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The current research addresses the critical need for precise half-maximal
inhibitory concentration regression in the neurodegenerative condition
amyotrophic lateral sclerosis (ALS). Unavailable drug-induced gene
expressions and irrelevant molecular descriptors have yielded regression
models with less accuracy using traditional machine learning (ML). Drugs
can be converted to graph format and integrated with gene expressions to
learn drug-gene interactions better thereby producing precise half-maximal
inhibitory concentration regression models. To accomplish this, three
variants of graph neural networks (GNN) namely graph attention networks
(GAT), message passing neural networks, and graph isomorphism networks
are utilized in the proposed work. The gene expression profiles of ALS drug-
related genes were retrieved from the DepMap PRISM drug repurposing
hub, and the drug graphs with their accompanying half-maximal inhibitory
concentration values were obtained from the ChEMBL databases. The graph
is constructed for ninety approved drugs connected to 32 key protein targets
of ALS and its related conditions. The half-maximal inhibitory concentration
regression model trained with optimized hyperparameters in GAT performs
well with an R2 score of 0.92, a mean absolute error (MAE) of 0.20, and a
root mean square error (RMSE) of 0.17. This model produced better results
than other ML and deep learning models.
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1. INTRODUCTION

The process of predicting the problem of half-maximal inhibitory concentration (IC50) in
amyotrophic lateral sclerosis (ALS) is a complex task including exhaustive methods of identifying, and
improving drugs that can be used in disease treatment [1]. ALS [2], [3] is a degenerative neurological
disorder that affects the nerve cells responsible for voluntary muscle movement. Several important targets
require inhibition in ALS due to the mutations involved in them, like superoxide dismutase 1 (SOD1) [4],
TAR DNA-binding protein 43 (TDP-43) [5], C9orf72 repeat expansion [6], fused in sarcoma (FUS) [7],
proteostasis and protein quality control [8], glutamate excitotoxicity [9], neuroinflammation, mitochondrial
dysfunction [10], axonal transport [11], RNA metabolism and processing [12]. Precise prediction of 1C50
values is essential for understanding and combating the biochemical mechanisms underlying ALS and
directly aiding in drug discovery [13]-[16]. The analysis of machine learning (ML) and deep learning
algorithms is thoroughly discussed in this research.
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Early quantitative structure-activity relationship (QSAR) [17] technologies for IC50 prediction
lacked versatility and relied heavily on traditional ML methods using 2D and 3D molecular descriptors and
expert interpretation. Integrating big data with advanced ML algorithms has significantly enhanced QSAR
models' ability to handle unstructured data, thereby improving the process of discovering new drugs. The
review highlights the evolution of QSAR techniques, combining wet lab experiments, molecular dynamics
simulations, and ML approaches. The importance of merging data inputs to optimize drug development is
emphasized. A study [18] outlines an automated framework for QSAR model building, automating tasks like
data curation, feature selection, and validation, leading to 19% reduced error and 49% increased explained
variance. Another paper [19] explores meta-learning, improving QSAR prediction accuracy by up to 13%
across 2,700 datasets, showing that random forests with fingerprints as an alternative for molecular
descriptors often perform best. The final [20] study finds no universally superior algorithm for QSAR but
notes that non-linear methods, such as radial basis function support vector machine (RBF SVM), extreme
gradient boosting (XGBoost), and deep learning algorithms, generally outperform linear ones, with ensemble
methods providing further enhancements.

The regression of IC50 values relies on access to high-quality, annotated datasets. The data includes
both molecular and biological information. Integrating extensive datasets that include various targets,
compounds, their interactions, and disease data, such as gene expression, into ML algorithms is challenging.
Therefore, it has been overcome and prompted research into the utilization of deep learning in ALS 1C50
problems.

The paper by Deng et al. [21] has made a significant impact in the area of neurodegenerative
diseases. The dataset utilized in the research comprised substances sourced from Chinese medicine databases
and the ZINC database. The authors employed various artificial intelligence techniques, specifically deep
learning methods and XGBoost models, to identify molecules that bind to the target protein galectin 3.
Galectin 3 has been used as a protein that requires inhibition. The numerous modeling attempts by the deep
learning-based algorithm and the obtained R-square correlation coefficient of 0.9 on test sets demonstrated its
effectiveness. The XGBoost model produces a 0.97 R-square correlation coefficient and 0.01 mean square
error. The study by Knutson et al. [22] utilized the novel parallel graph neural networks (GNN) technique to
predict and assess complex chemical interactions. The thorough analysis showed that GNN can accurately
predict the protein-ligand complex activity by capturing the binary interactions that existed between them,
with test accuracy for GNN for ligand-feature interactions (GNNF) being 0.979 and for GNN for protein-
feature interactions (GNNP) being 0.958. The interactions between proteins and ligands have been enhanced
through GNNs and parallel computing.

Sagingalieva et al. [23] developed a distinctive computational approach for predicting drug
responses by integrating traditional ML with quantum information processing elements. The hybrid quantum
neural network (HQNN) model evolved as a fresh and possibly revolutionary technique in drug response
prediction, leveraging the computational capacity of quantum bits (qubits) for specialized calculations. The
study utilized the genomics of drug sensitivity in cancer (GDSC) dataset, which offers data on the responses
of cancer cell lines to anticancer drugs, along with genetic associations. The study discovered that the HQNN
outperformed standard models, with a 15% lower error rate in predicting 1C50 values. Zuo et al. [24]
described a strategy that combines compound chemical structures with cancer genetic signatures to predict
drug response. The study used the SWhnet technology, which employs convolutional and recurrent neural
network architectures for deployment. The model provides a flexible and adaptive approach to detecting drug
interactions. The incorporation of attention techniques and feature fusion increased architectural
performance. The parameters provided were accuracy, sensitivity, specificity, and area under the receiver
operating characteristic curve (AUC-ROC) paired with and without attention mechanisms. The architecture
using attention mechanisms yielded higher precision.

One of the key contributions to personalized medicine was made by Park et al. [25]. The study
compared various models that predicted the 1C50 values for cell viability of 24 distinct drugs, utilizing gene
expression and mutation data from cancer cell lines. The EC-11K gene expression and the MC-9K mutation
dataset were trained for building drug response prediction models. Deep learning models utilized
convolutional neural networks (CNN), ResNet architectures, and ML models such as lasso, ridge, support
vector regression (SVR), random forest, XGBoost, and ElasticNet. The researchers assessed the models'
performance using visual inspection, R2, and root mean squared. Among the 24 personalized drugs, the ridge
model of Panobinostat proved to be the best with an R2 score of 0.470 and RMSE of 0.623.

In the previous work, ML-based IC50 prediction models were built with inappropriate drug
descriptors. Many GNNs algorithms for building 1C50 prediction models employ drug-induced gene
expression which produces less prediction accuracy. Thus, the proposed methodology uses drug simplified
molecular input line entry system (SMILES) and gene expression as global features with various advanced
GNN architectures graph attention network (GAT), message passing neural network (MPNN), and graph
isomorphism network (GIN) for building IC50 regression models. The proposed work combines drug

Improved half-maximal inhibitory concentration regression model using amyotrophic ... (Devipriya Selvaraj)



22718 O3 ISSN: 2302-9285

SMILES and gene expressions with advanced deep learning algorithms to construct an accurate 1C50
prediction model that effectively learns drug-gene interactions.

This research paper is further arranged as follows: the method is presented in section 2 with various
processes namely data collection, data transformation, and 1C50 regression model building process. At the
same time, the results and discussion of the model are demonstrated in section 3. At last, the conclusion of
this research is given in section 4.

2. METHOD

The method uses the novel methodology of integrating drug SMILES with gene expressions and
passing them to GNN variants. Figure 1 represents the flow of the research. It starts with data collection of
ninety drug graphs from ChEMBL and gene expressions from DepMap PRISM drug repurposing hub for
ninety drug-related genes. The collected data is transformed into feature and adjacency matrices, followed by
k-fold cross-validation with a train-test data split. Three GNN variants namely GAT [26], MPNN [27], and
GIN [28] are used for the IC50 regression model building process. The model is evaluated with three metrics
mean absolute error (MAE), root mean square error (RMSE), and R2 score.
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Figure 1. Flow of research
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2.1. Dataset collection and transformation

The data is collected from different sources like UniProt [29], ChEMBL [30], and DepMap [31].
The UniProt database is searched for the ALS targets, and they are retrieved. It is discovered through
pathway analysis that all 32 protein targets are present in ALS. The ChEMBL database is used to identify the
drugs linked to the 32 ALS targets and the associated SMILES of drugs. Only ninety authorized drugs are
selected from the list of compounds compiled through ChEMBL target mapping.

Drugs and their targets associated with ALS are identified using pathway analysis [29], [32] as
shown in Figure 2. Pathway analysis is employed to clarify complex biological processes such as ALS by
identifying interconnected molecular pathways. In the figure, only the best results are deployed where the
adjusted P-value is lower and the Effect size is larger. The drug SMILES and plC50 values are obtained from
the ChEMBL database through target mapping to find the drug characteristics. Drug SMILES offer a
condensed and standardized method of employing a certain collection of characters to indicate the structure
of a drug molecule. IC50 quantifies the potency or inhibitory effect of a medicinal molecule. pIC50 is the
negative logarithm of base 10 of the medication concentration needed to 50% block a target. The pIC50 is a
normalized value of IC50 frequently utilized in drug discovery. It ranges from 0 to 10 where values near 10
indicate better drugs. The drugs having values above or below the range are not used for model building.

Drug, Pathway, and Gene Interactions
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Figure 2. Pathway analysis

The DepMap database has cellular gene expression data from which 90 drugs studied about ALS are
collected. DepMap is a large database that provides transcriptome, the genome, and variations in the genome
for disease-related cell lines. A sample gene expression is shown in Table 1. Genes with positive values
signify that these genes are inhibited by drugs and are expressed at levels higher than the baseline. The higher
the positive value, the higher the expression level relative to the baseline. Genes with negative values signify
that growth is induced by drugs and are expressed at levels lower than the baseline are removed. The lower
the negative value, the lower the expression level relative to the baseline. A value of 0 indicates that the gene
is expressed at the baseline level. The DepMap database receives the query and identifies ALS-related cell
lines in the PRISM drug repurposing center. The PRISM drug repurposing hub in DepMap is the basis for the
drug repurposing. As a result, information regarding the expression levels of particular genes in ALS-related
cell lines is retrieved. The values signify the need for inhibitory characteristics of drug targets in the ALS
disease.
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Table 1. Sample gene expression
Expression  Expression  Expression  Expression  Expression

depmap_id cell_line_display_name  lineage_1 g%%'zc g%%'zc g%%'zc g%%'zc g%%'zc
KCNA1 KCNA10 KCNA3 KCNA2 KCNA4
ACH-000102 GMS10 CNS/Brain 0 0.028569 0.028569 0 0.014355
ACH-000200 NMCG1 CNS/Brain 0 0 0.014355 0 0
ACH-000504 SNB75 CNS/Brain 0 0.124328 0 1.144046 0
ACH-001211 TTC549 CNS/Brain 0 0 0 0.070389 0
ACH-000597 TTC709 CNS/Brain 0 0 0 0 1.111031
ACH-000623 SNU201 CNS/Brain 0 0 0 0.189034 0.028569
ACH-000543 SNU489 CNS/Brain 0.137504 0 0 0.056584 0

During the dataset transformation, a featurization procedure is used, drug SMILES are converted
into feature vectors and the gene expressions are standardized. The three different types of feature vectors are
node, edge, and global feature vectors. The node features include attributes like atom type, formal charge,
hybridization, and aromaticity. The edge features have attributes of bond type, bond distance, and graph
distance. Gene expression and drug SMILES work together to create feature vectors. The gene expression for
each drug is standardized using Min-Max normalization and added to the corresponding drug SMILES graph
feature vector. These gene expression data are added to the graph feature of each drug in addition to the node
and edge features. Gene expression in different cell lines is utilized as a feature to determine the impact of the
drug on them. Gene expression data relating to each drug SMILES is provided as a global feature vector. The
adjacency matrix is provided as input to the model to find graph structure. The purpose of the adjacency
matrix is to provide details on the structure of drug molecules such as the presence of atoms, bonds, and
global features. Global features can be incorporated by adding additional rows and columns to the adjacency
matrix.

Following featurization, the feature extraction procedure happens in various GNN topologies. This
process varies in GNN variants based on its architecture producing node embeddings, where information is
iteratively exchanged between neighboring atoms in iterations. This information exchange enables the
refinement of node representations by incorporating insights from neighboring atoms. As a result of feature
extraction, the feature representation of each atom becomes enriched with contextual information about its
surrounding atoms and bonds. Aggregate node-level features are converted into a fixed-size vector, thereby
capturing the collective characteristics of the entire molecule. It is usually done by a readout function
producing molecule-level features. These features are used for regression tasks.

The above process is repeated for 90 drug graphs and the feature extraction varies based on the
architecture of GNN variants which will be discussed in the model building section. The GNN architecture
uses separate adjacency matrices, global features, node features, and edge features for ninety drugs and is
further used for building 1C50 regression models.

2.2. Building IC50 regression model

The 1C50 regression model uses three architectures namely GAT, MPNN, and GIN. These
architectures integrate drug SMILES with gene expression thus enhancing and aiding in precise 1C50 values
prediction. The gene expression is given as global features for building 1C50 prediction models. The three
models employ distinct architectures to capture different graph perspectives, including feature projection
with attention mechanism, user-defined aggregation functions, and permutation invariance. This enhances
accuracy and offers diverse insights into molecular graphs.

2.2.1. Graph attention network architecture

The attention mechanism prioritizes relevant components over less relevant ones. As a result, by
focusing on the most important parameters, the model can produce more accurate predictions. In the general
agreement on trade in services (GATS) scenario, the significance of the connections among nodes in a graph
is assessed by utilizing the attention mechanism. Conventional graph convolutional networks (GCNs) employ
a preset connection weighting strategy, which might not be the best option for all kinds of graphs. However,
depending on the task and network structure, attention mechanisms allow the model to give varying weights
to different connections between them. The GAT architecture is given in Figure 3 for a single graph.

In this model, the feature matrix (30 features for each atom) and adjacency matrix are input into the
GAT layers. The atom features encoded properties like atom type, formal charge, hybridization, hydrogen
bonding, aromatic, degree, number of hydrogens, chirality, and partial charge. GAT layers update each
node's features based on neighboring nodes, guided by the adjacency matrix. The main model combines
GATLayers, readout, and prediction layers. Each GATLayer applies a graph attention mechanism with fully
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connected layers, feature and attention dropouts (0.2), Leaky rectified linear units (LeakyReLU) activation,
and residual connections. The first GAT layer transforms 30 features to 64, while the second maintains 64
features. Attention dropout applies to attention weights, and LeakyReLU introduces non-linearity. The
adjacency matrix guides node interactions during attention-based updates, with only connected nodes
influencing each other. After GAT layers, each atom has an 8-dimensional feature vector used in the readout
layer, where a WeightedSumAndMax mechanism computes weights for each atom, emphasizing relevant
nodes. The resulting graph-level feature vector that has extracted node features with concatenated gene
expression features is input to a multi-layer perceptron (MLP) predictor, starting with a linear layer
expanding features from 16 to 128, followed by rectified linear units (ReLU), batch normalization, and a
final linear layer producing a single regression output.

Output Layer
GAT Layer 1 GAT Layer 2 Readout Layer (%ILP)Y
(GATConv + Dropout + LeakyReLU) (GATConv + Dropout + LeakyReLU) (WeightedSumAndMax)
Input Layer
03

H3 H3
" R3
13

HB64 HB64 R8 0128 @]
120 H1 H1 Rl o1
11

a2 H2 R2 02

Figure 3. GAT architecture

2.2.2. Message passing neural network architecture

MPNNs are a general framework for GNNs. They use a flexible message-passing mechanism, which
can involve passing information between nodes in various ways. User-defined functions and aggregations are
utilized to make the message-passing mechanism flexible. GCNs are a specific type of MPNN with a fixed,
simple message-passing mechanism. MPNNs are a more general framework that allows for greater flexibility
in propagating information across nodes in a graph. The MPNN architecture is given in Figure 4 for a single
graph.

Hidden Layer 1 GNN Layer Readout Layer
(Linear + ReLU) (NNConv + GRU) (Set2Set + LSTM)
Input Layer
H3 H3 R3
12
13 Output Layer
(Linear + ReL.U + Linear)
H64 He4 R64 O
130 H1 H1 R1
11
H2 H2 R2

Figure 4. MPNN architecture
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The MPNN architecture includes node projection, message passing, a readout layer, and predictor
operations. The node projection transforms 30 input node features into 64 features using a linear
transformation followed by ReLU activation, projecting them to a higher-dimensional space. The GNN layer
employs graph convolution and gated recurrent units (GRU) layers. The graph convolution uses the
adjacency matrix to aggregate information from neighboring nodes, where the edge function processes 11
edge features (e.g., bond type, same ring, conjugated, stereo) to modulate message passing. The GRU layer
refines 64-node features iteratively, learning dependencies across nodes to capture complex structures.
During message passing, node and edge features generate messages, which update node representations
through recurrent processing with GRU, maintaining a dynamic state. The Readout layer concatenates gene
expression features with node features and aggregates them to form a graph-level representation, using a long
short-term memory network (LSTM) (running for six iterations) to refine the global summary. Predictor
layers use a dense network with “Linear” and "ReLU" transformations to produce the final prediction, such as
the predicted drug response.

2.2.3. Graph isomorphism network architecture

GINs are designed to be permutation invariant and can operate on both directed and undirected
graphs. They use multiple aggregation steps and apply a shared MLP to aggregate features from the node’s
neighborhood. Figure 5 provides a simplified representation of the GIN architecture. The GIN combines an
input layer with 67 node features, graph isomorphism conv layers, and a readout mechanism.

Readout Layer
Input Layer GraphlsomorphismConv (SumReadout)

MLP
( ) Output Layer

Input Linear Linear
(67 features) — - (67> 1) - -1 —» SumReadout —» Output

Figure 5. GIN architecture

GraphlsomorphismConv™ with layers that involve transformations from “67" features to "1°, and then
from "1" to "1". The'[1]" in 'hidden_dims' indicates that the hidden layer has a size of one, which is consistent
with the output of the MLP layers. The GraphlsomorphismConv layer is the key operation that combines the
feature matrix and adjacency matrix. The MLP inside this layer takes the node features (from the feature
matrix), processes them through linear layers, and then uses the adjacency matrix to aggregate the
transformed features from neighboring nodes. The output of the GINConv layer is likely a refined set of node
representations that captures information from neighboring nodes in a permutation-invariant manner. The
extracted node features are concatenated with gene expression features in the readout layer. After the sum
readout is performed that aggregates entire features into a graph-level representation. This aggregation sums
up the features of all nodes, which have already been updated considering their neighbors, thus incorporating
both the feature matrix and the graph structure defined by the adjacency matrix which is passed to the linear
output layer for IC50 prediction.

3. EXPERIMENTS AND RESULTS

DeepChem [33] is a front-end software package specialized in cheminformatics [34] tasks, whereas
TensorFlow is the backend that handles model computations. The three distinct IC50 regression models were
created using GNN variants in Python through training the adjacency matrix, node features, edge features of
drug SMILES, and global features of gene expression. The tests are carried out with different epoch lengths
and other hyperparameters, as indicated in Table 2. A single neuron is defined in the output layer for
regression purposes. The Adam optimizer is employed here to eliminate errors and improve efficiency.
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Table 2. Hyperparameters setting for GNN variants

GAT model MPNN model GIN model

Epoch 500 Epoch 500 Epoch 500
GAT layer 2 MPNN layer 1 GIN layer 1
GAT neuron size 32 MPNN neuron size 32 GIN neuron size 67
Dense layer 1 Dense layer 1 Dense layer 1
Dense layer neurons 64 Dense layer neurons 64 Dense layer neurons 1
Learning rate 0.001 Learning rate 0.001 Learning rate 0.001
Output size 1 Output size 1 Output size 1
Optimizer Adam Optimizer Adam Optimizer Adam

The GAT, MPNN, and GIN network is trained iteratively from epoch 10 to 500 at different folds.
The GAT, MPNN, and GIN prediction outcomes for MAE, RMSE, and R2 score over numerous epochs are
shown in Table 3. The maximum accuracy generated by the GAT is an R2 score of 0.92, with losses of 0.20
for MAE and 0.17 for RMSE. The maximum accuracy generated by the MPNN is an R2 score of 0.85, with
losses of 0.26 for MAE and 0.24 for RMSE. The maximum accuracy generated by the GIN is an R2 score of
0.80, with losses of 0.44 for MAE and 0.42 for RMSE. MAE, RMSE, and R2 score are computed for all
epochs at intervals of 100. The precision and error rate have continually increased, leading to maximum
accuracy in the R2 score and minimal error values for MAE and RMSE. Similarly, the highest accuracy
provided by the R2 score is 0.92, indicating a 92% precision rate. The performance findings of the 1C50
regression model utilizing drug SMILES and gene expression are provided in Table 3 and illustrated in
Figures 6(a) to (c).

Table 3. Performance results of 1C50 regression models

GAT-based IC50 prediction model MPNN-based 1C50 prediction model GIN-based IC50 prediction model

7-fold cross Epoch MAE RMSE R2score Epoch MAE RMSE R2score Epoch MAE RMSE R2score
validation
100 0.48 0.38 0.40 100 0.60 0.49 0.30 100 0.68 0.58 0.25
200 0.40 0.30 0.50 200 0.42 0.40 0.41 200 0.52 0.50 0.30
300 0.31 0.28 0.56 300 0.43 0.39 0.44 300 0.51 0.48 0.42
400 0.32 0.22 0.62 400 0.44 0.33 0.53 400 0.49 0.42 0.52
500 0.20 0.17 0.92 500 0.26 0.24 0.85 500 0.44 0.40 0.80
5-fold cross Epoch MAE RMSE R2score Epoch MAE RMSE R2score Epoch MAE RMSE R2score
validation
100 0.44 0.36 0.30 100 0.57 0.44 0.28 100 0.76 0.60 0.23
200 0.40 0.30 0.42 200 0.45 0.41 0.36 200 0.61 0.59 0.37
300 0.31 0.28 0.48 300 0.43 0.43 0.41 300 0.47 0.50 0.45
400 0.42 0.31 0.60 400 0.40 0.47 0.59 400 0.52 0.49 0.58
500 0.32 0.29 0.80 500 0.26 0.35 0.78 500 0.48 0.45 0.75
2-fold cross Epoch MAE RMSE R2score Epoch MAE RMSE R2score Epoch MAE RMSE R2score
validation
100 0.62 0.67 0.10 100 0.60 0.49 0.20 100 0.88 0.78 0.18
200 0.52 0.48 0.20 200 0.56 0.50 0.25 200 0.65 0.61 0.20
300 0.49 0.40 0.30 300 0.43 0.39 0.36 300 0.52 0.51 0.34
400 0.47 0.39 0.50 400 0.49 0.40 0.54 400 0.57 0.52 0.46
500 0.39 0.38 0.70 500 0.34 0.36 0.65 500 0.52 0.49 0.60

The performance results of the above three GNN variants based 1C50 regression models built with
drug SMILES and gene expression are compared with each other and also with IC50 regression models built
with basic GCN. The highest accuracy is achieved at epoch 500. GAT-1C50 regression model obtains 0.92
R2 score, RMSE 0.17, and MAE 0.20. MPNN-IC50 regression model obtains an R2 score of 0.85, RMSE
0.24, and MAE 0.26. GIN-IC50 regression model obtains an R2 score of 0.80, RMSE 0.40, and MAE 0.44.
GCN-IC50 regression model obtains an R2 score of 0.78, RMSE 0.48, and MAE 0.50. The comparative
results are also given in Figure 6(d).

The proposed GNN variations that use drug SMILES and gene expression show enhanced 1C50
prediction ability. Integrating gene expression data as global traits improves the model's prediction ability.
The GNN variant's level of recognition validates its capacity to predict IC50. Compared to other artificial
intelligence or deep learning methods, the GNN variants-based 1C50 prediction system accurately depicts
drug compounds with gene expression. Based on the IC50 model building process GAT performs well, after
which MPNN and finally GIN for our dataset. GAT-IC50 regression model uses an additional attention
mechanism assigning dynamic weights to node connections. MPNN-IC50 regression model allows flexible
message-passing functions to be defined and finally GIN-IC50 regression model achieves permutation
invariance in graph data.
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Figure 6. Performance results for; (a) GAT regression model, (b) MPNN regression model, (c) GIN
regression model, and (d) comparative results
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3.1. Comparative analysis

The comparative analysis of the GNNs IC50 regression model with the previous works like the ML-
based 1C50 model, GRU-based IC50 regression model [35], and graph convolutional neural network 1C50
regression model [32], [35] on evaluation with various datasets for ALS disease is displayed in Table 4. To
overcome the issues of huge data size, irrelevant feature selection in ML models, and huge vector size in
GRU models, the proposed model uses the advantage of GNN architectures to make better feature extraction
on drug SMILES and gene expression of ALS disease. The GAT regression model results in the best
accuracy in terms of MAE of 0.20, RMSE of 0.17, and R2 score of 0.92. The MPNN IC50 regression model
results in an MAE of 0.26, RMSE of 0.24, and R2 score of 0.85. The GIN IC50 regression model results in
an MAE of 0.44, RMSE of 0.40, and R2 score of 0.80. GNNs outperform previous models. Different
algorithms were tried like random forest regressor, support vector machine (SVM), multi-layer perceptron
regressor (MLPRegressor), GRU, and GCN on drug SMILES data but the proposed method leverages drug
SMILES and gene expression data and improves the accuracy by using enhanced GNN algorithms and
hyperparameter settings. The proposed method can be used in scenarios where gene expression is considered
for disease analysis and drug-gene interactivity is to be learned thereby contributing to drug discovery.

Table 4. Comparative analysis

Results
Datasets Models used RMSE MAE R2 score
Molecular descriptors of 500 drug SMILES ML model 0.4 0.48 0.58
Drug sequences of 500 drug SMILES GRU 0.32 0.23 0.63
Drug-induced Gene expressions of 201 drugs GCNs 0.0038 - -
Drug graph of 2,100 drugs GCNs 0.2 0.3 0.73
Drug SMILES and gene expressions of 80 drugs  GCNs 0.18 0.16 0.90

3.2. Discussion

This section addresses the benefits of the proposed GNN variations method over earlier approaches
for predicting IC50 in ALS. The limitation of the previous work, the ML-based model was that it was
difficult to train the ML model to obtain high robustness and accuracy due to molecular descriptors as
training data. Similarly, GRU and graph convolutional neural network models were previously trained with
drug SMILES alone. However, analyzing gene expression data necessitates a sophisticated model and a
creative methodology. It is accomplished by adding gene expression as a global feature into drug graphs via
graph convolutional neural network architecture but with limited generalizability. It is further improved with
the proposed enhanced GNN variants GAT, MPNN, and GIN to overcome the above challenges, this
research introduces better drug-gene interactivity learning with robustness for 90 drugs. The GNN variants
use different feature extraction techniques like attention mechanisms, customized aggregation functions, and
permutation invariant representations. The proposed method results are compared with the existing methods
like the ML-based 1C50 model, GRU-based IC50 regression model [32], and graph convolutional neural
network IC50 regression model [32], [33]. Compared to GCN trained using 80 drugs and their gene
expression data, the proposed enhanced GNN 1C50 regression model achieves higher accuracy and greater
generalizability. It attains superior results when compared to the previous works. However, the proposed
method does not support datasets like mutation and copy number variation which in the future should
approach a different methodology and algorithms for their analysis in drug discovery.

4. CONCLUSION

This study describes the use of innovative GAT, MPNN, and GIN architectures to develop an 1C50
regression model using drug SMILES in graph form with gene expression as global characteristics. The
model employs GAT, MPNN, and GIN to record structural data and interconnections inside a drug molecule,
depicted as graphs. The Uniprot, ChEMBL, and Depmap databases were utilized in this work. The drug
SMILES and gene expression data obtained for 90 medications are transformed and employed as an
adjacency matrix, node features, and edge features to train the GNN variants. The GNN variants were
developed using the DeepChem framework, and the trials were performed with suitable hyperparameter
settings. The 1C50 prediction model was tested for efficiency using typical metrics and showed promising
outcomes in predicting the IC50. In the future, other data modalities can be used for IC50 regression and
analysis. This approach enhances understanding of the factors influencing 1C50 values and allows for more
precise predictions, aiding drug optimization.
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