The results suggest that integrating the RR algorithm with other scheduling models, such as

shortest job first (SJF), improves WT and TT, and that the DTQ enhances the efficacy of the RR method.

3. THE PROPOSED ALGORITHM

3.1. Problem definition

The RR scheduling algorithm is widely utilized in cloud computing as a pre-emptive scheduling

method designed for time-sharing operating systems. The users submit their requests (cloudlets) with the

assistance of the cloud management. The cloud manager aggregates service requests from clients, monitors

the amount of available VMs in the cloud, and oversees the scheduling policies implemented by the cloud.

VMs exhibit heterogeneity, characterized by varying circumstances and computational capacities. The

objective is to arrange n cloudlets on a VM to minimize the AWT and ATT.

The proposed NRRTSA go as follows: the users transmit their requests (cloudlets) and the scheduler

assign these requests to the RQ. The requests are arranged increasingly according to their burst times. The

TQ is set to be the median of the burst times of the requests found in the RQ. For calculating the median

execution time, the number of processes is tested:

− If there is an odd number of a process, the median is the middle execution time where the rank of median

is (2):

𝑟𝑎𝑛𝑘𝑚𝑒𝑑𝑖𝑎𝑛 =
𝑛+1

2
 (2)

− -If there is an even number of processes, the median will be the average of the two central execution

times. The ranks of these numbers are
𝑛

2
 and

𝑛

2
+1. TQ is then calculated using (3):

𝑇𝑄 = 𝑚𝑒𝑑𝑖𝑎𝑛 (3)

The requests are evaluated sequentially in ascending order of burst times. If its burst time is less

than or equal to TQ, it is processed in full on a VM and thereafter removed from the RQ. Alternatively,

perform the request on a VM for a duration equivalent to TQ, and thereafter assess the reminder time of the

presently executing process. If the reminder time of the presently executing process is less than or equal to

time 1 TQ, it is executed to completion and thereafter removed from the RQ. Otherwise, the leftover portion

is placed at the ending of the RQ. This procedure is reiterated until all requests are fulfilled. Upon completion

of all requests, the AWT and ATT are computed. The flowchart of the NRRTSA algorithm is illustrated in

Figure 1.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader)

4041

Figure 1. Flowchart of the NRRTSA algorithm

3.2. Pseudo code of NRRTSA

The pseudo code for the NRRSTA is given below.

1. Ready queue the requests (cloudlets) with burst time in increasing order

2. TQmedian (median for requests found in ready queue)

3. While (ready queue! = null)

4. Assign 1 TQ to each request in ready queue

5. If (burst time of request) <= TQ →execute it on a VM until completion,

 then delete it from the ready queue

6. Else

 execute the request on a VM for a time = TQ.

 If (the remaining time of the currently running request <0.5 TQ) → then

 it is executed until its completion and then it is deleted form

ready queue.

 Else

 it is put at the tail of ready queue.

7. Go to step 3

8. End While

9. Compute the average of both waiting time and turnaround time.

4. METHOD

Users submit several queries simultaneously in cloud computing. Both distinct and identical arrival

times can be accommodated by the RR job scheduling method. A variety of tasks are applied to the RR [4],

improved RR [5], RR remaining time [7], ARRA [31], and NRRTSA algorithms in order to assess the

efficiency of the suggested approach. Here we give a comparative analysis of various algorithms. The main

criteria for comparison are AWT and ATT.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 4036-4049

4042

The AWT is calculated as (4):

𝐴𝑊𝑇 = Ʃ (𝑇𝐴𝑇 𝑜𝑓 𝑃𝑖 − 𝐵𝑇 𝑜𝑓 𝑃𝑖) / 𝑁 (4)

The ATT is calculated as (5):

𝐴𝑇𝑇 = Ʃ (𝑇𝑖 − 𝐴𝑇 𝑜𝑓 𝑃𝑖) / 𝑁 (5)

Where ATT of Pi is the TT of task Pi, BT of Pi is the burst time of task Pi, Ti is the exit time for task, AT of

Pi is the arrival time of task and N is the number of all tasks. Two scenarios are utilized to test the efficiency

of the suggested algorithm.

4.1. Scenario 1 (zero arrival time)

Here, we considered the situation where all tasks are arrived at the same time. Consider a set of 6

requests with burst time shown in Table 1, assigned to the RQ. Figures 2 through 6 illustrate the performance

of the proposed algorithms in sequential order. Specifically, Figure 2 presents the RR algorithm, Figure 3

presents the IRR algorithm, Figure 4 presents the RRRT algorithm, Figure 5 presents the ARRA algorithm,

and Figure 6 presents the NRRTSA algorithm.

Table 1. Input burst time for requests
Requests Burst time (ms)

P0 8

P1 3
P2 11

P3 19

P4 2
P5 30

4.1.1. Basic round robin algorithm [4]

Enter these requests in RQ according to their given order of burst time that is P0=8, P1=3, P2=11,

P3=19, P4=2, and P5=30 with TQ=10. The Gantt chart for it is given as shown in Figure 2.

Figure 2. Gantt chart for the basic RR algorithm

Resulting AWT=24.83 ms and resulting ATT=37 ms.

4.1.2. Improved round robin algorithm [5]

Put the req`uests in the RQ in their order; P0=8, P1=3, P2=11, P3=19, P4=2, and P5=30 with

TQ=10. Each request is given a TQ to execute. The remaining time of the currently running request is

checked; if it is less than 1 TQ, the CPU is again allocated to the currently running request for the residual

time. Otherwise, the request will be put at the end of the RQ and the next request will be selected. The Gantt

chart for it is given as shown in Figure 3.

Figure 3. Gantt chart for the algorithm IRR

Resulting AWT=20.8 ms and resulting ATT=33 ms.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader)

4043

4.1.3. Round robin remaining time algorithm [7]

Put the requests in the RQ in an increasing order of burst time; p4=2, p1=3, p0=8, p2=11, p3=19,

and p5=30. The TQ is calculated according to RRRT algorithm from the following formula Σpi/2n where its

value is 6. The remaining time of the currently running request is checked where if it is <1 TQ, the CPU is

again allocated to the currently running request for the residual time. Otherwise, the request will be put at the

end of the RQ and the next request will be selected. The Gantt chart for it is given as shown in Figure 4.

Figure 4. Gantt chart for the algorithm RRRT

Resulting AWT=16.5 ms and resulting ATT=28.6 ms.

4.1.4. The ameliorated round robin algorithm [31]

Put the processes in an increasing order of burst time; p4=2, p1=3, p0=8, p2=11, p3=19 and p5=30.

The TQ that is calculated for this algorithm using the formula TQ= (3/4) *average. The Gantt chart for this

algorithm is given as shown in Figure 5.

Figure 5. Gantt chart for the algorithm ARRA

Resulting AWT=16 ms and resulting ATT=28.16 ms.

4.1.5. New time-sharing algorithm

Will enter processes RQ according to their increasing order of burst time; p4=2, p1=3, p0=8, p2=11,

p3=19, and p5=30. The TQ that is calculated for this algorithm from the formula TQ=median=10. The Gantt

chart for this algorithm is given as shown in Figure 6.

Figure 6. Gantt chart for the algorithm NRRTSA

Resulting AWT=14.5 ms and resulting ATT=26.6 ms.

A comparative study among the RR, IRR, RRRT, ARRA, and NRRTSA algorithms with respect to

TQ, AWT, and ATT as represented in Table 2. Figure 7 is comparing the performance of the aforementioned

algorithms using AWT and ATT. Figure 7 shows the comparison of AWT where the best result 14.5 ms is

obtained from NRRTSA because it gives the minimum value between all other algorithms 24.8, 20.8, 16.5,

and 16 ms of basic RR [4], IRR [5], RRRT [7], and ARRA algorithm [31] respectively.

Table 2. Obtained results for algorithms
Algorithm AWT ATT

Basic RR 24.83 37
IRR 20.8 33

RRRT 17.5 28.6

ARRA 16 28.16
NRRTSA algorithm 14.5 26.6

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 4036-4049

4044

Figure 7. AWT and ATT comparison graph (scenario 1)

Whereas a comparison of the ATT for the five algorithms with best result obtained from the proposed

NRRTSA. It obtained a value of 26.6 ms between all other values 37, 33, 28.6, and 28.16 ms of basic RR [4],

IRR [5], RRRT [7], and ARRA algorithm [31] respectively.

4.2. Scenario 2 (non-zero arrival time)

In scenario 2, the suggested technique uses a dynamic TQ since the tasks in the RQ have non-zero

arrival delays. Every round, TQ is updated. Table 3 illustrates how five requests—P1, P2, P3, P4, and P5—

are combined with CPU burst time and non-zero arrival timings. The RR, IRR, RRRT, ARRA, and the

suggested NRRTSA algorithms are displayed in Figures 8-12.

Table 3. The burst time and its arrival time for requests
Requests Arrival time (ms) Burst time (ms)

P1 0 30

P2 4 20

P3 8 50
P4 12 90

P5 16 65

- Basic RR algorithm [4]

P1 P2 P3 P4 P5 P3 P4 P5 P4

 0 30 50 8 5 120 155 170 205 235 255

Figure 8. Gantt chart for the algorithm RR

- Improved RR algorithm [5]

P1 P2 P3 P4 P4 P5 P5

 0 30 50 100 156 190 246 255

 TQ=30 TQ=56

Figure 9. Gantt chart for the algorithm improved RR

- RR remaining time algorithm [7]

24.83

37

20

33

16.5

28.6

16

421.14

14.5

26.6

0

50

AWTATT

Time (ms)Tasks vs Time

RR IRR RRRT ARRA NRRTSA

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader)

4045

P1 P2 P3 P5 P5 P4 P4

 0 30 50 100 156 165 221 255

 TQ1=30 TQ2=56

Figure 10. Gantt chart for the algorithm RRRT

- The ARRA [31]

P1 P2 P3 P3 P5 P4 P5 P4

 0 30 50 92 100 142 184 207 255

 TQ1=30 TQ2=42

Figure 11. Gantt chart for the algorithm ARRA

- New time-sharing algorithm (NRRTSA)

P1 P2 P3 P5 P5 P4 P4

 0 30 50 100 156 165 221 255

 TQ1=30 TQ2=56

Figure 12. Gantt chart for the algorithm NRRTSA

In Table 4, the RR, IRR, RRRT, ARRA, and NRRTSA algorithms are compared with regard to TQ,

AWT, and ATT. Figure 13 shows the comparison of AWT and ATT for the earlier methods in scenario 2.

Table 4. Comparative study of RR, IRR, RRRT, ARRA and NRRTSA algorithms (scenario 2)
Algorithm TQ AWT ATT

RR 35 87 138

I RR 30,56 83 117
RRRT 30,56 61 112

ARRA 30,42 73.6 120.4

NRRTSA 30,56 61 112

Figure 13. AWT and ATT comparison graph (scenario 2)

87

138

83
117

61

112
73.6

120.4

61

112

0

100

200

AWTATT

Time (ms)

Tasks vs Time

RR Improved RR RRRT ARRA NRRTSA

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 4036-4049

4046

4.3. Simulation

The benchmark was reproduced using the same parameters and different algorithms, taking into

account the task arrival time and burst time, in order to assess the efficiency of the suggested model. A C++

simulation is created for the proposed algorithm (NRRTSA), the improved RR algorithm [5], the RR

remaining time algorithm [7], and the ARRA algorithm [31]. The performance of each of these algorithms is

assessed by comparing it to the RR algorithm. With the same random data set, the model consists of a

singular resource represented by VMs. These algorithms are compared using AWT and ATT. An escalation

in time leads to an increase in cost because the average waiting and TT is dependent on the quantity of tasks

in the RQ.

5. RESULTS AND DISCUSSION

To compare the effectiveness of the algorithms, different simulations are made for them using C++

language on laptop with Intel Core i5 processor, using 2.30 GHz CPU and 4 GB RAM. Windows 10 was

utilized as the 64-bit OS for the platform.

These models consider n requests, where n ranges from 1000 to 5000. Every task arrives at the same

time, and the burst time task values are produced at random. The suggested model was validated through a

variety of tests, which are repeated again as the number of tasks increases.

Figure 14 displays the algorithms' comparison in terms of AWT. The stacked line chart is plotted for

tasks ranging from 1000 to 5000. The x-axis plots the number of tasks in the RQ, and the y-axis plots the

tasks' AWT, which is given in milliseconds. Better results are obtained by the suggested algorithm

(NRRTSA), which is followed by ARRA [31], RRRT [7], and IRR [5]. When compared to the RR algorithm,

these techniques provide a significant improvement. The performance of the algorithms enhances as the

number of tasks in the RQ grows. While the IRR [5] yields respectable improvement outcomes, ARRA [31]

and RRRT [7] yield significant outcomes when compared to RR. In contrast, the suggested method

outperforms the others in terms of improvement. In comparison to other algorithms, NRRTSA's performance

demonstrated an upward trend in AWT as the number of tasks increased. The line chart shows that the AWT

for RR is continuously rising in contrast to recommended algorithms. Figure 15 illustrates a similar pattern to

the behavior of algorithms in terms of ATT. The stacked line chart is plotted for tasks ranging from 1000 to

5000. The x-axis plots the number of tasks in the RQ, while the y-axis plots the tasks' ATT, which is given in

milliseconds. Better results are obtained by the suggested algorithm NRRTSA, which is followed by ARRA

[31], RRRT [7], and IRR [5]. When compared to the RR algorithm, these techniques provide a significant

improvement. The algorithms' performance improves with the amount of tasks in the RQ. While IRR yields

reasonable improvement outcomes, ARRA [31] and RRRT [7] yield considerable results when compared to

RR. The suggested algorithms behave similarly, although NRRTSA's performance exhibited an upward trend

in ATT when the number of tasks increased in comparison to other algorithms. The line chart shows that the

ATT for RR is continuously rising in contrast to recommended algorithms.

Figure 14. Comparative graph of awaiting time

0

50000

100000

150000

200000

1000 2000 3000 4000 5000

Ti
m

e(
m

s)

Number of tasks

NRRTSA ARRA RRRT IRR RR

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader)

4047

Figure 15. Comparative graph of ATT

6. CONCLUSION

Scheduling requests of users in cloud environment is very important and evaluated here. In this

paper, in order to enhance the cloud computing performance metrics of AWT and ATT, the NRRTSA has

been suggested. The suggested NRRTSA method demonstrated that the optimal TQ to assign to the tasks in

ascending order is (TQ=median) of the processes (requests) identified in the RQ for tasks that arrive

simultaneously and at various times. The RR, IRR, RRRT, and ARRA algorithms are used to simulate and

compare it. According to the findings of the testing, the suggested NRRTSA performs better than RR and

other algorithms in terms of the AWT and TT. A ratio of 10.9% to 45% is used to improve the AWT, and a

ratio of 10.8% to 45% is used to improve the ATT. The suggested algorithm may be used to improve other

criteria, including context switching, in subsequent research.

ACKNOWLEDGMENTS

The authors express their gratitude to the anonymous reviewers and editors for their insightful

comments.

FUNDING INFORMATION

This research received no external funding. The study was self-funded by the authors.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Afaf Abdelkader ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Asmaa Mohamed ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nermeen Ghazy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

The authors state no conflict of interest.

0

50000

100000

150000

200000

1000 2000 3000 4000 5000

Ti
m

e(
m

s)

Number of tasks

NRRTSA ARRA RRRT IRR RR

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 4036-4049

4048

DATA AVAILABILITY

Data availability is not applicable to this paper as no new data were created or analyzed in this

study.

REFERENCES
[1] N. K. Pandey, “Extended Multi Queue Job Scheduling in Cloud,” International Journal of Computer Science and Information

Security (IJCSIS), vol. 15, no. 11, pp. 1–8, 2017.
[2] P. S. and A. Kumar, “Efficient Resource Utilization in Virtual Cloud Computing Environment,” International Journal of

Computer Applications, vol. 168, no. 11, pp. 25–27, 2017, doi: 10.5120/ijca2017914541.

[3] K. Eldahshan, A. A. Elkader, and N. Ghazy, “Round Robin based Scheduling Algorithms, A Comparative Study Abstract: 2.
Static Time Quantum Algorithms Description of the Round Robin algorithms with assumed Time quantum,” Automatic Control

and System Engineering Journal, vol. 17, no. 2, pp. 29–42, 2017.

[4] T. Balharith and F. Alhaidari, “Round Robin Scheduling Algorithm in CPU and Cloud Computing: A review,” in 2nd
International Conference on Computer Applications and Information Security, ICCAIS, 2019, pp. 1-7, doi:

10.1109/CAIS.2019.8769534.

[5] M. K. Mishra and A. K. Khan, “An Improved Round Robin CPU Scheduling Algorithm,” Journal of Global Research in
Computer Science, vol. 3, no. 6, pp. 64-69, 2012.

[6] S. Hiranwal, “Adaptive Round Robin Scheduling using Shortest Burst Approach Based on Smart Time Slice,” International

Journal of Computer Science and Communication, vol. 2, no. 2, pp. 319–323, 2011.
[7] A. Sharma and G. Kakhani, “Analysis of Adaptive Round Robin Algorithm and Proposed Round Robin Remaining Time

Algorithm,” International Journal of Computer Science and Mobile Computing, vol. 4, no. 12, pp. 139–147, 2015.
[8] R. Mohanty, H. S., K. Patwari, M. Dash, and L. Prasanna, “Priority Based Dynamic Round Robin (PBDRR) Algorithm with

Intelligent Time Slice for Soft Real Time Systems,” International Journal of Advanced Computer Science and Applications, vol.

2, no. 2, 2011, doi: 10.14569/ijacsa.2011.020209.
[9] A. Joshi and S. Goswami, “Modified Round Robin Algorithm by Using Priority Scheduling,” Advances in Computational

Sciences and Technology, vol. 10, no. 6, pp. 1543–1549, 2017.

[10] S. Zouaoui, L. Boussaid, and A. Mtibaa, “Priority based round robin (PBRR) CPU scheduling algorithm,” International Journal
of Electrical and Computer Engineering, vol. 9, no. 1, pp. 190–202, 2019, doi: 10.11591/ijece.v9i1.pp190-202.

[11] K. ElDahshan, A. Abd, and N. Ghazy, “Achieving Stability in the Round Robin Algorithm,” International Journal of Computer

Applications, vol. 172, no. 6, pp. 15–20, 2017, doi: 10.5120/ijca2017915161.
[12] A. Stephen, B. H. Shanthan, and D. Ravindran, “Enhanced Round Robin Algorithm for Cloud Computing,” International Journal

of Scientific Research in Computer Science Applications and Management Studies, vol. 7, no. 4, pp. 1–5, 2018.

[13] B. Fataniya and M. Patel, “Dynamic Time Quantum Approach to Improve Round Robin Scheduling Algorithm in Cloud
Environment,” International Journal of Scientific Research in Science, Engineering and Technology, vol. 4, no. 4, pp. 963–969,

2018.

[14] T. O. Omotehinwa, I. Azeez, and E. O. Oyekanmi, “An Improved Round Robin CPU Scheduling Algorithm for Asymmetrically
Distributed Burst Times,” Africa Journal Management Information System, vol. 1, no. 4, pp. 50–68, 2019.

[15] A. R. Dash, S. K. Sahu, and S. K. Samantra, “An Optimized Round Robin CPU Scheduling Algorithm with Dynamic Time

Quantum,” International Journal of Computer Science, Engineering and Information Technology, vol. 5, no. 1, pp. 7–26, 2015,
doi: 10.5121/ijcseit.2015.5102.

[16] U. Shafi et al., “A novel amended dynamic round robin scheduling algorithm for timeshared systems,” International Arab Journal

of Information Technology, vol. 17, no. 1, pp. 90–98, 2020, doi: 10.34028/iajit/17/1/11.
[17] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty-Aware Online Scheduling for Real-Time Workflows in Cloud Service

Environment,” IEEE Transactions on Services Computing, vol. 14, no. 4, pp. 1167–1178, 2021, doi:

10.1109/TSC.2018.2866421..
[18] A. Alsheikhy, R. Ammar, and R. Elfouly, “An improved dynamic Round Robin scheduling algorithm based on a variant quantum

time,” in 2015 11th International Computer Engineering Conference: Today Information Society What’s Next?, ICENCO, IEEE,

Dec. 2016, pp. 98–104, doi: 10.1109/ICENCO.2015.7416332.
[19] M. D. Souza, F. Caiero, and S. Surlakar, “Optimal Round Robin CPU Scheduling Algorithm using Euclidean Distance,”

International Journal of Computer Applications, vol. 96, no. 18, pp. 8–11, 2014, doi: 10.5120/16892-6930.

[20] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Future
Generation Computer Systems, vol. 91, pp. 407–415, 2019, doi: 10.1016/j.future.2018.09.014.

[21] S. Rasheed, N. Javaid, S. Rehman, K. Hassan, F. Zafar, and M. Naeem, “A Cloud-Fog Based Smart Grid Model Using Max-Min

Scheduling Algorithm for Efficient Resource Allocation,” Lecture Notes on Data Engineering and Communications
Technologies, vol. 22, pp. 273–285, 2019, doi: 10.1007/978-3-319-98530-5_23.

[22] C. T. Chen, L. J. Hung, S. Y. Hsieh, R. Buyya, and A. Y. Zomaya, “Heterogeneous Job Allocation Scheduler for Hadoop

MapReduce Using Dynamic Grouping Integrated Neighboring Search,” IEEE Transactions on Cloud Computing, vol. 8, no. 1,
pp. 193–206, 2020, doi: 10.1109/TCC.2017.2748586.

[23] N. Ghazy, A. Abdelkader, M. S. Zaki, and K. A. E. Dahshan, “A New Round Robin Algorithm for Task Scheduling in Real-time

System,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 5, pp. 691–704, 2022, doi:
10.22266/ijies2022.1031.59.

[24] S. Jaber, Y. Ali, and N. Ibrahim, “An Automated Task Scheduling Model Using a Multi-objective Improved Cuckoo Optimization

Algorithm,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 1, pp. 295–304, 2022, doi:
10.22266/IJIES2022.0228.27.

[25] J. Varghese and J. Sreenivasaiah, “Entropy Based Monotonic Task Scheduling and Dynamic Resource Mapping in Federated

Cloud Environment,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 1, pp. 235–250, 2022, doi:
10.22266/IJIES2022.0228.22.

[26] S. M. Ali, R. F. Alshahrani, A. H. Hadadi, T. A. Alghamdi, F. H. Almuhsin, and E. E. El-Sharawy, “A review on the cpu

scheduling algorithms: comparative study,” IJCSNS International Journal of Computer Science and Network Security, vol. 21, no.
1, pp. 19–26, 2021, doi: 10.22937/IJCSNS.2021.21.1.4.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader)

4049

[27] P. Sharma and Y. M. Sharma, “An Efficient Customized Round Robin Algorithm for CPU Scheduling,” in Lecture Notes in
Networks and Systems, pp. 623–629, 2021, doi: 10.1007/978-981-15-9689-6_68.

[28] P. Krishnadoss, G. Natesan, J. Ali, M. Nanjappan, P. Krishnamoorthy, and V. K. Poornachary, “CCSA: Hybrid Cuckoo Crow

Search Algorithm for Task Scheduling in Cloud Computing,” International Journal of Intelligent Engineering and Systems, vol.
14, no. 4, pp. 241–250, 2021, doi: 10.22266/ijies2021.0831.22.

[29] J. Khatri, “An Enhanced Round Robin CPU Scheduling Algorithm,” IOSR Journal of Computer Engineering, vol. 18, no. 04, pp.

20–24, 2016, doi: 10.9790/0661-1804022024.
[30] A. Abdelkader, N. Ghazy, M. S. Zaki, and K. A. E. Dahshan, “MMMRR: a Modified Median Mean Round Robin Algorithm for

Task Scheduling,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 6, pp. 599–608, 2022, doi:

10.22266/ijies2022.1231.53.
[31] N. Ghazy, A. Abdelkader, M. S. Zaki, and K. A. E. Dahshan, “An ameliorated Round Robin algorithm in the cloud computing for

task scheduling,” Bulletin of Electrical Engineering and Informatics, vol. 12, no. 2, pp. 1103–1114, 2023, doi:

10.11591/eei.v12i2.4524.
[32] M. F. Zohora, F. Farhin, and M. S. Kaiser, “An enhanced round robin using dynamic time quantum for real-time asymmetric burst

length processes in cloud computing environment,” PLoS ONE, vol. 19, no. 8, pp. 1-18, Aug. 2024, doi:

10.1371/journal.pone.0304517.
[33] D. Biswas, M. Samsuddoha, M. R. A. Asif, and M. M. Ahmed, “Optimized Round Robin Scheduling Algorithm Using Dynamic

Time Quantum Approach in Cloud Computing Environment,” International Journal of Intelligent Systems and Applications, vol.

15, no. 1, pp. 22–34, 2023, doi: 10.5815/ijisa.2023.01.03.
[34] H. Al-Shammare and N. Al-Otaiby, “An Implementation of a New Proposed Round-Robin Algorithm with Smart Time Quantum

in Cloud Computing Environment,” in Proceedings - 2022 14th IEEE International Conference on Computational Intelligence

and Communication Networks, CICN 2022, 2022, pp. 289–296, doi: 10.1109/CICN56167.2022.10008330.

BIOGRAPHIES OF AUTHORS

Afaf Abdelkader received the M.Sc. degree in Computer science from

Department of Mathematics, Faculty of Science, Al-Azhar University, Egypt, in 2006 and

Ph.D. in Computer Science from Department of Mathematics, Faculty of Science, Al-Azhar

University, Egypt in 2011. She is currently an associate professor at Al-Azhar University. She

can be contacted at email: afaf2azhar@azhar.edu.eg.

Asmaa Mohamed received the B.Sc. degree in science, in 2011, the M.Sc. degree

in computer science, in 2017, and the Ph.D. degree in computer science, in 2023. She is

currently an assistant professor in computer science at the Department of Mathematics,

Faculty of Science, Al-Azhar University, Cairo, Egypt. She has published several research

papers in the field of AI, machine learning, IoT, and data mining. She can be contacted at

email: asmaamohamed89@azhar.edu.eg.

Nermeen Ghazy received the M.Sc. degree in Computer science from

Department of Mathematics, Faculty of Science, Al-Azhar University, Egypt, in 2017 and

Ph.D. in Computer Science from Department of Mathematics, Faculty of Science, Al-Azhar

University, Egypt in 2023. She is currently an assistant professor at Al-Alsun higher institute.

She can be contacted at email: nermeen.a2025@gmail.com.

mailto:afaf2azhar@azhar.edu.eg
mailto:asmaamohamed89@azhar.edu.eg.
https://orcid.org/0000-0001-6269-7550
https://scholar.google.com/citations?user=ocJTUqoAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57855182700
https://orcid.org/0000-0003-4314-463X
https://scholar.google.com/citations?user=tpL_fNEAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=59900618200
https://www.webofscience.com/wos/author/record/ABS-4410-2022
https://orcid.org/0000-0003-4890-5784
https://scholar.google.com/citations?view_op=list_works&hl=en&user=8KuzojkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57855392200
https://www.webofscience.com/wos/author/record/GPK-5390-2022

