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Earthquakes have destroyed the economy and killed many people in many
countries. Emergency response actions immediately after an earthquake
significantly reduce economic losses and save lives, so accurate earthquake
damage predictions are needed. This research looks at how machine learning
(ML) techniques are used to predict damage from earthquakes. The ML
algorithms used are k-nearest neighbors (KNN), decision tree (DT), random
forest (RF), and Naive Bayes (NB). Feature selection is necessary, it needs
to select the most relevant features from big data. One of the most
commonly used algorithms to optimize ML is particle swarm optimization
(PSO). PSO s also suitable for feature selection. This research compares
various of PSO. Based on research, the RF algorithm with Phasor PSO has
the highest fitness score. This process succeeded in reducing features from
38 features to 14 features. Based on the process after feature selection, it was

found that the KNN, DT, and RF algorithms had improved. RF obtained the
best accuracy, namely 72.989%. The processing time in DT, RF, and NB is
faster than before. In conclusion, the ML algorithm can be combined with
PSO feature selection to create a classification model that provides better
performance than without feature selection.
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1. INTRODUCTION

Earthquakes have destroyed the economy of citizens and killed many people in many countries [1].
An example of the largest earthquake with a magnitude of 9.5 on the Richter scale occurred in Valdivia,
Chile, on May 22, 1960. The victims of this earthquake claimed 1,655 deaths, 3,000 were injured, and two
million people were displaced. This disaster caused death and destruction in Hawaii, Japan, and the
Philippines and caused a tsunami. The resulting losses amounted to US$550 million in Chile [2]. Emergency
response actions immediately after an earthquake significantly reduce economic losses and save lives, so
accurate and real-time estimates of seismic damage are needed [3]. Delayed or inaccurate seismic damage
estimates can have severe consequences [4].

Developing techniques to predict disaster damage can reduce casualties and economic losses [5].
Various research and studies have been carried out that focus on predicting multiple types of natural disasters,
such as earthquakes [1], [6], [7] landslides [5], [8] liquefaction [9], rock explosions [10], drought, floods, and
storms [11]. This research focuses on exploring the application of various machine learning (ML) methods in
predicting earthquake damage. Various ML algorithms, such as k-nearest neighbors (KNN), random forest
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(RF), decision tree (DT), and Naive Bayes (NB), are often used in multiple fields, including research discussing
disasters. For example, KNN is used in earthquake prediction models [12], the RF algorithm in disaster
prediction [13], as well as DT and NB, which are also applied in similar disaster prediction analyses [14].

In the context of ML, feature selection is a necessary process. Need to select the most relevant
features from big data. Relevant features can reduce computational complexity and improve temporal models'
accuracy. One of the most commonly used algorithms to optimize ML is particle swarm optimization (PSO).
PSO suits multiobjective optimization challenges by efficiently exploring complex and large-dimensional
solution spaces. The PSO process searches for ideal solutions by mimicking the behavior of a flock of birds or
a swarm of particles when searching for a perfect solution, repeatedly changing candidate solutions based on
their previous performance and the performance of their neighbors in the solution space. PSO can be used as a
powerful and flexible multiobjective optimization technique [15]. Implementing PSO can increase the
accuracy of image datasets [16] and be used for random noise reduction of seismic activity in deserts [17].

Research about predicted seismic damage on a regional scale using a data set of building damage
during the 2015 Nepal Gorkha earthquake was done using the ML method, namely random forest regression
(RFR). This research classifies damage into three classes, green, amber, and red, based on the level of post-
earthquake damage. The results obtained an average accuracy of 0.68, which shows that limiting learning to
basic building characteristics such as number of floors, height, base area, and building age produces reliable
predictions of building damage [18]. The feature selection technique can increase the accuracy of predicted
earthquakes. This research applied various algorithms or feature selection techniques based on different
searches, such as population, local, ranking, and evaluator-based searches, such as correlation, consistency,
and distance matrices on earthquake data for 47 years in Southern California. The result is that the number of
existing attributes can be reduced by up to 80%, thereby improving the matrix from the original [1]. This
research will combine the power of ML in classification with the efficiency of PSO as feature selection,
allowing the identification of the most relevant and influential features in predicting earthquake damage. By
focusing analysis on critical features, this research improves the accuracy and efficiency of predictive models
while providing deep insight into crucial factors influencing seismic damage.

2. PROPOSED METHOD

The research begins by preparing a dataset from earthquake damage data. The dataset is separated
into training and testing data, then processed using ML with the original data. Next, the researchers selected
features using original PSO, adaptive inertia weight (AIW) PSO, linearly decreasing weight-particle swarm
optimization (LDW PSO), and phasor PSO. After getting optimal features, training, and testing data are
processed using ML again. At the end of the process is a diagnosis result, where researchers can determine
whether ML and PSO can increase accuracy. The proposed model diagram is illustrated in Figure 1.
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Figure 1. Diagram of proposed model

2.1. Dataset
The data that researchers use is global data that Subhash Ghimire has processed. This data was
formed based on the Gorkha earthquake in Gandaki Pradesh, Nepal, at April 2015, with a magnitude of 7.8
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on the Richter scale. The resulting losses amounted to $10 billion, about half of Nepal's nominal GDP. As
many as 9,000 people died, millions of people were left homeless [18].

The data was collected by the Central Bureau of Statistics and Kathmandu Living Labs under the
National Planning Commission Secretariat of Nepal. It is one of the most enormous post-disaster datasets
ever assembled. This data offers insightful data on home circumstances, the effects of the earthquake, and
socioeconomic and demographic statistics. This dataset has 40 columns or features and 260,601 rows of data.
The building_id feature is not used because it contains a unique identifier. The damage_grade feature is used
as a label. So, 38 features need to be processed. Other features consist of socio-economic-demographic
statistics, earthquake impacts, and household conditions. The dataset features are described in Table 1.

Table 1. Dataset’s features

No Feature and description

1  geo_level 1 id
Building location is indicated by the geo level 1: 0 — 30
2 geo_level_2_id
Building location is indicated by the geo level 2: 0 — 1427
3 geo_level 3 id
Building location is indicated by the geo level 3: 0 — 12567
4 count_floors_pre_eq
the number of floors the structure had prior to the seismic activity
5 age
the building's age expressed in years
6  area_percentage
represents the building footprint's normalized area
7 height_percentage
the building footprint's normalized height.
8  land_surface_condition
the state of the land on which the structure was constructed. n, o, and t are possible values
9  foundation_type
the kind of foundation that is employed in construction. h, i, r, u, and w are possible values
10  roof_type
the kind of roof that was built. It is possible for n, g, and x
11  ground_floor_type
the ground floor's kind
12 other_floor_type
the kind of buildings used on levels higher than the ground (apart from the roof). Possible values: f, m, v, x, and z.
13 position
the building's position are possible values: j, o, s, t.
14 plan_configuration
building plan configuration; possible values: a, c, d, f, m, n, 0, g, s, u are examples of possible values for the flag variables
15  has_superstructure_adobe_mud
16  has_superstructure_mud_mortar_stone
17  has_superstructure_stone_flag
18  has_superstructure_cement_mortar_stone
19  has_superstructure_mud_mortar_brick
20  has_superstructure_cement_mortar_brick
21  has_superstructure_timber
22 has_superstructure_bamboo
23 has_superstructure_rc_non_engineered
24 has_superstructure_rc_engineered
25 has_superstructure_other
binary variable specifies construct the superstructure
26 legal_ownership_status
the land's legal ownership status at the time a building was constructed
27  count_families
the number of families residing in the building; possible values are a, r, v, and w
28  has_secondary_use
29  has_secondary_use_agriculture
30 has_secondary_use_hotel
31 has_secondary_use_rental
32 has_secondary_use_institution
33 has_secondary_use_school
34 has_secondary_use_industry
35 has_secondary_use_health_post
36  has_secondary_use_gov_office
37  has_secondary_use_use_police
38  has_secondary_use_other
binary variable specifies whether the building was utilized for any secondary purposes
damage_grade (LABEL)
A prediction label for earthquake damage prediction. There are three levels of damage: i) indicates minimal harm, ii) indicates
a moderate degree of harm, and iii) indicates nearly total devastation
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2.2. Machine learning algorithm
2.2.1. K-nearest neighbors

KNN is a simple and widely used ML algorithm for classification and regression. This algorithm is
included in the ML category, which does not require training (non-parametric) and is instance-based [19].
This algorithm identifies the closest 'k' data points (neighbors) of an unknown data point. This approach
categorizes new data points according to the majority class of their 'k’ nearest neighbors. The most common
distance formula is Euclidean distance, which is calculated as (1):

Euclidean distance = /Y, (xi — yi)? (1)

where xi and yi are the coordinates of two points in n-dimensional space. This algorithm selects 'k’ nearest
neighbors based on this distance, and the class or output value of the new point is determined based on these
data. Other distances that can be used include Manhattan, Minkowski, and others, depending on the use case.

2.2.2. Random forest
RF is a ML algorithm for regression, classification, and other predictive modeling tasks [20]. This
algorithm is a type of ensemble learning where the algorithm combines the results of various individual
models to improve overall performance. How RF work:
— Making DT: creating several DT using 'bagging' (bootstrap aggregating), where each tree is built from a
random sample with a replacement from the original dataset.
— Random feature selection: at each split in the DT, only a limited number of features are randomly selected.
— Prediction combining: predictions from each DT are combined to create a final prediction. Classification
is usually done through majority voting, whereas the average of the projections is used in regression.
This algorithm relies more on creating and merging DT than specific mathematical calculations. RF
effectiveness lies in its ability to reduce overfitting while maintaining high accuracy, making it a popular
choice for various machine-learning applications.

2.2.3. Decision tree

DT are methods rooted in tree-like structures used in data mining and ML for decision-making
processes. This method operates by taking a set of input attributes and producing a Boolean decision as its
output. Each route in the tree represents a series of data splits, culminating in a Boolean result found at the
final node, known as a leaf node. Its application in practical scenarios is well known due to its ease of
interpretation in both human and programming languages [21]. DT are often used in various applications,
from classification and regression to detecting important features in data sets. DT are built through an
algorithmic process that breaks down data based on certain criteria. However, there are key concepts and
calculations involved in making a DT, such as:
— Node splitting: decisions about how to split nodes are based on metrics such as Gini Impurity and entropy

as (2) and (3):

Gini Impurity = 1 — Ziczl(pi)2 )

Entropy = — )., _ pi .log,(pi) 3)

where: ¢ is number of classes in the dataset and pi is proportion of samples belonging to class i in the dataset.
— Tree pruning: this is not a formula but rather a process for removing parts of the tree that may be based on
noise or overfitting.
These calculations help determine where divisions should be made in the tree and how deep the tree
should grow. The actual structure of a DT is built algorithmically by applying these calculations repeatedly to
break down the data in the most effective way until a stopping criterion is met.

2.2.4. Naive Bayes

Naive Bayes is a classification method in ML that is based on Bayes' Theorem. This method is
nicknamed "naive" because of its simple assumption, namely that the features in a dataset are considered
independent of each other. It means that other features do not influence the presence or absence of a feature
in the same class. This approach has proven to be very efficient, especially in processing large datasets and is
often used for text classification tasks, including spam filtering and sentiment analysis. The Naive Bayes
algorithm works by utilizing training data to calculate probabilities. Then, use the probability of each
attribute from the test data for all existing classes. The class with the highest probability is then selected as
the label of the test data in question, with the Bayes Theorem as (4):
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P(X|H).P(H)

PXIH) == 5 4)
where P(X|H) is the conditional probability of hypothesis H, considering that data X has occurred. This value
is called the posterior probability, which is the probability of a hypothesis after considering the evidence.
Meanwhile, P(X|H) is the probability that data X will occur if the hypothesis H is true, known as the
likelihood. P(H) is the initial probability of the hypothesis before looking at the data or prior probability.
Finally, P(X) is the total probability of data X and is known as marginal probability or evidence [12].

2.2.5. Evaluation

The classification evaluation process produces a confusion matrix. The matrix consists of the number
of correct predictions, namely true positive (TP) and true negative (TN), as well as the number of incorrect
predictions, namely false positive (FP) and false negative (FN). TP consists of the number of positive detected
positive data. TN refers to the number of actual negative data. FP is the number of negative data that were
incorrectly classified as positive. In contrast, FN is the number of positive incidents categorized as negative.
Accuracy provides an idea of how much a classification model can predict correctly. Accuracy is calculated
from the number of TP and TN divided by the total number of predictions [12] as (5):

TP+TN
Accuracy = PT— (5)
2.3. Particle swarm optimization

As explained in the study, Eberhart and Kennedy describe PSO as a stochastic search method that
uses a group of individuals to simulate the behaviour of a flock of birds to achieve an optimal solution. PSO
is an approach in relatively modern swarm intelligence where each particle in the swarm iteratively adjusts its
trajectory based on its personal best and overall swarm experience to navigate towards a globally optimal
solution. Each particle in the PSO iteration updates its position and velocity based on the extreme values that
have been recorded [22].

The optimization procedure in PSO goes through various stages, such as initializing each particle
randomly, evaluating the fitness of each particle based on a predetermined fitness function [23], updating the
speed and position of the particle based on its best position (Pbest) and the best position of the group (Gbest)
and repeats the initialization and fitness evaluation process until the termination condition is met. Where the
fitness function in PSO is a measure of how well a particle solution performs in solving an optimization
problem by evaluating the quality of the particle's position in the search space. The fitness function is usually
defined based on the specific problem being solved, which can be a mathematical function that calculates the
goal or objectives of the optimization problem. In this way, the stages above will be carried out in research
on the use of PSO, as shown in Figure 2.

2.3.1. Adaptive inertia weight particle swarm optimization

As has been explained, performance on PSO is greatly influenced by the inertial weight parameter. In
traditional PSO, the inertia weight is often set as a constant, so it is considered inefficient. Therefore, AIW is
used as a mechanism to regulate the influence of particle speed from the previous iteration on the speed in the
current iteration. Using AIW means the values in the inertia weights can adjust dynamically throughout the
search process. The goal is to enable particles to explore the search space more efficiently by maintaining global
exploration early in the search process with higher inertial weights and then increasing local exploitation
capabilities by reducing inertial weights in response to information obtained during the search [24].

2.3.2. Linearly decreasing inertia weight particle swarm optimization

LDW PSO is a variant of the PSO algorithm that changes the weight inertia value linearly during
iteration. At the beginning of the iteration, the LDW PSO weight inertia value increases to encourage exploration
of a wider search space. However, as the weight inertia linearly decreases, the particles can concentrate more to
exploit promising areas. LDW PSO has attracted attention in several contexts, one of which is feature selection,
where its ability to adapt to changes in convergence speed can help find more suitable features [25].

2.3.3. Adaptive inertia weight particle swarm optimization

PSO is a creative version of the PSO algorithm that introduces the idea of phases or Phasors in the
movement of particles. This phase shows angles in complex coordinates and replaces conventional velocity and
position values. This principle is used by PPSO to provide more adaptive directions and velocities to particles in
the search space. In this way, P PSO can explore the search space efficiently by dynamically adjusting the
particle velocity based on the surrounding information. In addition, the problem of slow convergence can be
easily overcome by P PSO. PSO P's ability to adapt to high levels of complexity and dimensionality [26].
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Figure 2. PSO model flowchart

3. RESULTS AND DISCUSSION

In this chapter, we will present a comparison of the results of feature selection using PSO. Then a
comparison of the best accuracy will be carried out between ML algorithms without feature selection and
with feature selection. There are ten epochs used, including 5, 10, 15, 20, 25, 20, 35, 40, 45, and 50. The
comparison results between the ML algorithm and various PSO selection features are in Tables 2 to 5.

Table 2. Fitness score using original PSO
Fitness score per epoch/time (minutes)

ML algorithm 5 10 15 20 25 30 35 40 45 50
KNN 0.712 0.713 0.710 0.709 0.711 0.713 0.711 0.714 0.714 0.713
108.143 200.236 269.260 320.220 371.179 396587 441237 521.224 536.347 573.270
DT 0.714 0.708 0.713 0.711 0.716 0.711 0.712 0.711 0.721 0.715
0.165 0.450 1.230 1.331 1.617 1.685 1.901 1.940 1.994 2.150
RF 0.713 0.711 0.708 0.717 0.718 0.727 0.721 0.722 0.725 0.718
5.052 8277 12313 16121 19158 23516 28384 31011 35753  37.717
NB 0.429 0574 0.575 0.572 0572 0574 0.573 0573 0.575 0.575
0.132 0.309 0.434 0.584 0.632 0.759 0.887 0.944 0.998 1.040
Table 3. Fitness score using AIW PSO
. Fitness score per epoch/time (minutes)
ML algorithm g 10 15 20 25 30 35 40 45 50
KNN 0708  0.711 0.711 0.711 0.712 0.711 0.712 0.712 0.711 0.715
91276 184.351 230.059 287.779 322.702 394364 427.094 484741 481.910 560.380
DT 0.677  0.703 0.710 0.712 0.720 0.713 0.714 0.716 0.714 0.715
0179  0.300 0.456 0.551 0.694 0.860 0.896 1.251 1.264 1.350
RF 0709  0.721 0.720 0.711 0.716 0.720 0.717 0.720 0.715 0.715
4368 7739 12515 16556  17.930 22470 28190 31.891  38.258  36.893
NB 0574 0576 0573 0.569 0.575 0.575 0574 0.574 0.574 0.575

0.175 0.278 0.450 0.540 0.638 0.750 0.800 0.908 0.958 0.998
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Table 4. Fitness score using LDW PSO

Fitness score per epoch/time (minutes)

ML algorithm ¢ 10 15 20 25 30 35 40 45 50
KNN 0706  0.710 0.712 0.716 0.713 0.712 0.712 0.714 0.711 0.713
96.485 150.469 232.339 279.876 306.199 399.952 420.486 481.948 500.390 525.624
DT 0699 0711 0.711 0.715 0.725 0.723 0.719 0.714 0.720 0.715
0.640  0.733 0.889 1.065 1.295 1.328 1.344 1.633 1.768 1.764
RF 0.707  0.716 0.713 0.719 0.720 0.716 0.713 0.722 0.724 0.718
5052 8277 12313 16121 19.158 23516 28.384 31011 35753  37.717
NB 0549 0574 0574 0.575 0.571 0.575 0572 0.575 0.574 0.575
0176  0.298 0.427 0.582 0.609 0.756 0.791 0.884 1.012 1.022
Table 5. Fitness score using Phasor PSO
. Fitness score per epoch/time (minutes)
ML algorithm 10 15 20 25 30 35 40 45 50
KNN 0709 0712 0.710 0.710 0.711 0.711 0.712 0.713 0.712 0.714
44981 103.361 214.953 292.668 154.886 484.893 531.359 596.694 374.391 520.256
DT 0715  0.672 0.696 0.712 0.715 0.707 0.719 0.712 0.714 0.722
0179  0.280 0.436 0.641 0.741 0.801 1.085 1.050 1.191 1.326
RF 0711  0.714 0.710 0.720 0.716 0.718 0.722 0.727 0.720 0.723
4004 8777 12912 17081 18072 25035 28.116 29.232 35306  38.996
NB 0558  0.570 0572 0.575 0.572 0573 0.567 0.574 0.574 0.574

0.165 0.288 0.421 0.562 0.562 0.562 0.802 0.802 0.963 0.990

In Table 2, we can see a comparison of the KNN, DT, and RF ML algorithms against feature
selection using the original PSO. The highest fitness score for the KNN algorithm is 0.714, while the highest
fitness score for the DT algorithm is 0.721. The two highest fitness scores were at epoch 45. Then, the RF
algorithm obtained the highest fitness score of 0.727 at epoch 30. The score on the DT was the highest value.
The highest fitness score in NB is 0.575. This value is the smallest fitness score compared to other
algorithms. Even so, NB can complete the feature selection task very quickly, followed by DT, RF, and the
longest KNN.

The results from AIW PSO can be seen in Table 3. The highest fitness score obtained by RF was
0.721 at epoch 10. Then, the DT algorithm was 0.720 at epoch 25 and 0.715 for the KNN algorithm. NB
obtained the smallest fitness score with a value of 0.576 at the 10th epoch. Meanwhile, the fastest time was
obtained by Naive Bayes with a maximum process of 0.998 minutes, followed by DT 1,350 minutes, RF
36,893 minutes, and KNN 560.38 minutes.

In contrast to the previous table, the highest LDW PSO is obtained by DT with a value of 0.725 at
epoch 25. Then, the RF algorithm with a fitness score of 0.724 at epoch 45. Followed by KNN with a fitness
value of 0.716 at epoch 20. Lastly is NB, which has a value of 0.575 at epoch 50. The speed time is still the
same as the previous sequence, namely NB, DT, RF, and KNN.

The highest Phasor PSO is found in the RF algorithm at epoch 40 with a value of 0.727 at epoch 40.
This fitness score value is the largest compared to other PSO algorithms. Then followed by DT 0.722 epoch
50, then KNN 0.714 epoch 50, and finally NB 0.575 epoch 20. The fastest time is NB, then DT, RF, and the
longest is KNN. Of the 4 PSO algorithms that have been run, Phasor PSO is the fastest algorithm with a
processing time of 0.990 minutes, while AIW PSO is the shortest at 0.998 minutes, LDW PSO 1.022 minutes
and original PSO 1.040. The NB algorithm obtained all the fastest times.

A summary of Tables 2 to 5 is in Table 6. The highest fitness score is 0.7272 in the RF algorithm with
Phasor PSO and produces 14 feature selections. Then, the DT algorithm with LDW PSO with a value of 0.725
produces 20 selected features. Followed by KNN with LDW PSO value 0.716, finding 24 feature selections.
Finally, NB with AIW PSO of 0.576 produces 19 feature selections. Based on the highest fitness score,
researchers used 14 feature selections. These features include: geo_level 1 id, geo_level 2_id, geo_level _3_id,
foundation_type, has_superstructure_adobe_mud, has_superstructure_stone_flag, has_superstructure_mud
_mortar_brick, has_superstructure_cement_mortar_brick, has_superstructure_timber, legal_ownership_status,
has_secondary _use_agriculture,  has_secondary use health_post,  has_secondary use gov_office, and
has_secondary _use_use_police. Then the researcher will compare before and after using feature selection.
Table 7 shows the accuracy of the ML algorithm with 38 complete features and compared with the accuracy
after feature selection with 14 features. The KNN, DT, and RF algorithms have experienced improvements.
DT before feature selection gets an accuracy of 65.722%, increasing to 72.753%, with a difference of
7.031%. Then the KNN algorithm rose from 67.282% to 2.958% become 70.240%. RF obtained the highest
accuracy value from 71.729% to 72.989%, an increase of 1.260%. The smallest accuracy was NB, from
57.287%, decreasing to 57.017%. NB decreased -0.270%.
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Table 6. Best fitness score using All PSO

Best fitness score

ML algorithm Original PSO AW PSO LDW PSO _ Phasor PSO Number of features after feature selection
KNN 0.714 0.715 0.716 0.714 24
DT 0.721 0.720 0.725 0.722 20
RF 0.727 0.721 0.7247 0.727 14
NB 0.575 0.576 0.575 0.575 19

Table 7. Result after and before

ML algorithm  Before feature selection (%)  Time (minutes)  After feature selection (%) Time (minutes) Difference acuracy

KNN 67.282 0.127 70.240 1.253 2.958
DT 65.722 14.434 72.753 6.345 7.031
RF 71.729 0.586 72.989 0.310 1.260
NB 57.287 0.004 57.017 0.001 -0.270

The processing time before and after feature selection in DT, RF, and NB is accelerated. The fastest
algorithm is NB from 0.004 to 0.0001 minutes. The second fastest was obtained by RF from 0.586 to
0.310 minutes. The longest algorithm obtained by the DT was from 14,434 to 6,345 minutes. In contrast to
the KNN algorithm, after feature selection, it takes longer, from 0.127 to 1.253 minutes.

4. CONCLUSION

In this research, a comparison of the accuracy results of earthquake damage prediction was carried
out with the Gorkha earthquake dataset without feature selection and after feature selection. The feature
selection algorithm used is PSO, by comparing original PSO, AIW PSO, LDW PSO, and Phasor PSO.
Feature selection using PSO is processed using epochs 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. The
classification algorithms used are KNN, DT, RF, and NB. Based on research, the RF algorithm with Phasor
PSO has the highest fitness score of 0.7272 at the 40th epoch. From this process, the Phasor PSO algorithm
succeeded in reducing features from 38 features to 14 features.

Based on the process after feature selection, it was found that the KNN, DT, and RF algorithms had
improved. The biggest increase was obtained by DT from 65.722% to 72.753%, with a difference of 7.031%.
Meanwhile, the best accuracy was obtained by RF from 71.729% to 72.989%. In the NB algorithm, it
decreased from 57.287% to 57.017%. NB decreased -0.270%. It happens because the features that are
removed during feature selection turn out to be important for Naive Bayes classification, causing a decrease
in accuracy. The processing time before and after feature selection in DT, RF, and NB is accelerated. In
contrast to the KNN algorithm, after feature selection, it takes longer, from 0.127 to 1.253 minutes. KNN
relies heavily on the distance between observations in the feature space. If certain features removed during
feature selection affect inter-observation distances, distance calculations can become more difficult and
require more processing time

In the future, this research work may include several areas that can be improved and expanded.
Some recommendations for future work are as follows: using deep learning algorithms to enhance model
performance and learning various hyperparameter tuning. It further improves accuracy by combining pre-
trained models, such as BERT or GPT. As well as building a real-time earthquake damage prediction system
so that it can immediately provide emergency response measures after an earthquake occurs.
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