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ABSTRACT

Although software-defined networking (SDN) has improved the network man-
agement process, but challenges persist in achieving efficient load balancing
among distributed controllers. Present architectures often suffer from uneven
load distribution, leading to significant performance deterioration. While dy-
namic binding mechanisms have been explored to address this issue, these
mechanisms are complex and introduce a significant latency. This paper pro-
poses SDNCTRLML , a novel approach that applies machine learning mech-
anisms to improve load balancing. SDNCTRLML introduces a scheduling
layer that dynamically assigns flow requests to controllers using machine learn-
ing scheduling algorithms. Unlike previous approaches, SDNCTRLML inte-
grates with the standard SDN switches and adapts to different scheduling algo-
rithms, minimizing disruption and network delays. Experimental results show
that SDNCTRLML has outperformed static-binding controllers models without
adding complexities of dynamic-binding systems.
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1. INTRODUCTION
Scalable network architectures are important in various network applications. They enable the pro-

vision of reliable and sufficient services for specific types of traffic [1]. Scalability could be achieved by
maintaining an overview of the states and conditions of networks worldwide as observed from a broader per-
spective by regulating the flow of the network traffic across underlying layers [2]. This has led to significant
changes in network design and management [3]. A prominent example of such a deployment is the Ethane
project [4], which introduces a network paradigm for SDNs that utilizes a central controller managing policy at
the flow level. According to Almadani et al. [5], the SDN paradigm has the advantage of separating the control
plane from the data plane, which leads to a faster and more dynamic approach compared to traditional network
architectures [6]. Prabakaran et al. [7] suggest that the control plane could be split into multiple virtual net-
works implementing different policies. This approach allows the SDN paradigm to address networking issues
from different perspectives [8], and to meet the requirements of emerging technologies like IoT and 5G [9].
The adoption of the SDN paradigm depends on its success in providing solutions to problems that could not be
addressed through conventional networking protocols and architectures. Large companies such as Microsoft
and Google have already implemented the SDN paradigm in their data centers [10]-[13].

The SDN architecture is composed of three main planes: the data, control, and application planes,

Journal homepage: http://beei.org



2414 ❒ ISSN: 2302-9285

as depicted in Figure 1. The data plane is responsible for forwarding packets, the control plane decides how
packets should be forwarded, and the application plane hosts network services [14]. The northbound API
facilitates communication between the control and application planes, enabling developers to build applications
without needing detailed knowledge of the controller operations within the data plane [15]. Different SDN
controllers come with their own Northbound APIs [16].

Conversely, the southbound API manages the transmission of control messages between the control
and data planes, establishing communication with forwarding elements. Figure 2 illustrates the SDN archi-
tecture’s structure. Each switch is equipped with OpenFlow (OF) capabilities, which include decision-making
logic based on flow rules. OpenFlow configures the forwarding tables of individual switches [17], [18]. SDN
supports programmability through various high-level APIs and languages, such as Procera [19], NetCore [20],
and Frenetic [21], providing flexible options for developing diverse SDN applications [22]-[25].

Figure 1. SDN architecture

Figure 2. SDN public view
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Artificial intelligence (AI), particularly machine learning (ML), significantly improves SDN load bal-
ancing through capabilities such as traffic pattern prediction, anomaly detection, and real-time dynamic adjust-
ments. In AI-driven load balancing, traffic forecasting involves leveraging historical data to anticipate future
loads and proactively allocate resources. Anomaly detection identifies unusual patterns indicative of potential
issues like DDoS attacks or hardware malfunctions, while dynamic adjustments continuously optimize load
distribution based on real-time conditions and predictions [26].

Supervised learning methods, such as neural networks (NNs) [27], support vector machines (SVMs)
[28], decision trees (DTs) [29], ensemble approaches, and deep learning [30], are extensively applied in SDN.
These techniques, including NNs, SVMs, and DTs, are used for tasks like intrusion detection and prevention
[31], [32], controller placement [33], load balancing [34], performance forecasting [33], SLA enforcement,
routing, and virtual machine placement [35]. NNs are particularly effective in applications such as intrusion
detection [31], [36], load balancing, and SLA enforcement. For example, Chen and Yu [37] developed a
neural network-based collaborative intrusion prevention architecture (CIPA), which used packet features like
ICMP ratios, short/long packet ratios, and SYN/ACK ratios, demonstrating superior detection of DDoS and
worm outbreaks with minimal computational overhead. Ge et al. [38] utilized multi-label classification with
NNs for forecasting global network allocations, outperforming DT and LR models and achieving a two-thirds
reduction in runtime. Luti [39] showed that NNs could effectively predict traffic demands in mobile networks
with minimal optimality gaps. Similarly, Nandy et al. [40] implemented an NN-based SDN intrusion detection
system achieving a 97.3% accuracy using the NSLKDD dataset. Gures et al. [41] improved load balancing
performance with NNs, outperforming static Round Robin strategies by reducing network latency by 19.3%.

Shaji et al. [42] used a neural network approach incorporating the Levenberg-Marquardt algorithm for
predicting SDN performance, yielding low mean squared error (MSE). Sarma et al. [43] applied long short-term
memory (LSTM) networks for robust SLA enforcement in SDNs, which outperformed feedforward networks
in predicting service-level breaches. Ashtari et al. [44] introduced a knowledge-defined networking approach
using NNs for routing, achieving low MSE. SVMs also play a vital role in SDN for detecting DDoS attacks,
traffic engineering, and routing. Long and Jinsong [45] presented an SVM-based solution for distinguishing
legitimate traffic from DDoS attacks, which showed high accuracy and reduced false positives. Khedr et al.
[46] applied SVMs with flow and packet-level features for DDoS detection with similarly high performance.
SVMs have also been utilized for QoS-aware routing [47], traffic engineering [48], and other tasks [49].

Unsupervised learning techniques like K-means, self-organizing maps (SOM), hidden markov models
(HMM), and restricted boltzmann machines (RBMs) are essential for traffic analysis and anomaly detection in
SDNs. For example, K-means clustering and probabilistic models were used by Tan et al. [50] and Kanj et al.
[51] for attack detection in SDN cloud environments. These methods utilized features such as session duration,
packet rate, and TCP flag presence to group and analyze network traffic. Other researchers, like Chetouane and
Karoui [52], compared various ML algorithms for DDoS detection, finding Naive Bayes to have the highest
detection rate, while K-means exhibited faster response times. SOM has been effectively used for intrusion
detection in SDN, though it can face challenges in matching traffic in flow tables [53]. DSOM, a distributed
SOM approach, showed high accuracy in handling SDN performance issues under flooding attacks by training
at each switch and clustering with K-means [54]. While supervised learning is popular for traffic classification,
unsupervised methods are emphasized for their ability to detect patterns without annotated datasets. This
characteristic allows for discovering new network applications, making unsupervised methods like K-means
clustering a practical choice for models like SDNCTRLML

.
SDN distributed architectures such as ONOS [55] aim to enhance the SDN scalability and reliability

by statically connecting controllers to switches. This setup creates a load imbalance issue due to the fluctuat-
ing switch traffic, which has a negative impact on the network performance. To address this problem, recent
studies have employed switch migration mechanisms to redistribute switches among different controllers. De-
spite promising results, these approaches are complex and experience high latency due to the time overhead
associated with the migration process.

The integration of the AI into SDN is promising to help in the load balancing problem. AI provides
more intelligence and automated network management capabilities. Previous studies have highlighted ongoing
efforts to incorporate AI into SDN [56]. Applying artificial intelligence to software-defined networks revolu-
tionizes network management by infusing intelligent decision-making capabilities into the network infrastruc-
ture. Through AI, SDNs can dynamically adapt to changing network conditions, optimize traffic routing, and
enhance security protocols in real-time. Machine learning algorithms analyze vast amounts of network data to
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identify patterns, predict network behavior, and proactively mitigate potential issues. Additionally, AI-driven
SDNs enable autonomous network management, reducing the need for manual intervention and streamlining
operations. This integration not only improves network performance and reliability but also lays the ground-
work for more efficient and resilient digital ecosystems. By leveraging AI, SDNs can intelligently distribute
control plane tasks among multiple controllers, optimizing workload distribution and minimizing latency. This
ensures efficient utilization of resources and enhances network scalability and resilience. Additionally, AI-
driven load balancing enables SDNs to dynamically adjust controller assignments based on changing network
conditions, ensuring optimal performance even during peak traffic periods or in the presence of network fail-
ures. By integrating AI into load balancing for distributed controllers, SDNs can achieve higher levels of
automation, efficiency, and reliability in managing complex network environments. This study looked into the
effects of AI machine learning approaches for load balancing. While previous studies investigated the impact
of AI machine learning approaches for load balancing, they did not explicitly address its influence on response
time and utilization.

This paper introduces SDNCTRLML
, a novel architecture for distributed controllers that uses AI

machine learning approaches for load balancing. SDNCTRLML
ensures load balancing among controllers

through a scheduling layer that enables switch-controller association without fixed bindings. This allows
switches to send messages to different controllers based on scheduling algorithms without interrupting switch
re-association. This yields to maintaining network performance and minimizing the overall delays.
SDNCTRLML

provides low disturbance to the network performance. The scheduling process occurs seam-
lessly without interrupting switch re-association, ensuring service continuity and minimal network delays.
SDNCTRLML

is transparent to switches. SDNCTRLML
does not introduce additional overhead for switches.

This simplifies the deployment and configuration processes. It is able to assign a unique anycast controller IP
address to switches that helps in simplifying the network deployment. SDNCTRLML

provides high compati-
bility. It works with popular SDN distributed controller systems like ONOS [57] and Onix [58]. Additionally,
SDNCTRLML

also provides scalability. It allows dynamic adjustment of controller numbers to meet real-
time network demands. It provides flexibility since it supports various scheduling algorithms. SDNCTRLML

presents a promising solution for achieving low response times and high throughput. This ensures efficient
load balancing among distributed controllers without compromising network performance or requiring addi-
tional switch configurations. Key points highlighted in the paper are:
- Uneven load distribution: existing distributed controller architectures suffer from uneven load distribution

due to fixed associations between controllers and switches.
- Complexity and latency: prior attempts at solving this issue through switch migration introduce significant

system complexity and network latency.
- Proposed solution: SDNCTRLML

- Load balancing through scheduling layer: introduces a scheduling layer that intercepts flow requests from
switches.

- Machine learning techniques: utilizes machine learning algorithms to allocate flows to different controllers
based on selected scheduling algorithms.

- Seamless integration: operates without requiring additional modifications to standard SDN switches.
- Adaptability: supports various scheduling algorithms while minimizing disruption to services and network

delay.
The main contributions of this work could be listed below:

- Prototype development: developed a prototype based on machine learning approaches that is integrated with
different distributed controller systems.

- Experimental results: demonstrates the superiority of SDNCTRLML
over reference model systems.

- Performance metrics: outperforms in terms of system throughput and response time.
- Complexity mitigation: achieves superior performance without introducing complexities associated with

dynamic-binding controller systems.
This paper presents SDNCTRLML

, an innovative method that leverages machine learning to enhance
load balancing. SDNCTRLML

introduces a scheduling layer that utilizes machine learning algorithms to dy-
namically allocate flow requests to controllers. In contrast to earlier methods, SDNCTRLML

seamlessly in-
tegrates with standard SDN switches and accommodates various scheduling algorithms, reducing disruptions
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and network delays. Experimental results demonstrate that SDNCTRLML
surpasses static-binding controller

models while avoiding the complexities associated with dynamic-binding systems. The paper is organized as:
section 1 has the background, problem statement and the proposed solution. Section 2 has the method used in
this article. Section 3 is outlines the result and discussion. Finally, section 4 has the conclusion.

2. METHOD
2.1. Reference model

In this work, we used the BLAC [59] model as a reference model to be compared to this work. BLAC
stands for bindingless architecture for distributed controllers (BLAC). BLAC achieves load balancing among
controllers through a scheduling layer. The flow of requests are dispatched to different controllers through
scheduling algorithms. The process is proceeded transparently with no extra modification required for off-
the-shelf SDN switches. The scheduling layer is a crucial component in network systems that manages the
allocation of resources and prioritizes tasks or data transmission. Its primary objective is to optimize the uti-
lization of network resources and ensure efficient and reliable service delivery. To achieve this, the scheduling
layer supports various scheduling algorithms, allowing for flexibility in adapting to different network require-
ments and traffic conditions. By employing different scheduling algorithms, such as round-robin, weighted fair
queuing, or priority-based scheduling, the layer can dynamically allocate resources based on factors like prior-
ity, quality of service (QoS) requirements, available bandwidth, or latency constraints. This flexibility enables
the scheduling layer to accommodate diverse network environments and application-specific needs.

A well-designed scheduling layer aims to minimize disruption of service and network delay. It
achieves this by making intelligent decisions on resource allocation, considering factors such as the current
state of the network, traffic conditions, and QoS requirements. By efficiently managing resource allocation and
scheduling, the layer ensures that critical services receive appropriate resources without causing significant de-
lays or interruptions for other network activities. The scheduling layer plays a vital role in optimizing resource
utilization and ensuring reliable network performance. Its ability to support various scheduling algorithms
and minimize disruptions allows for effective management of network resources while delivering efficient and
uninterrupted services to users.

In this work, we chose BLAC as the reference model since it is a prototype that can work with various
distributed controller systems and conduct experiments to demonstrate its efficacy. BLAC is chosen as the
reference model, since according to its results, BLAC has proven to outperform its peers that use the static-
binding controller system in terms of both system throughput and response time without the complexity of the
dynamic-binding controller system.

2.2. Proposed model
The proposed model, named SDNCTRLML

, is a bindingless framework designed for distributed SDN
controllers, leveraging the K-means machine learning algorithm to achieve load balancing. The primary objec-
tive of SDNCTRLML

is to evenly distribute the workload within the SDN control plane. This is accomplished
by integrating a scheduling layer into existing SDN architectures, thereby enhancing load balancing seam-
lessly. This approach eliminates the need for time-consuming switch migration processes and modifications
to the existing switch configuration. To boost the flexibility and adaptability of the SDNCTRLML

architec-
ture, it incorporates multiple scheduling algorithms within the scheduling layer. This integration allows the
architecture to effectively manage variations in communication demand across the network. The flowchart for
SDNCTRLML

is illustrated in Figure 3.
The SDNCTRLML

architecture uses bindingless approach for distributed controllers. This ensures
load balancing among various controllers. SDNCTRLML

uses a scheduling layer that maintains a bindingless
switch-controller association, eliminating the need for a switch to be exclusively associated with a single master
controller. In this architecture, messages from switches are processed by multiple controllers. The scheduling
layer intercepts switch requests and distributes them among different controllers using selected scheduling
algorithms. This enables efficient load balancing that ensures that the workload is evenly distributed among
the controllers. By decoupling switches from specific controllers, SDNCTRLML

enhances the flexibility and
adaptability of the architecture. Switches can interact with any available controller, enabling better utilization
of resources and accommodating changes in the network conditions.
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Figure 3. Flowchart for the SDNCTRLML

The scheduling layer operates seamlessly during the switch re-association process resulting in minimal
disruption to the network performance. This uninterrupted scheduling process ensures that services remain
unaffected and network delays are kept to a minimum. Switches integrate with the SDNCTRLML

framework
without the need to any additional extensions to be installed. This ensures compatibility and also simplifies
the deployment process. SDNCTRLML

offers essential features that contribute to the establishment of a high-
performance SDN network with low response times and increased throughput. SDNCTRLML

assigns a single
anycast controller IP address to all switches. This approach eliminates the need for individual controller IP
addresses for each switch, making the network setup easier and more efficient. SDNCTRLML

integrates with
SDN distributed controller systems such as Onos [60] and Onix [61]. The high compatibility facilitates the
interoperability and the ease of integration of SDNCTRLML

with existing network environments that use these
controller systems. SDNCTRLML

offers the ability to dynamically update the number of controllers in real-
time to meet the changing network demand. This scalability feature ensures that the network can flexibly adapt
to varying traffic conditions and effectively allocate resources based on the evolving requirements.

The switch adapter module is responsible for handling the connections between switches and the
scheduling instance. Its primary function is to listen on an anycast IP address, which allows it to receive
requests from neighboring switches. Similarly, the controller adapter module handles the connections be-
tween the scheduling instance and the controllers. It facilitates communication and data exchange between the
scheduling layer and the controllers. Additionally, the controller adapter collects controller-related information
(CPU utilization) to assist in the scheduling decisions and the load balancing process. The scheduling mod-
ule is responsible for routing messages between switches and controllers based on the underlying scheduling
algorithms. To achieve controller load balancing, SDNCTRLML

integrates a scheduling layer into an SDN
network. The scheduling layer accommodates multiple scheduling instances. SDNCTRLML

exhibits flexibil-
ity by supporting a diverse array of scheduling algorithms, including randomized scheduling [62] and round
robin scheduling [63]. In Figure 4, we depict a single instance for simplicity, positioned between the switches
and controllers. The scheduling module determines the appropriate controller(s) to handle incoming switch
requests and ensures efficient load balancing. SDNCTRLML

leverages anycast technology to simplify config-
uration and reduce network latency, contributing to a streamlined and efficient network setup.

SDNCTRLML
employs a bindingless SDN architecture to resolve the issue of controller load imbal-

ance caused by the traditional switch-controller binding. In this model, switches are linked to a scheduling
layer rather than being directly attached to controllers. The scheduling layer facilitates transparent forward-
ing of packets from the switches to any available controller. The logical sequence of packet dispatching in
SDNCTRLML

, as illustrated in Figure 5, is as follows: the switch adapter first receives and processes the pack-

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2413–2428



Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 2419

ets from the switches, then forwards the Packet-In requests to the scheduling module. The scheduling module,
using its scheduling algorithms, makes a decision and instructs the controller adapter to send the request to
a designated controller. The controller adapter captures the Packet-Out responses from the controllers and
routes them back to the scheduling module. With this information, the scheduling module identifies the target
switch that should receive the response. This bindingless structure supports flexible and dynamic packet rout-
ing between switches and controllers, eliminating the limitations of conventional switch-controller binding and
efficiently mitigating controller load imbalance. Figure 5 illustrates the design of the SDNCTRLML

scheduler
and details the packet flow from switches through the SDNCTRLML

scheduling layer to the controllers.

Figure 4. SDNCTRLML
scheduling module

Figure 5. SDNCTRLML
operation

The proposed model, SDNCTRLML
, has the following assumptions:

- Assumed that all requests have the same workload
- All controllers have the same capacity
- CPU utilization is the load on a controller
- CPU is the throughput bottleneck of the controller
- CPU load is proportional to the request arrival rate
- Placed schedulers near the controllers
- Network delay between schedulers and controllers equals to zero
- Used load balancing per flow of data holding the same characteristics

SDNCTRLML
ensures load balancing while maintaining information consistency across controllers.

It utilizes the widely adopted network topology consistency maintenance mechanism inherent in distributed
controller systems. For instance, in the ONOS system, each controller preserves a coherent global network
view within its memory through a notification-based replication scheme. This approach allows SDNCTRLML

to route packets to various controllers without compromising the accuracy of the results. These packets, known
as independent requests, are processed based on the synchronized network topology that is accessible to all
controllers.

However, future applications like ONOS PIM may introduce dependent requests that require controller-
specific private information. To handle this, the scheduling layer in SDNCTRLML

can apply exception rules.

No binding machine learning architecture for SDN controllers (Wael Hosny Fouad Aly)
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For example, dependent packets can be consistently routed to the same controller to maintain processing accu-
racy. Alternatively, the mastership model can be upheld, applying exceptions only to packets that are universally
processable by any controller, such as ARP messages. These strategies help ensure that both independent and
dependent requests are processed correctly, maintaining the consistency of information among controllers.

In the SDNCTRLML
architecture, switches connect to the scheduling layer using the anycast tech-

nique. This technique offers several key advantages such as (1) simplicity: where the used anycast technique
allows multiple scheduling instances within a network to share the same anycast IP address. As a result, switch
configurations become simplified and uniform. By leveraging the anycast technique, switches automatically
connect to the scheduling instance that is closest to them in terms of proximity. This proximity-based con-
nection reduces network latency. Additionally, the scheduling instances in our architecture are cost-effective
and easy to create. They can be strategically positioned to achieve load balancing among them, ensuring a
balanced distribution of network traffic and minimizing network latency. Figure 4 has the details about the
implementation of the SDNCTRLML

scheduler module along with the controller association. The scheduler
has the controller workload monitor, scheduling library that is using weighted round robin, actuator system that
takes the action based on the load balancing status.

Algorithm ?? has the algorithm used for SDNCTRLML
. SDNCTRLML

utilizes machine learning
to improve load balancing in SDN networks. The algorithm dynamically assigns flow requests to controllers
based on the predicted load and network conditions. It leverages machine learning to dynamically assign flow
requests to controllers, thus optimizing load distribution.

Algorithm 1. ML-based load balancing for SDN-SDNCTRLML

1: Input: Flow requests F , Controllers C, Historical load data H
2: Output: Assignment of flow requests to controllers
3: Train machine learning model SDNCTRLML

using K-means machine learning to cluster historical load
data H

4: for each flow request f ∈ F do
5: Predict load on each controller c ∈ C using ML
6: Select controller cmin ← argminc∈C PredictedLoad(c)
7: Assign flow request f to controller cmin
8: Update load data H with new load on cmin
9: end for

10: return Assignment of flow requests

The machine learning model SDNCTRLML
is trained using K-means historical load data H . This data

includes information about previous flow requests and the resulting load on each controller. Various features
such as time of day, flow characteristics, and network conditions can be used for training. For each new flow
request f , the trained model ML predicts the load on each controller c ∈ C. The prediction is based on the
current state of the network and the characteristics of the flow request. The algorithm dynamically assigns
each flow request to the controller with the minimum predicted load. This ensures that the load is balanced
across all controllers, optimizing network performance. The proposed algorithm provides an effective method
for improving load balancing in SDN networks using machine learning.

3. RESULTS AND DISCUSSION
In this section, we provide the evaluation of SDNCTRLML

. Initially, we elaborate on the experimental
testbed utilized for gauging the response time and throughput of SDNCTRLML

. Subsequently, we undertake a
comparative analysis between SDNCTRLML

and the static binding controller system ONOS to underscore the
efficacy of our architecture.

3.1. Experiment setup
The experimental setup is established on Mininet [64], a network emulator that is widely employed

for exploring the functionalities of novel SDN components. However, its use for performance evaluation is
limited due to emulation overhead. To alleviate this, we adopt three strategies inspired by [64]. Initially, we
modify Mininet’s source code to create GRE tunnels between hosts, thereby reducing the traffic in the emulated
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data plane. Secondly, we reconfigure Mininet to enable vSwitches to directly inject Packet-In messages to
controllers, bypassing the data plane, and disable Flow-Mod message transmission to lessen switches’ flow
table overhead. These alterations render the performance evaluation on Mininet a reasonable reflection of a
real network [64]. Experiments are conducted on a testbed comprising five physical machines equipped with
quad-core 4 GHz Intel Core i7 processors and 16 GB DDR3 RAM, running the latest 1.6 stable version of
ONOS [60]. Demonstrating the feasibility and efficiency of SDNCTRLML

, we examine various applications
such as ACL, reactive routing, RabbitMQ, and reactive forwarding [60]. Results exhibit consistent trends
across these applications, focusing on performance gain rather than absolute values. Therefore, we present
results pertaining to reactive forwarding for illustration purposes. The system’s performance is tested with
different numbers of schedulers, revealing no significant differences in SDNCTRLML

effectiveness. This is
attributed to the controller, rather than the scheduler, being the primary performance bottleneck.

3.2. Discussion
Figure 6 has the response time trends for different scheduling algorithms in SDNCTRLML

and ONOS.
In ONOS, the response time remains nearly constant (around 1.5 ms) at arrival rates below 27,000 pkt/s. As the
rate exceeds the threshold, the response time significantly escalates. Conversely, with SDNCTRLML

, schedul-
ing algorithms exhibit more consistent response times, even at higher arrival rates. Notably, load distribution
among controllers significantly affects response times, with SDNCTRLML

demonstrating improved workload
balancing, thus reducing response times compared to ONOS.

Figure 6. SDNCTRLML
comparing SDNCTRLML

response time to other approaches

Figure 6 illustrates that ONOS’s response time remains stable at approximately 1.5 ms for arrival
rates below 27,000 packets per second (pkt/s). Once the arrival rate surpasses this point, the response time rises
significantly. For randomized scheduling and round-robin scheduling methods, the response time stays under
6 ms as long as the arrival rate is less than 38,000 pkt/s. The response time starts to increase sharply only when
the arrival rate exceeds 42,000 pkt/s. Similarly, with improved randomized scheduling and weighted round-
robin algorithms, the response time remains close to 5.5 ms even when the arrival rate goes beyond 3,000 pkt/s.
To put this into perspective, imagine each controller as an M/M/1 queue. When the service rate of the queue
exceeds the arrival rate, the service time (or response time) remains low. However, if the arrival rate greatly
exceeds the service rate, the queue length grows quickly, leading to a sharp increase in response time. This
explains the rapid escalation in response time as the arrival rate exceeds a certain threshold.

Figure 7 presents a comparison of throughput between SDNCTRLML
and BLAC across different

scheduling algorithms, where throughput is measured as CPU utilization. The results indicate that the overall
system throughput scales linearly with the number of controllers. Implementing SDNCTRLML

significantly
boosts system throughput compared to BLAC. Advanced scheduling algorithms, such as improved randomized
and weighted round-robin, show higher throughput compared to simpler scheduling methods.
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Figure 7. Throughput-comparing SDNCTRLML
CPU utilization to other approaches

Response times vary depending on the scheduling algorithm used, influenced by how requests are
distributed among controllers. In BLAC, the static nature of connections can lead to an uneven workload
distribution, causing some controllers to be overloaded while others are underutilized. This imbalance results
in longer response times, even at moderate overall system workloads. In contrast, SDNCTRLML

achieves a
more balanced workload distribution, improving the system’s ability to manage requests and reducing response
times.

To evaluate performance, we measure both CPU utilization of all controllers and response times for
different scheduling algorithms in SDNCTRLML

. The impact of the number of probes on response time
is particularly noteworthy: using probes substantially lowers response times, especially at higher Packet-In
arrival rates. However, excessive probes can add message overhead, which may negatively affect performance.
Maintaining a moderate probe count—such as two—proves beneficial, as shown in Figure 8.

When request demand is low, the number of probes per request has minimal impact on performance.
However, as the volume of incoming requests rises, the number of probes used becomes more critical. Figure 8
illustrates that using probes significantly reduces response time compared to random dispatching. For example,
at an arrival rate of 41,000 packets per second, employing probes reduces response time by more than 50%
relative to random dispatching. The figure also shows diminishing performance gains beyond two probes at
low request volumes, and a potential decline in performance under high load due to increased message overhead
with excessive probes. Therefore, in our experiments, we use two probes for enhanced randomized scheduling.

Figure 9 demonstrates that utilizing request buffering enhances performance, yet negligible improve-
ment is observed beyond buffering two requests. Over-burdening with buffered requests can deteriorate system
performance, especially under high request demand. Therefore, maintaining a request-buffering number of 2 is
chosen for implementation throughout our experiments. Figure 9 shows that the enhanced randomized schedul-
ing technique decreases response time further by using batch assignment. The red line depicts the “power of
two choices” method, where requests are dispatched without buffering. In a network with seven controllers,
algorithms employing batch assignment outperform the “power of two choices” technique because the sched-
ulers can more effectively find less loaded controllers by buffering requests. However, buffering more than two
requests rarely reduces response time. In fact, system performance can decline when additional requests are
buffered under high demand. This is because, as the number of incoming requests grows, the probability of
sampling a lightly loaded controller decreases, and response time worsens with increased buffering. Addition-
ally, high demand often causes traffic congestion, resulting in longer buffering times.
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Figure 8. Comparing probe numbers for SDNCTRLML
to other approaches

Figure 9. Comparing request buffering number for SDNCTRLML
to other approaches

We create traffic at a rate of 80,000 packets per second as depicted in Figure 10. It is clear that opti-
mizing the workload distribution for the controller enhances system performance. Notably, disparities in load
distribution are evident across various scheduling algorithms; three controllers are strained, operating at over
90% CPU utilization, while two controllers are underutilized, hovering around 45% CPU utilization. Conse-
quently, this imbalance results in response times exceeding 20 milliseconds. In contrast, the response time for
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SDNCTRLML
is notably shorter, approximately 9 milliseconds, across different scheduling algorithms. Figure

10 demonstrates that system performance improves with balanced controller workloads. When using BLAC
alone, the load imbalance is significant: three controllers become overloaded while two controllers are under-
utilized, leading to a response time exceeding 15 milliseconds. In contrast, SDNCTRLML

.achieves a much
lower response time, approximately 4 milliseconds, across various scheduling algorithms compared to BLAC.

Figure 10. Comparing controller’s workload for SDNCTRLML
to other approaches

4. CONCLUSION
The paper addresses the challenge of uneven load distribution in SDN caused by fixed associations be-

tween controllers and switches. It highlights the complexity and latency issues introduced by existing solutions
that use switch migration for load balancing. To tackle this, the paper introduces SDNCTRLML

, a novel ap-
proach employing a scheduling layer powered by machine learning to balance controller loads seamlessly. This
layer intercepts switch flow requests and allocates them to controllers using machine learning-based schedul-
ing algorithms. Notably, this process doesn’t require modifications to standard SDN switches and minimally
disrupts services while maintaining low network delay. The paper includes a prototype integrated with various
distributed controller systems and validates SDNCTRLML

through experiments, demonstrating its superior
performance in system throughput and response time compared to static-binding and reference model systems,
all without the complexities associated with dynamic-binding controller approaches. Recent observations indi-
cate that the SDNCTRLML

outperforms BLAC reference model by 13% in terms of response time and 14% in
terms of utilization. A future extension of this work is to use more complicated machine learning approaches
and compare the results to the current approach.
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