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 Earthquakes have destroyed the economy and killed many people in many 

countries. Emergency response actions immediately after an earthquake 

significantly reduce economic losses and save lives, so accurate earthquake 

damage predictions are needed. This research looks at how machine learning 

(ML) techniques are used to predict damage from earthquakes. The ML 

algorithms used are k-nearest neighbors (KNN), decision tree (DT), random 

forest (RF), and Naïve Bayes (NB). Feature selection is necessary, it needs 

to select the most relevant features from big data. One of the most 

commonly used algorithms to optimize ML is particle swarm optimization 

(PSO). PSO is also suitable for feature selection. This research compares 

various of PSO. Based on research, the RF algorithm with Phasor PSO has 

the highest fitness score. This process succeeded in reducing features from 

38 features to 14 features. Based on the process after feature selection, it was 

found that the KNN, DT, and RF algorithms had improved. RF obtained the 

best accuracy, namely 72.989%. The processing time in DT, RF, and NB is 

faster than before. In conclusion, the ML algorithm can be combined with 

PSO feature selection to create a classification model that provides better 

performance than without feature selection. 
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1. INTRODUCTION 

Earthquakes have destroyed the economy of citizens and killed many people in many countries [1]. 

An example of the largest earthquake with a magnitude of 9.5 on the Richter scale occurred in Valdivia, 

Chile, on May 22, 1960. The victims of this earthquake claimed 1,655 deaths, 3,000 were injured, and two 

million people were displaced. This disaster caused death and destruction in Hawaii, Japan, and the 

Philippines and caused a tsunami. The resulting losses amounted to US$550 million in Chile [2]. Emergency 

response actions immediately after an earthquake significantly reduce economic losses and save lives, so 

accurate and real-time estimates of seismic damage are needed [3]. Delayed or inaccurate seismic damage 

estimates can have severe consequences [4]. 

Developing techniques to predict disaster damage can reduce casualties and economic losses [5]. 

Various research and studies have been carried out that focus on predicting multiple types of natural disasters, 

such as earthquakes [1], [6], [7] landslides [5], [8] liquefaction [9], rock explosions [10], drought, floods, and 

storms [11]. This research focuses on exploring the application of various machine learning (ML) methods in 

predicting earthquake damage. Various ML algorithms, such as k-nearest neighbors (KNN), random forest 

https://creativecommons.org/licenses/by-sa/4.0/
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(RF), decision tree (DT), and Naïve Bayes (NB), are often used in multiple fields, including research discussing 

disasters. For example, KNN is used in earthquake prediction models [12], the RF algorithm in disaster 

prediction [13], as well as DT and NB, which are also applied in similar disaster prediction analyses [14]. 

In the context of ML, feature selection is a necessary process. Need to select the most relevant 

features from big data. Relevant features can reduce computational complexity and improve temporal models' 

accuracy. One of the most commonly used algorithms to optimize ML is particle swarm optimization (PSO). 

PSO suits multiobjective optimization challenges by efficiently exploring complex and large-dimensional 

solution spaces. The PSO process searches for ideal solutions by mimicking the behavior of a flock of birds or 

a swarm of particles when searching for a perfect solution, repeatedly changing candidate solutions based on 

their previous performance and the performance of their neighbors in the solution space. PSO can be used as a 

powerful and flexible multiobjective optimization technique [15]. Implementing PSO can increase the 

accuracy of image datasets [16] and be used for random noise reduction of seismic activity in deserts [17]. 

Research about predicted seismic damage on a regional scale using a data set of building damage 

during the 2015 Nepal Gorkha earthquake was done using the ML method, namely random forest regression 

(RFR). This research classifies damage into three classes, green, amber, and red, based on the level of post-

earthquake damage. The results obtained an average accuracy of 0.68, which shows that limiting learning to 

basic building characteristics such as number of floors, height, base area, and building age produces reliable 

predictions of building damage [18]. The feature selection technique can increase the accuracy of predicted 

earthquakes. This research applied various algorithms or feature selection techniques based on different 

searches, such as population, local, ranking, and evaluator-based searches, such as correlation, consistency, 

and distance matrices on earthquake data for 47 years in Southern California. The result is that the number of 

existing attributes can be reduced by up to 80%, thereby improving the matrix from the original [1]. This 

research will combine the power of ML in classification with the efficiency of PSO as feature selection, 

allowing the identification of the most relevant and influential features in predicting earthquake damage. By 

focusing analysis on critical features, this research improves the accuracy and efficiency of predictive models 

while providing deep insight into crucial factors influencing seismic damage. 

 

 

2. PROPOSED METHOD 

The research begins by preparing a dataset from earthquake damage data. The dataset is separated 

into training and testing data, then processed using ML with the original data. Next, the researchers selected 

features using original PSO, adaptive inertia weight (AIW) PSO, linearly decreasing weight-particle swarm 

optimization (LDW PSO), and phasor PSO. After getting optimal features, training, and testing data are 

processed using ML again. At the end of the process is a diagnosis result, where researchers can determine 

whether ML and PSO can increase accuracy. The proposed model diagram is illustrated in Figure 1. 

  

 

 
 

Figure 1. Diagram of proposed model 

 

 

2.1.  Dataset 

The data that researchers use is global data that Subhash Ghimire has processed. This data was 

formed based on the Gorkha earthquake in Gandaki Pradesh, Nepal, at April 2015, with a magnitude of 7.8 
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on the Richter scale. The resulting losses amounted to $10 billion, about half of Nepal's nominal GDP. As 

many as 9,000 people died, millions of people were left homeless [18]. 

The data was collected by the Central Bureau of Statistics and Kathmandu Living Labs under the 

National Planning Commission Secretariat of Nepal. It is one of the most enormous post-disaster datasets 

ever assembled. This data offers insightful data on home circumstances, the effects of the earthquake, and 

socioeconomic and demographic statistics. This dataset has 40 columns or features and 260,601 rows of data. 

The building_id feature is not used because it contains a unique identifier. The damage_grade feature is used 

as a label. So, 38 features need to be processed. Other features consist of socio-economic-demographic 

statistics, earthquake impacts, and household conditions. The dataset features are described in Table 1. 
  
 

Table 1. Dataset’s features 
No Feature and description 

1 geo_level_1_id 
Building location is indicated by the geo level 1: 0 – 30 

2 geo_level_2_id 

Building location is indicated by the geo level 2: 0 – 1427 
3 geo_level_3_id 

Building location is indicated by the geo level 3: 0 – 12567 

4 count_floors_pre_eq 
the number of floors the structure had prior to the seismic activity 

5 age 
the building's age expressed in years 

6 area_percentage 

represents the building footprint's normalized area 
7 height_percentage 

the building footprint's normalized height. 

8 land_surface_condition 
the state of the land on which the structure was constructed. n, o, and t are possible values 

9 foundation_type 

the kind of foundation that is employed in construction. h, i, r, u, and w are possible values 
10 roof_type 

the kind of roof that was built. It is possible for n, q, and x 

11 ground_floor_type 
the ground floor's kind 

12 other_floor_type 

the kind of buildings used on levels higher than the ground (apart from the roof). Possible values: f, m, v, x, and z. 
13 position 

the building's position are possible values: j, o, s, t. 

14 plan_configuration 
building plan configuration; possible values: a, c, d, f, m, n, o, q, s, u are examples of possible values for the flag variables 

15 has_superstructure_adobe_mud 

16 has_superstructure_mud_mortar_stone 
17 has_superstructure_stone_flag 

18 has_superstructure_cement_mortar_stone 

19 has_superstructure_mud_mortar_brick 
20 has_superstructure_cement_mortar_brick 

21 has_superstructure_timber 

22 has_superstructure_bamboo 
23 has_superstructure_rc_non_engineered 

24 has_superstructure_rc_engineered 

25 has_superstructure_other  
binary variable specifies construct the superstructure 

26 legal_ownership_status 

the land's legal ownership status at the time a building was constructed 
27 count_families 

the number of families residing in the building; possible values are a, r, v, and w 

28 has_secondary_use 
29 has_secondary_use_agriculture 

30 has_secondary_use_hotel 

31 has_secondary_use_rental 
32 has_secondary_use_institution 

33 has_secondary_use_school 

34 has_secondary_use_industry 
35 has_secondary_use_health_post 

36 has_secondary_use_gov_office 

37 has_secondary_use_use_police 
38 has_secondary_use_other  

binary variable specifies whether the building was utilized for any secondary purposes  
damage_grade (LABEL) 

A prediction label for earthquake damage prediction. There are three levels of damage: i) indicates minimal harm, ii) indicates 

a moderate degree of harm, and iii) indicates nearly total devastation 
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2.2.  Machine learning algorithm 

2.2.1. K-nearest neighbors 

KNN is a simple and widely used ML algorithm for classification and regression. This algorithm is 

included in the ML category, which does not require training (non-parametric) and is instance-based [19]. 

This algorithm identifies the closest 'k' data points (neighbors) of an unknown data point. This approach 

categorizes new data points according to the majority class of their 'k' nearest neighbors. The most common 

distance formula is Euclidean distance, which is calculated as (1): 
 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1  (1) 

 

where 𝑥𝑖 and 𝑦𝑖 are the coordinates of two points in n-dimensional space. This algorithm selects 'k' nearest 

neighbors based on this distance, and the class or output value of the new point is determined based on these 

data. Other distances that can be used include Manhattan, Minkowski, and others, depending on the use case. 

  

2.2.2. Random forest 

RF is a ML algorithm for regression, classification, and other predictive modeling tasks [20]. This 

algorithm is a type of ensemble learning where the algorithm combines the results of various individual 

models to improve overall performance. How RF work: 

− Making DT: creating several DT using 'bagging' (bootstrap aggregating), where each tree is built from a 

random sample with a replacement from the original dataset. 

− Random feature selection: at each split in the DT, only a limited number of features are randomly selected. 

− Prediction combining: predictions from each DT are combined to create a final prediction. Classification 

is usually done through majority voting, whereas the average of the projections is used in regression. 

This algorithm relies more on creating and merging DT than specific mathematical calculations. RF 

effectiveness lies in its ability to reduce overfitting while maintaining high accuracy, making it a popular 

choice for various machine-learning applications. 

 

2.2.3. Decision tree 

DT are methods rooted in tree-like structures used in data mining and ML for decision-making 

processes. This method operates by taking a set of input attributes and producing a Boolean decision as its 

output. Each route in the tree represents a series of data splits, culminating in a Boolean result found at the 

final node, known as a leaf node. Its application in practical scenarios is well known due to its ease of 

interpretation in both human and programming languages [21]. DT are often used in various applications, 

from classification and regression to detecting important features in data sets. DT are built through an 

algorithmic process that breaks down data based on certain criteria. However, there are key concepts and 

calculations involved in making a DT, such as: 

− Node splitting: decisions about how to split nodes are based on metrics such as Gini Impurity and entropy 

as (2) and (3): 
 

𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ (𝑝𝑖)2 
𝑐

𝑖=1
 (2) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 . 𝑙𝑜𝑔2(𝑝𝑖)
𝑐

𝑖=1
  (3) 

 

where: 𝑐 is number of classes in the dataset and 𝑝𝑖 is proportion of samples belonging to class 𝑖 in the dataset. 

− Tree pruning: this is not a formula but rather a process for removing parts of the tree that may be based on 

noise or overfitting. 

These calculations help determine where divisions should be made in the tree and how deep the tree 

should grow. The actual structure of a DT is built algorithmically by applying these calculations repeatedly to 

break down the data in the most effective way until a stopping criterion is met. 
 

2.2.4. Naïve Bayes 

Naive Bayes is a classification method in ML that is based on Bayes' Theorem. This method is 

nicknamed "naive" because of its simple assumption, namely that the features in a dataset are considered 

independent of each other. It means that other features do not influence the presence or absence of a feature 

in the same class. This approach has proven to be very efficient, especially in processing large datasets and is 

often used for text classification tasks, including spam filtering and sentiment analysis. The Naive Bayes 

algorithm works by utilizing training data to calculate probabilities. Then, use the probability of each 

attribute from the test data for all existing classes. The class with the highest probability is then selected as 

the label of the test data in question, with the Bayes Theorem as (4): 
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𝑃(𝑋|𝐻) =
𝑃(𝑋|𝐻).𝑃(𝐻)

𝑃(𝑋)
 (4) 

 

where P(X|H) is the conditional probability of hypothesis H, considering that data X has occurred. This value 

is called the posterior probability, which is the probability of a hypothesis after considering the evidence. 

Meanwhile, P(X|H) is the probability that data X will occur if the hypothesis H is true, known as the 

likelihood. P(H) is the initial probability of the hypothesis before looking at the data or prior probability. 

Finally, P(X) is the total probability of data X and is known as marginal probability or evidence [12]. 

 

2.2.5. Evaluation 

The classification evaluation process produces a confusion matrix. The matrix consists of the number 

of correct predictions, namely true positive (TP) and true negative (TN), as well as the number of incorrect 

predictions, namely false positive (FP) and false negative (FN). TP consists of the number of positive detected 

positive data. TN refers to the number of actual negative data. FP is the number of negative data that were 

incorrectly classified as positive. In contrast, FN is the number of positive incidents categorized as negative. 

Accuracy provides an idea of how much a classification model can predict correctly. Accuracy is calculated 

from the number of TP and TN divided by the total number of predictions [12] as (5): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5) 

   

2.3.  Particle swarm optimization 

As explained in the study, Eberhart and Kennedy describe PSO as a stochastic search method that 

uses a group of individuals to simulate the behaviour of a flock of birds to achieve an optimal solution. PSO 

is an approach in relatively modern swarm intelligence where each particle in the swarm iteratively adjusts its 

trajectory based on its personal best and overall swarm experience to navigate towards a globally optimal 

solution. Each particle in the PSO iteration updates its position and velocity based on the extreme values that 

have been recorded [22]. 

The optimization procedure in PSO goes through various stages, such as initializing each particle 

randomly, evaluating the fitness of each particle based on a predetermined fitness function [23], updating the 

speed and position of the particle based on its best position (Pbest) and the best position of the group (Gbest) 

and repeats the initialization and fitness evaluation process until the termination condition is met. Where the 

fitness function in PSO is a measure of how well a particle solution performs in solving an optimization 

problem by evaluating the quality of the particle's position in the search space. The fitness function is usually 

defined based on the specific problem being solved, which can be a mathematical function that calculates the 

goal or objectives of the optimization problem. In this way, the stages above will be carried out in research 

on the use of PSO, as shown in Figure 2. 

 

2.3.1. Adaptive inertia weight particle swarm optimization 

As has been explained, performance on PSO is greatly influenced by the inertial weight parameter. In 

traditional PSO, the inertia weight is often set as a constant, so it is considered inefficient. Therefore, AIW is 

used as a mechanism to regulate the influence of particle speed from the previous iteration on the speed in the 

current iteration. Using AIW means the values in the inertia weights can adjust dynamically throughout the 

search process. The goal is to enable particles to explore the search space more efficiently by maintaining global 

exploration early in the search process with higher inertial weights and then increasing local exploitation 

capabilities by reducing inertial weights in response to information obtained during the search [24]. 

 

2.3.2. Linearly decreasing inertia weight particle swarm optimization 

LDW PSO is a variant of the PSO algorithm that changes the weight inertia value linearly during 

iteration. At the beginning of the iteration, the LDW PSO weight inertia value increases to encourage exploration 

of a wider search space. However, as the weight inertia linearly decreases, the particles can concentrate more to 

exploit promising areas. LDW PSO has attracted attention in several contexts, one of which is feature selection, 

where its ability to adapt to changes in convergence speed can help find more suitable features [25]. 

  

2.3.3. Adaptive inertia weight particle swarm optimization 

PSO is a creative version of the PSO algorithm that introduces the idea of phases or Phasors in the 

movement of particles. This phase shows angles in complex coordinates and replaces conventional velocity and 

position values. This principle is used by PPSO to provide more adaptive directions and velocities to particles in 

the search space. In this way, P PSO can explore the search space efficiently by dynamically adjusting the 

particle velocity based on the surrounding information. In addition, the problem of slow convergence can be 

easily overcome by P PSO. PSO P's ability to adapt to high levels of complexity and dimensionality [26]. 
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Figure 2. PSO model flowchart 
 

 

3. RESULTS AND DISCUSSION  

In this chapter, we will present a comparison of the results of feature selection using PSO. Then a 

comparison of the best accuracy will be carried out between ML algorithms without feature selection and 

with feature selection. There are ten epochs used, including 5, 10, 15, 20, 25, 20, 35, 40, 45, and 50. The 

comparison results between the ML algorithm and various PSO selection features are in Tables 2 to 5. 

 

 

Table 2. Fitness score using original PSO 

ML algorithm 
Fitness score per epoch/time (minutes) 

5 10 15 20 25 30 35 40 45 50 

KNN 0.712 0.713 0.710 0.709 0.711 0.713 0.711 0.714 0.714 0.713 
108.143 200.236 269.260 320.220 371.179 396.587 441.237 521.224 536.347 573.270 

DT 0.714 0.708 0.713 0.711 0.716 0.711 0.712 0.711 0.721 0.715 

0.165 0.450 1.230 1.331 1.617 1.685 1.901 1.940 1.994 2.150 
RF 0.713 0.711 0.708 0.717 0.718 0.727 0.721 0.722 0.725 0.718 

5.052 8.277 12.313 16.121 19.158 23.516 28.384 31.011 35.753 37.717 

NB 0.429 0.574 0.575 0.572 0.572 0.574 0.573 0.573 0.575 0.575 

0.132 0.309 0.434 0.584 0.632 0.759 0.887 0.944 0.998 1.040 

 

 

Table 3. Fitness score using AIW PSO 

ML algorithm 
Fitness score per epoch/time (minutes) 

5 10 15 20 25 30 35 40 45 50 

KNN 0.708 0.711 0.711 0.711 0.712 0.711 0.712 0.712 0.711 0.715 

91.276 184.351 230.059 287.779 322.702 394.364 427.094 484.741 481.910 560.380 
DT 0.677 0.703 0.710 0.712 0.720 0.713 0.714 0.716 0.714 0.715 

0.179 0.300 0.456 0.551 0.694 0.860 0.896 1.251 1.264 1.350 

RF 0.709 0.721 0.720 0.711 0.716 0.720 0.717 0.720 0.715 0.715 
4.368 7.739 12.515 16.556 17.930 22.470 28.190 31.891 38.258 36.893 

NB 0.574 0.576 0.573 0.569 0.575 0.575 0.574 0.574 0.574 0.575 

0.175 0.278 0.450 0.540 0.638 0.750 0.800 0.908 0.958 0.998 
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Table 4. Fitness score using LDW PSO 

ML algorithm 
Fitness score per epoch/time (minutes) 

5 10 15 20 25 30 35 40 45 50 

KNN 0.706 0.710 0.712 0.716 0.713 0.712 0.712 0.714 0.711 0.713 

96.485 150.469 232.339 279.876 306.199 399.952 420.486 481.948 500.390 525.624 

DT 0.699 0.711 0.711 0.715 0.725 0.723 0.719 0.714 0.720 0.715 
0.640 0.733 0.889 1.065 1.295 1.328 1.344 1.633 1.768 1.764 

RF 0.707 0.716 0.713 0.719 0.720 0.716 0.713 0.722 0.724 0.718 

5.052 8.277 12.313 16.121 19.158 23.516 28.384 31.011 35.753 37.717 
NB 0.549 0.574 0.574 0.575 0.571 0.575 0.572 0.575 0.574 0.575 

0.176 0.298 0.427 0.582 0.609 0.756 0.791 0.884 1.012 1.022 

 

 

Table 5. Fitness score using Phasor PSO 

ML algorithm 
Fitness score per epoch/time (minutes) 

5 10 15 20 25 30 35 40 45 50 

KNN 0.709 0.712 0.710 0.710 0.711 0.711 0.712 0.713 0.712 0.714 

44.981 103.361 214.953 292.668 154.886 484.893 531.359 596.694 374.391 520.256 
DT 0.715 0.672 0.696 0.712 0.715 0.707 0.719 0.712 0.714 0.722 

0.179 0.280 0.436 0.641 0.741 0.801 1.085 1.050 1.191 1.326 

RF 0.711 0.714 0.710 0.720 0.716 0.718 0.722 0.727 0.720 0.723 
4.004 8.777 12.912 17.081 18.072 25.035 28.116 29.232 35.306 38.996 

NB 0.558 0.570 0.572 0.575 0.572 0.573 0.567 0.574 0.574 0.574 
0.165 0.288 0.421 0.562 0.562 0.562 0.802 0.802 0.963 0.990 

 

 

In Table 2, we can see a comparison of the KNN, DT, and RF ML algorithms against feature 

selection using the original PSO. The highest fitness score for the KNN algorithm is 0.714, while the highest 

fitness score for the DT algorithm is 0.721. The two highest fitness scores were at epoch 45. Then, the RF 

algorithm obtained the highest fitness score of 0.727 at epoch 30. The score on the DT was the highest value. 

The highest fitness score in NB is 0.575. This value is the smallest fitness score compared to other 

algorithms. Even so, NB can complete the feature selection task very quickly, followed by DT, RF, and the 

longest KNN.  

The results from AIW PSO can be seen in Table 3. The highest fitness score obtained by RF was 

0.721 at epoch 10. Then, the DT algorithm was 0.720 at epoch 25 and 0.715 for the KNN algorithm. NB 

obtained the smallest fitness score with a value of 0.576 at the 10th epoch. Meanwhile, the fastest time was 

obtained by Naive Bayes with a maximum process of 0.998 minutes, followed by DT 1,350 minutes, RF 

36,893 minutes, and KNN 560.38 minutes. 

In contrast to the previous table, the highest LDW PSO is obtained by DT with a value of 0.725 at 

epoch 25. Then, the RF algorithm with a fitness score of 0.724 at epoch 45. Followed by KNN with a fitness 

value of 0.716 at epoch 20. Lastly is NB, which has a value of 0.575 at epoch 50. The speed time is still the 

same as the previous sequence, namely NB, DT, RF, and KNN. 

The highest Phasor PSO is found in the RF algorithm at epoch 40 with a value of 0.727 at epoch 40. 

This fitness score value is the largest compared to other PSO algorithms. Then followed by DT 0.722 epoch 

50, then KNN 0.714 epoch 50, and finally NB 0.575 epoch 20. The fastest time is NB, then DT, RF, and the 

longest is KNN. Of the 4 PSO algorithms that have been run, Phasor PSO is the fastest algorithm with a 

processing time of 0.990 minutes, while AIW PSO is the shortest at 0.998 minutes, LDW PSO 1.022 minutes 

and original PSO 1.040. The NB algorithm obtained all the fastest times. 

A summary of Tables 2 to 5 is in Table 6. The highest fitness score is 0.7272 in the RF algorithm with 

Phasor PSO and produces 14 feature selections. Then, the DT algorithm with LDW PSO with a value of 0.725 

produces 20 selected features. Followed by KNN with LDW PSO value 0.716, finding 24 feature selections. 

Finally, NB with AIW PSO of 0.576 produces 19 feature selections. Based on the highest fitness score, 

researchers used 14 feature selections. These features include: geo_level_1_id, geo_level_2_id, geo_level_3_id, 

foundation_type, has_superstructure_adobe_mud, has_superstructure_stone_flag, has_superstructure_mud 

_mortar_brick, has_superstructure_cement_mortar_brick, has_superstructure_timber, legal_ownership_status, 

has_secondary_use_agriculture, has_secondary_use_health_post, has_secondary_use_gov_office, and 

has_secondary_use_use_police. Then the researcher will compare before and after using feature selection.  

Table 7 shows the accuracy of the ML algorithm with 38 complete features and compared with the accuracy 

after feature selection with 14 features. The KNN, DT, and RF algorithms have experienced improvements. 

DT before feature selection gets an accuracy of 65.722%, increasing to 72.753%, with a difference of 

7.031%. Then the KNN algorithm rose from 67.282% to 2.958% become 70.240%. RF obtained the highest 

accuracy value from 71.729% to 72.989%, an increase of 1.260%. The smallest accuracy was NB, from 

57.287%, decreasing to 57.017%. NB decreased -0.270%. 
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Table 6. Best fitness score using All PSO 

ML algorithm 
Best fitness score 

Number of features after feature selection 
Original PSO AIW PSO LDW PSO Phasor PSO 

KNN 0.714 0.715 0.716 0.714 24 
DT 0.721 0.720 0.725 0.722 20 

RF 0.727 0.721 0.7247 0.727 14 

NB 0.575 0.576 0.575 0.575 19 

 

 

Table 7. Result after and before 
ML algorithm Before feature selection (%) Time (minutes) After feature selection (%) Time (minutes) Difference acuracy 

KNN 67.282 0.127 70.240 1.253 2.958 

DT 65.722 14.434 72.753 6.345 7.031 
RF 71.729 0.586 72.989 0.310 1.260 

NB 57.287 0.004 57.017 0.001 -0.270 

 

 

The processing time before and after feature selection in DT, RF, and NB is accelerated. The fastest 

algorithm is NB from 0.004 to 0.0001 minutes. The second fastest was obtained by RF from 0.586 to  

0.310 minutes. The longest algorithm obtained by the DT was from 14,434 to 6,345 minutes. In contrast to 

the KNN algorithm, after feature selection, it takes longer, from 0.127 to 1.253 minutes. 

 

 

4. CONCLUSION 

In this research, a comparison of the accuracy results of earthquake damage prediction was carried 

out with the Gorkha earthquake dataset without feature selection and after feature selection. The feature 

selection algorithm used is PSO, by comparing original PSO, AIW PSO, LDW PSO, and Phasor PSO. 

Feature selection using PSO is processed using epochs 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. The 

classification algorithms used are KNN, DT, RF, and NB. Based on research, the RF algorithm with Phasor 

PSO has the highest fitness score of 0.7272 at the 40th epoch. From this process, the Phasor PSO algorithm 

succeeded in reducing features from 38 features to 14 features. 

Based on the process after feature selection, it was found that the KNN, DT, and RF algorithms had 

improved. The biggest increase was obtained by DT from 65.722% to 72.753%, with a difference of 7.031%. 

Meanwhile, the best accuracy was obtained by RF from 71.729% to 72.989%. In the NB algorithm, it 

decreased from 57.287% to 57.017%. NB decreased -0.270%. It happens because the features that are 

removed during feature selection turn out to be important for Naive Bayes classification, causing a decrease 

in accuracy. The processing time before and after feature selection in DT, RF, and NB is accelerated. In 

contrast to the KNN algorithm, after feature selection, it takes longer, from 0.127 to 1.253 minutes. KNN 

relies heavily on the distance between observations in the feature space. If certain features removed during 

feature selection affect inter-observation distances, distance calculations can become more difficult and 

require more processing time 

In the future, this research work may include several areas that can be improved and expanded. 

Some recommendations for future work are as follows: using deep learning algorithms to enhance model 

performance and learning various hyperparameter tuning. It further improves accuracy by combining pre-

trained models, such as BERT or GPT. As well as building a real-time earthquake damage prediction system 

so that it can immediately provide emergency response measures after an earthquake occurs. 
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