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 Task scheduling is an essential component of any cloud computing 

architecture that seeks to cater to the requirements of its users in the most 

effective manner possible. It is essential in the process of assigning resources 

to new jobs while simultaneously optimising performance. Effective job 

scheduling is the only method by which it is possible to achieve the essential 

goals of any cloud computing architecture, including high performance, high 

profit, high utilisation, scalability, provision efficiency, and economy. This 

article gives a framework based on chaotic grey wolf optimization (CGWO) 

for efficiently scheduling tasks in cloud fog computing. Task scheduling is 

done with CGWO, ant colony optimization (ACO), and min-max 

algorithms. CloudSim is used to implement task scheduling algorithms. 

Makespan time required by CGWO algorithm for 500 tasks is 73.27 

seconds. CGWO is taking minimum resources to accomplish the tasks in 

comparison to ACO and min-max methods. Response time of CGWO is also 

3745.2 seconds. CGWO is performing better in terms of Makespan time, 

response time and resource utilization among the methods used in the 

experimental work. 
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1. INTRODUCTION 

Users can be located in any part of the world and still be able to make requests to execute 

applications thanks to cloud computing. The processing power of the computer is utilized by each of the 

programmes so that they can successfully complete one or more of their assigned duties. The problem of how 

to divide the available processing power in an equitable manner arises as the number of requests continues to 

grow. Because of the high volume of requests for resource allocation, the primary focus of the scheduler is on 

processing these requests and allocating the resources that are required to fulfill them [1]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The process of scheduling determines when, where, how many, and what kind of computing 

resources should be made available to a particular activity. Also included in the scheduling process is when 

the activity should take place. Computing resources, such as virtual machines (VMs), are typically deployed 

by providers onto nodes in their datacenters in accordance with customer preferences regarding the type and 

quantity of the resource. The constraints, such as processing capacity, projected completion time, and 

deadline, among others, are satisfied, the task is carried out without a hitch, and the requested type of 

computing resource is a good match for the available workload characteristics of resources [2]. When 

working in an elastic environment such as the cloud, where users may request or return resources on a more 

ad hoc basis, it is equally as important to evaluate whether or not such adjustments should be made. The task 

scheduler is the component that is accountable for setting priorities and distributing system resources among 

the tasks that are currently operating [3]. The execution of a task will start as soon as it is provided with the 

required amount of computational resources. Making a scheduling decision on the cloud for this reason is a 

more difficult challenge due to the increased complexity [4]. 

As can be seen from Figure 1, task scheduling is an essential component of any cloud computing 

architecture that seeks to cater to the requirements of its users in the most effective manner possible. It is 

essential in the process of assigning resources to new jobs while simultaneously optimising performance [5]. 

Effective job scheduling is the only method by which it is possible to achieve the essential goals of any cloud 

computing architecture, including high performance, high profit, high utilisation, scalability, provision 

efficiency, and economy. These goals are essential for any cloud computing architecture [6]. 

 

 

 
 

Figure 1. Task scheduling in cloud computing  
 

 

Thetask scheduler module of the cloud framework starts looking for an appropriate VM to run the 

job on as soon as the user submits the job to the cloud framework. When scheduling, problems can develop 

because it can be tempting to place light work on a powerful VM or heavy work on a machine with limited 

resources. Both of these scenarios are problematic. This could potentially have a detrimental effect on the 

overall performance of the system as a result of the probable rise in makespan as well as the lengthening of 

waiting periods [7]. When seen from the perspective of the cloud provider, this results in a reduction in the 

amount of VM utilisation, earnings, and throughput. As a user of cloud services, this will have a negative 

influence on your experience because it will result in longer wait times, greater charges, and a failure to meet 

the quality of service (QoS) expectations you have set for yourself [8]. Therefore, in order to make everyone 

in the cloud happy, the algorithm that is used to schedule tasks needs to be improved. To reduce the amount 

of time needed to finish a work as well as the amount of money spent doing so is a primary objective of any 

good scheduling algorithm. This may be accomplished by allocating tasks to the VM resources that are used 

in the most effective manner [9]. 

Because the cloud is a dynamic environment that is always changing, its properties are also subject 

to change over time. When it comes to developing a system for scheduling work, there are a number of 

challenges that need to be surmounted. The administration of VMs in the cloud is handled by discrete 

administrative hosts, and the VMs themselves are hosted in separate physical data centres. At all times, 

compliance with the rules and regulations that have been established by each of the host organisations is 

required [10]. The scheduler needs to be able to accommodate these regional parameters because distinct 

cloud environments each have their own set of rules for the administration of resources and the provisioning 

of access [11]. 

There is a wide range of variety when it comes to computing hardware, data storage, memory, 

networking resources, and so on. When dealing with complex issues, you'll need a wide array of tools, many 

of which may be stored in several physical locations or be used on a variety of computer systems running 

different software distributions. The implementation of individual resource management systems results in 
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the development of a variety of capabilities, some of which are significant. If a large application is segmented 

into a number of smaller jobs, then it will be able to operate many instances of a VM simultaneously. In an 

autonomous system, it is the role of the scheduler to keep track of everything, from the allocation of tasks 

and the commencement of their execution, all the way through failure recovery, computation management, 

and the monitoring of task progress [12]. 

This article provides chaotic grey wolf optimization (CGWO) based framework for efficient task 

scheduling in cloud fog computing. User’s task or processes are input to task manager. Task manager 

maintains priorities of task and priorities of VMs on the basis of their response time and throughput. Initially 

all VMs are available. Task scheduler maintains task queue, the order in which processes will be executed. 

Task manager assigns VMs to task. VMs details are made available to task scheduler via resource manager. 

CGWO, ant colony optimization (ACO) and min-max algorithms are used for task scheduling. CloudSim is 

used for experimental work. MakeSpan, waiting time and resource utilization parameters are used to compare 

the performance of various task scheduling techniques used in the study. Performance of CGWO is better in 

terms of makespan, resource utilization and overall waiting time. 

 

 

2. LITERATURE SURVEY 

Ramezani et al. [13] presented a method for task scheduling known as task-based system load 

balancing using PSO (TBSLB-PSO) in order to divide workload among VMs. In the cloud, various tasks are 

carried out via VMs, also known as VMs. There is a possibility that certain VMs are overworked because 

more responsibilities have been delegated to them, while other VMs might just be lightly burdened or might 

possibly be doing nothing at all. It is necessary to divide the work over multiple VMs if you want to get the 

most out of your available resources, such as your VMs. It is occasionally necessary for VMs to move from 

their primary host to a secondary host when the primary host becomes overloaded. This is a time-consuming 

procedure. The utilisation of the TBSLBPSO algorithm, which transfers only the excessive workloads from 

the overworked VMs to the lightly loaded or idle VMs, results in a reduction in the amount of downtime 

experienced by overworked VMs. When optimising performance, bandwidth, SLA details, and VM 

properties are all taken into consideration alongside one another. When compared to other, more 

conventional ways, it reduces costs, saves time, and eliminates downtime. 

Ebadifard and Babamir [14] have developed the PSO-based honeybee behavioral model (PSO-

HBM) with the intention of ensuring that work is distributed in an equitable manner across VMs. Honeybees 

gather nectar and pollen from a diverse range of plants and flowers to use as nourishment. When the bee's 

current supply of food runs out, it is necessary for it to search for other supplies. Processing the task on a VM 

that is thus overloaded is comparable to a bee trying to gather food from a source that is completely devoid of 

it, given that the VM stands in for the food supply. PSO-HBM is the method that is utilised in order to 

reassign jobs from the overburdened VM to one of the accessible alternatives that has a lower level of 

workload. It achieves superior load balancing among VMs, quicker maketimes, and higher resource 

utilisation when contrasted with the PSO algorithm and the round-robin algorithm. It does not address 

concerns of inequality or discuss solutions to reduce expenses while organising responsibilities. 

Panda and Pani [15] advise using a Hungarian method in order to plan paired jobs that are running 

on the cloud. Within the same cloud environment, the jobs are bundled together and then scheduled in 

whatever order that the user desires. The amount of time spent doing nothing between tasks is referred to as 

"layover time," and the overall amount of time spent doing nothing between tasks is equal to the sum of all 

layover durations for all pairs of tasks. The Hungarian algorithm does not concentrate on how long it takes to 

complete a task or how much it costs; rather, it considers when the task must begin and when it must stop 

before making any decisions. The assignment decision takes into account both the transfer time as well as the 

amount of time that is the shortest in between the lease term and the converse lease time. It is necessary to 

take into consideration both internal and external services in order to successfully adjust to the constantly 

shifting requirements of the cloud. When compared to the FCFS approach, the Hungarian algorithm was 

shown to have a much lower amount of layover time, according to the findings of an exhaustive study that 

examined the algorithm's performance on numerous datasets. 

The FA has been put to use by SundarRajan et al. [16] in the process of planning workflow-based 

activities. Every firefly reveals its strategy, and the amount of time it takes to execute it is a component of the 

firefly's overall fitness score. Each time through, the VM with the quickest execution time is selected to 

obtain the tasks that have been queued up. After each cycle, the value of the firefly's fitness is determined, 

and the winner is chosen in accordance with that value. In addition to this, the optimal distance from the 

firefly is continuously checked and modified in order to account for any changes. The optimal solutions 

would be ranked, and the one that came out on top would be selected. The execution time and completion 
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time of jobs planned using the firefly method are much reduced when compared to those of PSO and the cat 

swarm optimization technique. The question of cost has not been resolved as of yet. 

To solve the issue of time-sensitive workflow scheduling, Liu et al. [17] propose a genetic algorithm 

(GA) with coevolution as a solution. These arguments are similar to the previous ones. When two or more 

populations are able to adapt to one another through time, this is an example of coevolution. It plays a role in 

the process of fine-tuning the crossover and mutation probabilities in order to speed up the convergence 

process and avoid premature optimization. The GA that incorporates coevolution emerges victorious when 

compared to both PSO and its own counterpart, GA. However, it does not take into consideration some 

details such as the cost and how data is transported. 

In a manner analogous to this, Shen et al. [18] have adopted GA in order to enhance the 

performance of cloud computing and lower its carbon footprint. Cloud computing raises important questions 

about the energy efficiency of data centres. Turning off VMs that aren't being utilised is one approach to cut 

down on energy use, but this isn't always the most effective solution. Any adjustments that are made to save 

energy must not have a detrimental effect on the overall functionality of the system. In the GA-based method, 

the new solution is evaluated based on how well it performs two separate fitness functions. The ability to 

save energy is taken into consideration by the first fitness function, while performance is taken into 

consideration by the second. The evaluation shows that GA enhances the VM's energy efficiency as well as 

its overall performance balance. 

In addition, Agarwal and Srivastava [19] scheduled jobs in the cloud with the CS algorithm. The 

most recent cuckoo egg is presumed to be the solution. It is generally accepted that the cuckoo lays only one 

egg at a time, and there are a set amount of nesting sites available. It seems likely that whichever host 

discovers the most efficient cure will be the one to pass it on to future generations of their progeny. In this 

manner, the CS technique develops the optimal schedule because it reduces the makespan of the schedule to 

its smallest possible value. 

Using the CS method, Tavana et al. [20] have successfully completed the identical task with the 

cloud-based variant of the consolidation problem. In the cloud, consolidation can take place on three distinct 

levels: at the VM level, at the task level, and at the server level. The CS-based strategy performs better in 

terms of resolving the consolidation issue and minimising energy usage, task relocation, and penalty cost. 

This is in comparison to both the GA and the round-robin methods, which both perform poorly in this regard. 

In the event that there is an uneven distribution of tasks across the VMs, the amount of time spent 

waiting for a particular task or delaying its completion is likely to increase. As the delay rises, it will affect 

the amount of time it takes to complete the task, as well as the amount of time it takes to complete the 

schedule as a whole. Gabi et al. [21] came up with the idea of using an algorithm called the orthogonal 

Taguchi based cat algorithm (OTCA) to schedule work in the cloud. When carrying out an OTCA, the 

Taguchi method, in conjunction with the cat's tracing mode, is utilised in order to ascertain which resource 

requires the shortest amount of time in order to complete the activity at hand. As a consequence of this, 

OTCA is in a position to address the issue of task imbalance by assigning the appropriate resources to the 

appropriate positions. OTCA shortens both the amount of time spent waiting and the amount of time spent 

manufacturing. 

The lion optimization algorithm (LOA) is a population-based algorithm that achieves optimal results 

by taking its cues from the natural laws that govern the universe [22]. It distinguishes between two types of 

lions: those that remain in one place and those who travel around. The nomads are more likely to move in 

smaller groups or by themselves, in contrast to the permanent residents who like to gather. Lion prides 

frequently hunt in groups in order to improve the overall success rate of their assaults. The starting 

population is formed depending on the location of the lions, which is decided by a random number generator. 

This location is then used to produce the rest of the population. The migratory lions make up a small 

percentage of the overall population, while the rest are regarded to be residents. Because the lion is free to 

move about during each cycle, the ideal location for the lion is dynamically shifting all the time. The LOA 

shall continue to be carried out in its entirety up until the point where the termination conditions are satisfied. 

On Almezeini and Hafez's [23] research, the LOA was utilised so that jobs may be scheduled in the cloud. 

The "fitness value" for any timetable may be found in the makespan, which is represented by a lion in this 

illustration. The most productive schedule of the lion has been recorded, which can also be thought of as the 

sites that the animal visits most frequently. Specifically, each pride would be responsible for doing the 

activities of hunting, wandering, mating, and defending its territory. It's probably safe to assume that every 

nomad goes through the same cycles of exploring new territory, finding a mate, ensuring their safety, moving 

around, and eventually settling down. At the end of each cycle, the lion that has been determined to be the 

most suitable answer is chosen. For the purpose of determining which strategy is most effective, we put 

LOA, PSO, and GA through their paces using three metrics: makespan, utilisation, and degree of imbalance. 

The LOA does not take into account cloud pricing models, despite the fact that it outperforms both the PSO 

and the GA. 
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3. METHOD 

This section presents a methodology for efficient job scheduling in cloud fog computing via 

CGWO. The methodology is depicted in Figure 2. The task manager receives the user's tasks or processes as 

input. The task manager is responsible for managing the priorities of tasks and VMs, taking into 

consideration their reaction time and throughput. From the outset, all VMs are accessible. The task scheduler 

is responsible for managing the task queue, which determines the arrangement of processes to be executed. 

VMs are assigned to tasks by the task manager. The task scheduler can access the details of VMs using the 

resource management. The task scheduling methods employed are CGWO, ACO, and min-max. CloudSim is 

utilized for pragmatic research. In this study, the performance of different task scheduling strategies is 

compared using criteria such as MakeSpan, waiting time, and resource consumption. 

 

 

 
 

Figure 2. CGWO based framework for efficient task scheduling in cloud fog computing 

 

 

The GWO has a commendable convergence rate, although it lacks proficiency in identifying the 

global optimum, resulting in a slower progression of the process. Kohli and Arora [24] devised the CGWO 

algorithm to mitigate this phenomenon and enhance the efficiency of the GWO algorithm. They achieved this 

by incorporating chaos theory into the GWO algorithm. This facilitated the attainment of both of these 

objectives. A state of chaos can be observed in a system that exhibits characteristics of being non-linear, 

dynamic, non-periodic, non-convergent, and bounded, as it demonstrates behavior that is simultaneously 

random and deterministic. The mathematical notion of chaos is employed to elucidate the stochastic nature of 

a dynamic system characterized by a limited number of variables that exhibit perfect independence from each 

other. Algorithmic optimization strategies incorporate randomness through the utilization of various chaotic 

maps, each derived from a unique set of mathematical equations. Chaotic maps have become increasingly 

prominent in the field of optimization in the past decade due to their dynamic character. The prevalence of 

chaotic maps can be attributed to their ability to facilitate optimization algorithms in conducting a 

comprehensive and dynamic investigation of the search space. In recent times, a diverse range of chaotic 

maps has been devised by scientists and mathematicians for the purpose of optimization. These maps have 

been specifically tailored to cater to distinct human domains. Most of the existing chaotic maps have been 

utilized in algorithms rather of being directly applied in real-world scenarios. The chaotic maps can be 

assigned an initial value that falls within the range of the maps, encompassing values ranging from 0 to 1, as 

well as any other number that falls inside that range. Nevertheless, it is imperative to consider that the 

beginning value might exert a substantial influence on the overall volatility pattern observed in the chaotic 

map. It is vital to bear this in mind consistently. A decision was made to employ a compilation of chaotic 

maps exhibiting diverse behaviors, with each map being assigned an initial value of 0.7. The incorporation of 

chaos into the feasible zone, which is initially predictable for a limited duration and becomes stochastic over 

extended epochs, enhances the convergence rate of the GWO approach. This objective is achieved by 

producing disorder inside the attainable area. 

The most well-known example of a bio-inspired algorithm is referred to as an ACO in this context. 

This method, which is then applied to the scheduling of tasks in order to determine the most optimal 

timetable, was inspired by the behaviours of ants that seek out the shortest path, which served as the method's 
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source of inspiration. The number of jobs that have to be planned in the cloud frequently exceeds the number 

of VMs that are available. Because of this, it is the responsibility of the scheduling algorithm to finish all of 

the tasks by utilising the VMs that are available [25]. 

The voyage of each individual ant starts with a unique VM and group of activities. A database 

would be used to record the tasks that were assigned as well as the VMs. When determining which group to 

select from next, the list is used as a reference point. The amount of free time made available by each VM is 

kept track of in a matrix with one dimension, which we will refer to as. The availability of the VM for the 

next job is represented in the matrix of resources that are available. Throughout the course of this inquiry, we 

will refer to the ith task as Ti, and the ithVM as VMj. We use the minimization function Fk to find the VM in 

ant k that is the best fit for the problem at hand. Following each iteration of the process, the element of the 

attainable matrix that is found to be the most significant is inserted into the minimization function Fk. We are 

able to calculate the problem-specific heuristic information, which is denoted by ij, by utilising the time 

constraints that the VM provides. 

The ACO algorithm starts by processing the list of jobs that have not yet been scheduled and 

continues doing so until the list is empty. This procedure is repeated until the list is complete. During the 

initialization phase of the system, information about the available VMs and tasks is obtained. The second 

thing that it does is determine the ETC, which stands for "Estimated Time of Completion," for each job Ti 

that is contained in VMj. As a result, it employs a value for the initial pheromone deposit of 0.01, a value for 

the tuned parameter of 0.05, and a value for the initial pheromone evaporation of 1. This algorithm makes use 

of a total of four ants. Additionally, the proposed algorithm for work scheduling in the cloud makes the 

assumption that all of the VMs are available at the beginning of the process; consequently, the availability 

matrix is set to zero when the procedure begins. 

 

 

4. IMPLEMENTATION AND RESULT ANALYSIS 

Cloudsim is used to simulate experimental work. The ACO, min-max, and CGWO algorithms are 

run on a 2.4 GHz Intel Core i5 CPU with 8 GB of RAM under the Windows operating system. The results 

are compared based on characteristics such as makespan, VM utilization, degree of imbalance, and response 

time. Makespan refers to the overall time required to complete a collection of jobs in the queue. The term 

"VM utilization" relates to how busy a VM is at any particular time. It might range from 0 to 100%. The 

degree of imbalance measures the imbalance in load among the VMs. The cloud simulation environment 

starts with 16 VMs, and the number of jobs varies from 100 to 500. Initially, all VMs are exposed to the task 

scheduler. 

The results are provided in Figures 3 to 5, and Tables 1 to 3. From Table 1 results, it is clear that the 

makespan time required by CGWO algorithm to collect all jobs in the queue is lesser that make span time 

time required by ACO and min-max algorithm. CGWO is taking minimum resources to accomplish the tasks 

in comparison to ACO and min-max methods. Response time of CGWO is also minimum among the 

methods used in the experimental work. The CGWO method requires a makespan time of 73.27 seconds for 

500 tasks. The CGWO approach requires fewer resources to complete tasks compared to the ACO and min-

max methods. The CGWO's response time is 3745.2 seconds. Among the approaches employed in the 

experimental study, CGWO demonstrates superior performance in terms of Makespan time, response time, 

and resource utilization. 
 

 

 
 

Figure 3. Makespan comparison of CGWO, ACO, and min-max algorithms for cloud task scheduling 
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Figure 4. VM utilization comparison of CGWO, ACO, and min-max algorithms for cloud task scheduling 

 

 

 
 

Figure 5. Response time comparison of CGWO, ACO, and min-max algorithms for cloud task scheduling 

 

 

Table 1. Makespan (in seconds) comparison of CGWO, ACO, and min-max algorithms for cloud task 

scheduling 
Number of tasks CGWO ACO Min-max 

100 61.3 66.1 72.27 
200 64.5 69.5 76.4 

300 66.8 71.6 80.2 

400 71.3 74.5 84.3 
500 73.27 80.3 87.8 

 

 

Table 2. Resource utilization (in %) comparison of CGWO, ACO, and min-max algorithms for cloud task 

scheduling 
Number of tasks Min-max ACO CGWO 

100 62.3 64.2 69.2 

200 65.5 71.2 71.2 

300 69.4 72.3 79.5 
400 71.2 71.2 84.3 

500 72.2 77.4 87.2 

 

 

Table 3. Response time (in seconds) comparison of CGWO, ACO, and min-max algorithms for cloud task 

scheduling 
Number of tasks Min-max ACO CGWO 

100 785.2 753.2 652.3 

200 1455.2 1460.2 1289.4 

300 2345.7 2247.1 1894.1 
400 3554.2 3440.2 2678.4 

500 4568.4 4325.1 3745.2 
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5. CONCLUSION 

This article provides a methodology for successfully scheduling jobs in cloud fog computing that is 

based on CGWO. Users provide task manager with information regarding the processes and activities they 

need to complete. The order of tasks and VMs is maintained by the task manager, which ranks them 

according to how quickly they reply and how much they are capable of accomplishing. In the beginning, any 

and all virtual computers may be utilised. The task queue is the order in which tasks are scheduled to be 

executed, and the task scheduler keeps track of this order. The jobs are delegated to the VMs by the task 

manager. The task scheduler receives information regarding the specifics of the VMs from the resource 

management. The CGWO, ACO, and min-max algorithms are utilised in the process of task scheduling. 

Utilizing CloudSim allows for the testing of novel concepts. This study uses MakeSpan, waiting time, and 

resource utilisation as criteria to examine the effectiveness of various approaches for task scheduling. The 

performance of CGWO is superior in comparison to other variants in terms of MakeSpan, the amount of 

resources used, and the total amount of time spent waiting. 
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