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 Cloud computing in recent years has been widely applied in a wide number 

of applications and fields. However, allocating tasks to virtual machines 

(VMs) remains a part that needs enhancement. Task scheduling algorithms 

in heterogeneous computing system are required to satisfy high-performance 

data mapping requirements. The efficient allocation between resources and 

tasks decreases waiting time (WT), turnaround time (TT) and maximizes 

resource utilization. Various task scheduling algorithms, including round 

robin (RR) and some improved RR algorithm are used for cloud 

environment. A novel time-sharing algorithm (NRRTSA) is introduced, 

demonstrating enhancements in WT and TT. Simulation findings indicate 

that the NRRTSA algorithm effectively schedules multiple requests 

(cloudlets) among several VMs, the proposed NRRTSA outperforms RR and 

other algorithms in terms of the average of both TT and WT. The average 

turnaround time (ATT) is enhanced with a ratio of 10.8% to 45%, the 

average waiting time (AWT) is enhanced with a ratio of 10.9% to 45%. 
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1. INTRODUCTION 

A cloud constitutes a technological framework that connects several users to multiple systems over a 

network. Cloud computing employs hardware and software to deliver services via the internet. In cloud 

computing, users can gain access to files and utilize apps from any internet-enabled device. In a cloud 

environment, users can store and manage their data easily [1]. The components of cloud computing are 

available to clients of the cloud on a demand basis. Consumers consistently seek to utilize services that are 

cost-effective and uninterrupted. The three major types of components available in cloud computing are 

generally platform as a service (PaaS), software as a service (SaaS), and infrastructure as a service (IaaS) [2]. 

To optimize a system is to modify it so that it does more of its features, produces results faster, or use less 

number of resources. Samples of optimization are such as minimizing of waiting time (WT) for clients in a 

bank before they're addressed by the bank worker; here, the resources are bank worker, the windows, the 

clients, and the computers. Given that cloud users can access files and applications through the internet from 

any platform, a primary function of the cloud is resource allocation for processing (i.e., process scheduling), 

which involves assigning available resources to the necessary cloud applications online to optimize various 

required parameters [3]. 

A primary concern in cloud computing is task scheduling. It signifies employing an efficient 

algorithm to allocate client tasks to suitable and available resources. Scheduling i tasks on j resources is 
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classified as an NP-hard issue with a runtime complexity of O(ji). Utilizing an efficient task scheduling 

method is crucial for optimizing system performance. In a cloud computing system, one of the various task 

scheduling strategies is classical algorithms, such as round robin (RR) [4]. The RR algorithm is a scheduling 

preemptive technique. It functions effectively in time-sharing. These environments must guarantee 

acceptable response times (RT) for interactive users. Time slice, or time quantum (TQ), is given to each 

process in the ready queue (RQ) by the RR scheduling algorithm. Upon the expiration of the TQ, the existing 

process is moved to the conclusion of this RQ. RR reduces both the average waiting time (AWT) and average 

turnaround time (ATT). The TQ length is the main problem with the RR approach. Setting a TQ too short 

result an excessive number of context shifts, which reduces central processing unit (CPU) efficiency. If the 

TQ is excessively prolonged, the process tends to resemble the first come first served (FCFS) algorithm, 

potentially resulting in increased reaction time [4]. It is essential to optimize the RR algorithm to decrease 

AWT and ATT. 

This paper's primary contribution is the enhancement of the RR method through the use of TQ in 

cloud computing to address task scheduling issues. A unique algorithm for progressively altering TQ at 

different phases of the RQ is proposed. A model of mathematics is constructed to illustrate that the suggested 

method surpasses the conventional RR technique across various performance parameters, including AWT, 

and ATT. The results of the experiment show that the more optimized edition of the RR algorithm surpasses 

the conventional RR algorithm. This suggested technique addresses the issue by employing a progressive TQ, 

which is derived from the median task burst time in a dynamic fashion. Moreover, the tasks are organized in 

increasing order, and the proposed algorithm is subsequently implemented for each operation to enhance WT 

and turnaround time (TT). Relative to the other RR algorithms examined in this research, the drawbacks of 

the algorithms such as improved round robin (IRR) [5], round robin remaining time (RRRT), and ameliorated 

round robin algorithm (ARRA) are their propensity to yield elevated AWT and ATT. The objective of this 

effort is to minimize AWT and reduce ATT. This study consists of five primary sections, with section 2 

dedicated to a literature review. Section 3 elucidates the proposed algorithm. The procedure outlined in 

section 4. Section 5 examines the collected results and discussion, while section 6 addresses the conclusion 

and future scope. 

 

 

2. RELATED WORK 

Cloud computing presents a vast distributed environment; many algorithms for cloud computing are 

outlined above. Based Balharith and Alhaidari [4], the RR algorithm distributes CPU time to all processes 

sequentially, each receiving an equal time interval referred to as TQ. A procedure is obstructed and relegated 

to the end of the RQ upon the conclusion of a TQ. This procedure is applied to all subsequent processes until 

their execution is complete, at which point any completed process will be removed from the RQ. RR is 

effective in the cloud computing environment, enhancing the quality of service (QoS) and system 

performance for clients. The efficacy of RR is entirely contingent upon the specified TQ. If TQ is chosen to 

be exceedingly large, the RR algorithm will effectively resemble FCFS. If TQ is excessively small, it will 

generate significant overhead, resulting in increased average waiting and TTs. Consequently, advancements 

in technology have led to the establishment of numerous RR algorithms grounded in static or dynamic TQ. 

The dynamic TQ may be altered either following a cycle or upon the arrival of a new process in the RQ. 

Mishra and Khan [5] presented a method known as the IRR. It resembles RR with a minor 

enhancement, as it chooses the first process that goes into the RQ and assigns it to the CPU for a duration of 

up to one TQ. Upon the TQ's conclusion, the executing process's remaining duration is assessed; if it is less 

than one TQ, the CPU is reassigned to the currently executing process for the remainder of the duration. If 

not, the process will be relegated to the end of the RQ, and the subsequent process will be chosen. It performs 

more effectively than RR by decreasing both WT and TT. Hiranwal [6] suggested a priority scheduling 

approach predicated on the burst time of processes. It consists of two phases. The processes are organized 

based on burst time, prioritizing the process with the shortest burst time. This method selects the optimal time 

slicing according to the quantity of processes. When the number of processes is even, the optimal time slice 

will equal the mean of the burst times of all processes. If the number of processes is odd, the optimal time 

slice corresponds to the burst duration of the mid- process. 

According to Sharma and Kakhani [7], the RRRT is presented. It posited that all processes arrive 

concurrently in the RQ and are subsequently organized in decreasing order according to their burst time. TQ 

has been calculated using the formula Σpi/2n. If the remainder time of the ongoing process is less than the 

TQ, the CPU is reallocated to the presently executing process. Otherwise, the process will be relegated to the 

ending of the RQ. The algorithm priority based dynamic round robin (PBDRR) is introduced, which 

computes an adaptive time slicing for each process and adjusts it subsequent each execution round. The 

results of experiments showed that the proposed approach surpassed alternative algorithms in decreasing 

context switches, as well as in reducing both AWT and ATT in [8]. Joshi and Goswami [9] have created an 
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optimal algorithm termed the “Modulo Based Round Robin Algorithm”. Their algorithm computed a 

sophisticated TQ. Subsequently, it allocated priorities to the processes and, based on these priorities, 

calculated the context switches, WT, and TT. The experimental results indicate that, regarding the number of 

context shifts, as well as the AWT and ATT, the suggested approach outperforms the simple RR approach. 

The approach developed in [10] rectified all the deficiencies of the RR CPU scheduling mechanism. 

Furthermore, it provides an analysis that compares the proposed method with the existing RR scheduling 

algorithm, emphasizing the averages of both WT and TT. 

ElDahshan et al. [11] presented an algorithm that enhanced the efficacy of certain RR algorithms 

and devised a TQ that attained stability for the averages of both WT and TT. Stephen et al. [12], introduced 

an improved RR algorithm (RAST ERR approach) to reduce waiting and TTs by utilizing average burst time. 

The suggested approach surpasses the current RR and alternative algorithms. The proposed approach in [13] 

simultaneously reduces WT, TT, context shifts, and RT. The calculation of TQ use (1): 

 

𝑇𝑖𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 (1) 

 

where mean and median are the average and the median of execution times of processes respectively. This 

algorithm reduced the WT, TT, and the number of context switches which in turn improved the system 

overall performance. 

The algorithm referenced in [14] is a dynamic CPU scheduling algorithm. The determination of an 

appropriate TQ relies on the numeric outlier detection technique and geometric mean when the burst times of 

processes entering the RQ contain outliers. The experimental results of their method were compared with 

enhanced variants of RR, demonstrating that the suggested algorithm outperformed the others in terms of 

AWT and ATT. Dash et al. [15] devised an optimized RR CPU scheduling algorithm with a dynamic TQ. It 

employs a dynamic TQ rather than the static TQ utilized in RR scheduling. The efficacy of the suggested 

strategy is empirically evaluated against traditional RR and several contemporary alternatives to RR. The 

findings of our methodology demonstrated enhanced performance in AWT, ATT, and context switching. 

Shafi et al. [16] introduced an innovative CPU scheduling method called amended dynamic round 

robin (ADRR), based on CPU burst time. This approach intends to enhance the traditional RR scheduling 

algorithm with the principle of an active TQ. It periodically modified the TQ in accordance with CPU burst 

duration. They evaluated the efficacy of their proposed algorithm based on characteristics such as WT and 

return time. Their simulation findings and numerical analysis in MATLAB indicate that ADRR surpasses 

other established techniques. Chen et al. [17] suggested resource oriented scheduling algorithm (ROSA), 

which amalgamates both proactive and reactive tactics. Simulation studies were conducted to compare ROSA 

with five standard algorithms, and the findings indicate that ROSA outperforms the five algorithms in terms 

of costs, deviation, resource consumption, and fairness. 

Alsheikhy et al. [18] provide an enhanced dynamic RR scheduling technique utilizing a modified 

quantum time. A novel enhanced dynamic RR scheduling technique was introduced to reduce AWT, ATT, 

and the frequency of context shifts, thereby improving overall system performance. It also conducted a 

comparative analysis of various existing RR algorithms based on AWT, ATT, and the frequency of context 

switches. 

Souza et al. [19] suggested an optimal RR CPU scheduling algorithm utilizing Euclidean distance. 

This offers a novel technique for determining the TQ autonomously by uncovering the correlation between 

the burst times of all processes in the RQ, utilizing a metric known as Euclidean distance. The similarity 

metric is employed to identify patterns in the burst times of processes present in the RQ. Arunarani et al. [20] 

examined unique scheduling methodologies to identify which qualities should be incorporated into a certain 

system and which should be excluded. The literature review is structured according to three distinct 

perspectives: methodologies, applications, and parameter-based metrics employed. Furthermore, prospective 

research topics concerning cloud computing-based scheduling are delineated. 

According to Rasheed et al. [21], cloud-fog infrastructure has transformed the contemporary world 

by offering low latency, great efficiency, enhanced security, expedited decision-making, and reduced 

operational costs. The integration of smart grids (SGs) with a cloud-fog platform provides a high-quality 

source and secure generation, communication, and distribution of power, together with continuous control of 

demand-supply sequences. This study proposes the use of SG practices into a cloud-fog environment to 

enhance resource allocation. Six fogs are meticulously analyzed throughout various geographical locations. 

Each fog is associated with clusters, and each cluster comprises 500 smart homes. To meet the energy 

demands of residences, fogs accommodate multiple requests, employing various load balancing strategies on 

virtual machines (VMs) to ensure optimal RT and processing time (PT). The authors propose the max-min 

algorithm for load balancing with a progressive service broker strategy. Upon evaluating the proposed load 

balancing algorithm against RR through simulations, we determine that the intended load balancing methods 
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surpass RR in performance. Chen et al. [22] suggested a job scheduler utilizing a dynamic grouping 

integrated neighboring search technique, which optimizes resource consumption and enhances performance 

and data locality in heterogeneous computing settings. 

Ghazy et al. [23] developed a modified multi-level round robin (MMRR) algorithm to substantially 

improve the efficacy of the standard RR algorithm. The suggested technique determines an appropriate TQ 

and generates it for each cluster based on the remainder burst time of the processes. The performance has 

improved regarding latency, PT, and context switching. The results of experiments indicate that the 

suggested method surpasses alternative algorithms. Jaber et al. [24] suggested an optimization model 

utilizing a multi-objective improved cuckoo search algorithm (MOICS) to enhance task scheduling in a cloud 

setting by automating the assignment of work to nodes in a colud. This approach diminished the processing 

duration for the tasks and the total expenditure. Computational resources for professional use on nodes in a 

cloud are allocated according to the proposed technique. The proposed technique reduces both cost and 

makespan. 

A hybrid max-min genetic algorithm (HMMGA) is presented in [25] for job scheduling and load 

balancing. Each VM undergoes an initial load assessment; if the load is elevated, HMMGA is employed for 

load balancing. The jobs are transferred from the overloaded VMs to the underloaded VMs utilizing the 

proposed technique HMMGA. In the cloud context, HMMGA significantly mitigates the action imbalance 

resulting from workload disparity. Ali et al. [26] examine studies on CPU scheduling processes to determine 

the most effective algorithm. Following our examination of the RR, shortest job first, FCFS, and priority 

algorithms, we discovered that numerous researchers have proposed diverse methodologies for enhancing 

CPU optimization metrics, such as WT, RT, and TT; however, no single algorithm excels across all criteria. 

Sharma and Sharma [27] have presented a native task scheduling strategy based on the optimization of the 

RR scheme. The new approach efficiently enhances CPU utilization by actively establishing an optimal 

quantum time interval. Experimental results have validated the efficacy of the proposed method compared to 

conventional RR and its current optimized versions. 

Krishnadoss et al. [28] introduced the CCSA, an efficient hybrid scheduling method designed to 

enhance the job scheduling process. It emulates the parasitic behavior of the cuckoo and the food-gathering 

habits of the crow. The crow consistently monitors its surroundings to identify a superior food source than its 

current one. 

In certain cases, the crow even goes so far as to seize its neighbor's food. The CCSA was developed 

for use in cloud environments to choose a suitable VM for executing the job scheduling process, inspired by 

the characteristics of these birds. The planned CCSA decreased both the makespan and cost. Khatri [29], the 

authors endeavor to devise a novel method that enhances the traditional RR algorithm. The newly suggested 

method, enhanced round robin (ERR), is compared with the conventional RR algorithm and the improved RR 

algorithm, with research findings indicating it yields a minimal AWT and ATT. 

Abdelkader et al. [30] presented a modified median mean round robin (MMMRR) method to 

improve the efficacy of the RR algorithm. The proposed algorithm determines an optimal dynamic TQ 

└(median+mean)/2┘. The system act has been improved regarding WT, TT, and context switching. The 

results of experiments demonstrate that the proposed method outperoms alternative methods. An algorithm is 

developed in [31] that is a highly efficient scheduling mechanism consistent with the relevant computer 

paradigms. A novel job scheduling mechanism for cloud computing, termed the ARRA, is introduced. The 

developed approach optimizes the TQ by averaging task burst times through both static and dynamic 

methods. The investigational results indicated that the ARRA substantially surpassed alternative algorithms, 

including improved RR, enhanced RR, dynamic TQ approach (ARR), and enhanced RR (RAST ERR), in 

terms of AWT, ATT, and reaction time. The drawback of numerous algorithms, including RR, IRR, RRRT, 

and ARRA, is that they result in elevated AWT and ATT. The suggested approach is designed to compute the 

TQ, assigning it the value of the median, which represents the central execution time. Its objective is to 

diminish: 1 the mean turnaround duration and the mean waiting duration. This paper primarily proposes a 

novel method, termed the novel RR time sharing method in cloud computing novel round robin task 

scheduling algorithm (NRRTSA), which aims to mitigate the limitations of the RR algorithm by enhancing 

performance metrics through the reduction of AWT and ATT for certain algorithms. This is accomplished by 

selecting an ideal TQ that minimizes WT and TT. 

Zohora et al. [32] introduced an optimized NRRTSA adapted for cloud computing environments. 

The implemented algorithm intends to improve efficiency by dynamically adjusting the TQ for each task 

execution cycle. The NRRTSA alleviates the disadvantages linked to static TQ allocation, such as heightened 

context switching and augmented ATT and AWT in cloud computing. The algorithm fundamentally depends 

on its dynamic TQ computation, which considers the discrepancies among the three maximum burst times of 

tasks in the RQ for each iteration. The assessment of NRRTSA was performed using three principal metrics: 

ATT, AWT, and number of context switches (NCS). The results of experiments indicated that NRRTSA 

significantly reduced ATT, AWT, and NCS across all assessed datasets compared to other recognized RR 
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methodologies. The study shows that NRRTSA has enhanced performance, acceptability, and optimality in 

cloud environments, owing to its ability to dynamically alter TQ, leading to improved resource usage and 

reduced WT and TT for tasks. 

Biswas et al. [33] presented an enhanced RR with dynamic time quantum (ERRDTQ) method for 

task scheduling in cloud computing environments, specifically aimed at managing real-time processes 

characterized by asymmetric burst lengths. Task scheduling is essential in cloud computing for managing the 

dynamic execution of user requests and resource allocation, significantly contributing to the development of 

an optimal cloud environment. Traditional RR algorithms frequently encounter difficulties in determining an 

optimal TQ, resulting in elevated context switching (CS) and diminished CPU efficiency. The main goal of 

ERRDTQ is to reduce AWT, minimize the number of context switches (CS), decrease ATT, and achieve a 

balanced distribution of context switches. Experimental results indicate that ERRDTQ surpasses current 

enhanced RR task scheduling methods in cloud computing environments, achieving a 15.77% reduction in 

AWTs and a 20.68% decrease in context switching relative to five other improved RR approaches. The 

research highlights its cost-effectiveness, efficiency, and feasibility in task scheduling and resource allocation 

within cloud environments. 

Al-Shammare and Al-Otaiby [34] implemented a RR algorithm with a smart time quantum (RR-

STQ) in a cloud computing environment, utilizing the CloudSim program. The RR-STQ showed a significant 

increase in average RT, superior performance in TT, WT, and RT compared to the conventional RR 

algorithm. The dynamic time quantum (DTQ) approach demonstrated superior performance compared to a 

static TQ. The results suggest that integrating the RR algorithm with other scheduling models, such as 

shortest job first (SJF), improves WT and TT, and that the DTQ enhances the efficacy of the RR method. 

 

 

3. THE PROPOSED ALGORITHM 

3.1.  Problem definition 

The RR scheduling algorithm is widely utilized in cloud computing as a pre-emptive scheduling 

method designed for time-sharing operating systems. The users submit their requests (cloudlets) with the 

assistance of the cloud management. The cloud manager aggregates service requests from clients, monitors 

the amount of available VMs in the cloud, and oversees the scheduling policies implemented by the cloud. 

VMs exhibit heterogeneity, characterized by varying circumstances and computational capacities. The 

objective is to arrange n cloudlets on a VM to minimize the AWT and ATT. 

The proposed NRRTSA go as follows: the users transmit their requests (cloudlets) and the scheduler 

assign these requests to the RQ. The requests are arranged increasingly according to their burst times. The 

TQ is set to be the median of the burst times of the requests found in the RQ. For calculating the median 

execution time, the number of processes is tested:  

− If there is an odd number of a process, the median is the middle execution time where the rank of median 

is (2): 

 

𝑟𝑎𝑛𝑘𝑚𝑒𝑑𝑖𝑎𝑛 =
𝑛+1

2
 (2) 

 

− -If there is an even number of processes, the median will be the average of the two central execution 

times. The ranks of these numbers are 
𝑛

2
 and 

𝑛

2
+1. TQ is then calculated using (3): 

 

𝑇𝑄 = 𝑚𝑒𝑑𝑖𝑎𝑛 (3) 

 

The requests are evaluated sequentially in ascending order of burst times. If its burst time is less 

than or equal to TQ, it is processed in full on a VM and thereafter removed from the RQ. Alternatively, 

perform the request on a VM for a duration equivalent to TQ, and thereafter assess the reminder time of the 

presently executing process. If the reminder time of the presently executing process is less than or equal to 

time 1 TQ, it is executed to completion and thereafter removed from the RQ. Otherwise, the leftover portion 

is placed at the ending of the RQ. This procedure is reiterated until all requests are fulfilled. Upon completion 

of all requests, the AWT and ATT are computed. The flowchart of the NRRTSA algorithm is illustrated in 

Figure 1. 
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Figure 1. Flowchart of the NRRTSA algorithm 

 

 

3.2.  Pseudo code of NRRTSA 

The pseudo code for the NRRSTA is given below. 

 
1. Ready queue the requests (cloudlets) with burst time in increasing order 

2. TQmedian (median for requests found in ready queue) 

3. While (ready queue! = null) 

4.     Assign 1 TQ to each request in ready queue  

5.           If   (burst time of request) <= TQ →execute it on a VM until completion,    

                    then delete it from the ready queue  

6.  Else  

                   execute the request on a VM for a time = TQ.  

                   If (the remaining time of the currently running request <0.5 TQ) → then             

                       it is executed until its completion and then it is deleted form 

ready queue.  

                   Else 

                       it is put at the tail of ready queue. 

7. Go to step 3 

8. End While 

9. Compute the average of both waiting time and turnaround time. 

 

 

4. METHOD 

Users submit several queries simultaneously in cloud computing. Both distinct and identical arrival 

times can be accommodated by the RR job scheduling method. A variety of tasks are applied to the RR [4], 

improved RR [5], RR remaining time [7], ARRA [31], and NRRTSA algorithms in order to assess the 

efficiency of the suggested approach. Here we give a comparative analysis of various algorithms. The main 

criteria for comparison are AWT and ATT. 
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The AWT is calculated as (4): 

 

𝐴𝑊𝑇 =  Ʃ (𝑇𝐴𝑇 𝑜𝑓 𝑃𝑖 −  𝐵𝑇 𝑜𝑓 𝑃𝑖) / 𝑁 (4) 

 

The ATT is calculated as (5): 

 

𝐴𝑇𝑇 =  Ʃ (𝑇𝑖 −  𝐴𝑇 𝑜𝑓 𝑃𝑖) / 𝑁 (5) 

 

Where ATT of Pi is the TT of task Pi, BT of Pi is the burst time of task Pi, Ti is the exit time for task, AT of 

Pi is the arrival time of task and N is the number of all tasks. Two scenarios are utilized to test the efficiency 

of the suggested algorithm. 

 

4.1.  Scenario 1 (zero arrival time) 

Here, we considered the situation where all tasks are arrived at the same time. Consider a set of 6 

requests with burst time shown in Table 1, assigned to the RQ. Figures 2 through 6 illustrate the performance 

of the proposed algorithms in sequential order. Specifically, Figure 2 presents the RR algorithm, Figure 3 

presents the IRR algorithm, Figure 4 presents the RRRT algorithm, Figure 5 presents the ARRA algorithm, 

and Figure 6 presents the NRRTSA algorithm. 

 

 

Table 1. Input burst time for requests 
Requests Burst time (ms) 

P0 8 

P1 3 
P2 11 

P3 19 

P4 2 
P5 30 

 

 

4.1.1. Basic round robin algorithm [4] 

Enter these requests in RQ according to their given order of burst time that is P0=8, P1=3, P2=11, 

P3=19, P4=2, and P5=30 with TQ=10. The Gantt chart for it is given as shown in Figure 2. 
 

 

 
 

Figure 2. Gantt chart for the basic RR algorithm 
 
 

Resulting AWT=24.83 ms and resulting ATT=37 ms. 

 

4.1.2. Improved round robin algorithm [5] 

Put the req`uests in the RQ in their order; P0=8, P1=3, P2=11, P3=19, P4=2, and P5=30 with 

TQ=10. Each request is given a TQ to execute. The remaining time of the currently running request is 

checked; if it is less than 1 TQ, the CPU is again allocated to the currently running request for the residual 

time. Otherwise, the request will be put at the end of the RQ and the next request will be selected. The Gantt 

chart for it is given as shown in Figure 3. 

 

 

 
 

Figure 3. Gantt chart for the algorithm IRR 

 

 

Resulting AWT=20.8 ms and resulting ATT=33 ms. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader) 

4043 

4.1.3. Round robin remaining time algorithm [7] 

Put the requests in the RQ in an increasing order of burst time; p4=2, p1=3, p0=8, p2=11, p3=19, 

and p5=30. The TQ is calculated according to RRRT algorithm from the following formula Σpi/2n where its 

value is 6. The remaining time of the currently running request is checked where if it is <1 TQ, the CPU is 

again allocated to the currently running request for the residual time. Otherwise, the request will be put at the 

end of the RQ and the next request will be selected. The Gantt chart for it is given as shown in Figure 4. 

 

 

 
 

Figure 4. Gantt chart for the algorithm RRRT 

 

 

Resulting AWT=16.5 ms and resulting ATT=28.6 ms. 

 

4.1.4. The ameliorated round robin algorithm [31] 

Put the processes in an increasing order of burst time; p4=2, p1=3, p0=8, p2=11, p3=19 and p5=30. 

The TQ that is calculated for this algorithm using the formula TQ= (3/4) *average. The Gantt chart for this 

algorithm is given as shown in Figure 5.  

 

 

 
 

Figure 5. Gantt chart for the algorithm ARRA 

 

 

Resulting AWT=16 ms and resulting ATT=28.16 ms. 

 

4.1.5. New time-sharing algorithm 

Will enter processes RQ according to their increasing order of burst time; p4=2, p1=3, p0=8, p2=11, 

p3=19, and p5=30. The TQ that is calculated for this algorithm from the formula TQ=median=10. The Gantt 

chart for this algorithm is given as shown in Figure 6. 

 

 

 
 

Figure 6. Gantt chart for the algorithm NRRTSA 
 

 

Resulting AWT=14.5 ms and resulting ATT=26.6 ms. 

A comparative study among the RR, IRR, RRRT, ARRA, and NRRTSA algorithms with respect to 

TQ, AWT, and ATT as represented in Table 2. Figure 7 is comparing the performance of the aforementioned 

algorithms using AWT and ATT. Figure 7 shows the comparison of AWT where the best result 14.5 ms is 

obtained from NRRTSA because it gives the minimum value between all other algorithms 24.8, 20.8, 16.5, 

and 16 ms of basic RR [4], IRR [5], RRRT [7], and ARRA algorithm [31] respectively. 

 

 

Table 2. Obtained results for algorithms 
Algorithm AWT ATT 

Basic RR 24.83 37 
IRR 20.8 33 

RRRT 17.5 28.6 

ARRA 16 28.16 
NRRTSA algorithm 14.5 26.6 
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Figure 7. AWT and ATT comparison graph (scenario 1) 

 

 

Whereas a comparison of the ATT for the five algorithms with best result obtained from the proposed 

NRRTSA. It obtained a value of 26.6 ms between all other values 37, 33, 28.6, and 28.16 ms of basic RR [4], 

IRR [5], RRRT [7], and ARRA algorithm [31] respectively. 

 

4.2.  Scenario 2 (non-zero arrival time) 

In scenario 2, the suggested technique uses a dynamic TQ since the tasks in the RQ have non-zero 

arrival delays. Every round, TQ is updated. Table 3 illustrates how five requests—P1, P2, P3, P4, and P5—

are combined with CPU burst time and non-zero arrival timings. The RR, IRR, RRRT, ARRA, and the 

suggested NRRTSA algorithms are displayed in Figures 8-12. 

 

 

Table 3. The burst time and its arrival time for requests 
Requests Arrival time (ms) Burst time (ms) 

P1 0 30 

P2 4 20 

P3 8 50 
P4 12 90 

P5 16 65 

 

 

- Basic RR algorithm [4] 

 

 

P1 P2 P3 P4 P5 P3 P4 P5 P4 

                                   0       30      50  8     5     120     155   170     205     235   255   

 

Figure 8. Gantt chart for the algorithm RR 

 

 

- Improved RR algorithm [5] 

 

 

P1 P2 P3 P4 P4 P5 P5 

                                       0       30        50      100        156      190      246    255 

 

                                           TQ=30                        TQ=56 

 

 

Figure 9. Gantt chart for the algorithm improved RR 

 

 

- RR remaining time algorithm [7] 

24.83

37

20

33

16.5

28.6

16

421.14

14.5

26.6

0

50

AWTATT

Time (ms)Tasks vs Time

RR IRR RRRT ARRA NRRTSA



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

An improved round robin time sharing algorithm for optimizing data mapping … (Afaf Abdelkader) 

4045 

P1 P2 P3 P5 P5 P4 P4 

                                                0     30          50       100     156    165     221     255              

 

                                          TQ1=30                      TQ2=56 
 

Figure 10. Gantt chart for the algorithm RRRT 

 

 

- The ARRA [31] 

 

 

P1 P2 P3 P3 P5 P4 P5 P4 

                                 0       30        50       92      100        142      184        207        255     

   

                                TQ1=30                        TQ2=42                                  

 

 

Figure 11. Gantt chart for the algorithm ARRA 

 

 

- New time-sharing algorithm (NRRTSA) 

 

 

P1 P2 P3 P5 P5 P4 P4 

                                                0     30          50       100     156    165     221     255              

 

                                           TQ1=30                      TQ2=56 

 

Figure 12. Gantt chart for the algorithm NRRTSA 

 

 

In Table 4, the RR, IRR, RRRT, ARRA, and NRRTSA algorithms are compared with regard to TQ, 

AWT, and ATT. Figure 13 shows the comparison of AWT and ATT for the earlier methods in scenario 2. 

 

 

Table 4. Comparative study of RR, IRR, RRRT, ARRA and NRRTSA algorithms (scenario 2) 
Algorithm TQ AWT ATT 

RR 35 87 138 

I RR 30,56 83 117 
RRRT 30,56 61 112 

ARRA 30,42 73.6 120.4 

NRRTSA 30,56 61 112 

 

 

 
 

Figure 13. AWT and ATT comparison graph (scenario 2) 
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4.3.  Simulation 

The benchmark was reproduced using the same parameters and different algorithms, taking into 

account the task arrival time and burst time, in order to assess the efficiency of the suggested model. A C++ 

simulation is created for the proposed algorithm (NRRTSA), the improved RR algorithm [5], the RR 

remaining time algorithm [7], and the ARRA algorithm [31]. The performance of each of these algorithms is 

assessed by comparing it to the RR algorithm. With the same random data set, the model consists of a 

singular resource represented by VMs. These algorithms are compared using AWT and ATT. An escalation 

in time leads to an increase in cost because the average waiting and TT is dependent on the quantity of tasks 

in the RQ. 

 

 

5. RESULTS AND DISCUSSION 

To compare the effectiveness of the algorithms, different simulations are made for them using C++ 

language on laptop with Intel Core i5 processor, using 2.30 GHz CPU and 4 GB RAM. Windows 10 was 

utilized as the 64-bit OS for the platform.  

These models consider n requests, where n ranges from 1000 to 5000. Every task arrives at the same 

time, and the burst time task values are produced at random. The suggested model was validated through a 

variety of tests, which are repeated again as the number of tasks increases. 

Figure 14 displays the algorithms' comparison in terms of AWT. The stacked line chart is plotted for 

tasks ranging from 1000 to 5000. The x-axis plots the number of tasks in the RQ, and the y-axis plots the 

tasks' AWT, which is given in milliseconds. Better results are obtained by the suggested algorithm 

(NRRTSA), which is followed by ARRA [31], RRRT [7], and IRR [5]. When compared to the RR algorithm, 

these techniques provide a significant improvement. The performance of the algorithms enhances as the 

number of tasks in the RQ grows. While the IRR [5] yields respectable improvement outcomes, ARRA [31] 

and RRRT [7] yield significant outcomes when compared to RR. In contrast, the suggested method 

outperforms the others in terms of improvement. In comparison to other algorithms, NRRTSA's performance 

demonstrated an upward trend in AWT as the number of tasks increased. The line chart shows that the AWT 

for RR is continuously rising in contrast to recommended algorithms. Figure 15 illustrates a similar pattern to 

the behavior of algorithms in terms of ATT. The stacked line chart is plotted for tasks ranging from 1000 to 

5000. The x-axis plots the number of tasks in the RQ, while the y-axis plots the tasks' ATT, which is given in 

milliseconds. Better results are obtained by the suggested algorithm NRRTSA, which is followed by ARRA 

[31], RRRT [7], and IRR [5]. When compared to the RR algorithm, these techniques provide a significant 

improvement. The algorithms' performance improves with the amount of tasks in the RQ. While IRR yields 

reasonable improvement outcomes, ARRA [31] and RRRT [7] yield considerable results when compared to 

RR. The suggested algorithms behave similarly, although NRRTSA's performance exhibited an upward trend 

in ATT when the number of tasks increased in comparison to other algorithms. The line chart shows that the 

ATT for RR is continuously rising in contrast to recommended algorithms. 

 

 

 
 

Figure 14. Comparative graph of awaiting time 
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Figure 15. Comparative graph of ATT 

 

 

6. CONCLUSION 

Scheduling requests of users in cloud environment is very important and evaluated here. In this 

paper, in order to enhance the cloud computing performance metrics of AWT and ATT, the NRRTSA has 

been suggested. The suggested NRRTSA method demonstrated that the optimal TQ to assign to the tasks in 

ascending order is (TQ=median) of the processes (requests) identified in the RQ for tasks that arrive 

simultaneously and at various times. The RR, IRR, RRRT, and ARRA algorithms are used to simulate and 

compare it. According to the findings of the testing, the suggested NRRTSA performs better than RR and 

other algorithms in terms of the AWT and TT. A ratio of 10.9% to 45% is used to improve the AWT, and a 

ratio of 10.8% to 45% is used to improve the ATT. The suggested algorithm may be used to improve other 

criteria, including context switching, in subsequent research. 
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