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 The current research addresses the critical need for precise half-maximal 

inhibitory concentration regression in the neurodegenerative condition 

amyotrophic lateral sclerosis (ALS). Unavailable drug-induced gene 

expressions and irrelevant molecular descriptors have yielded regression 

models with less accuracy using traditional machine learning (ML). Drugs 

can be converted to graph format and integrated with gene expressions to 

learn drug-gene interactions better thereby producing precise half-maximal 

inhibitory concentration regression models. To accomplish this, three 

variants of graph neural networks (GNN) namely graph attention networks 

(GAT), message passing neural networks, and graph isomorphism networks 

are utilized in the proposed work. The gene expression profiles of ALS drug-

related genes were retrieved from the DepMap PRISM drug repurposing 

hub, and the drug graphs with their accompanying half-maximal inhibitory 

concentration values were obtained from the ChEMBL databases. The graph 

is constructed for ninety approved drugs connected to 32 key protein targets 

of ALS and its related conditions. The half-maximal inhibitory concentration 

regression model trained with optimized hyperparameters in GAT performs 

well with an R2 score of 0.92, a mean absolute error (MAE) of 0.20, and a 

root mean square error (RMSE) of 0.17. This model produced better results 

than other ML and deep learning models. 

Keywords: 

Amyotrophic lateral sclerosis 

Deep learning 

Drug discovery 

Gene expression 

Regression 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Devipriya Selvaraj 

Department of Computer Science, PSGR Krishnammal College for Women 

Coimbatore, India 

Email: devipriya041996@gmail.com 

 

 

1. INTRODUCTION 

The process of predicting the problem of half-maximal inhibitory concentration (IC50) in 

amyotrophic lateral sclerosis (ALS) is a complex task including exhaustive methods of identifying, and 

improving drugs that can be used in disease treatment [1]. ALS [2], [3] is a degenerative neurological 

disorder that affects the nerve cells responsible for voluntary muscle movement. Several important targets 

require inhibition in ALS due to the mutations involved in them, like superoxide dismutase 1 (SOD1) [4], 

TAR DNA-binding protein 43 (TDP-43) [5], C9orf72 repeat expansion [6], fused in sarcoma (FUS) [7], 

proteostasis and protein quality control [8], glutamate excitotoxicity [9], neuroinflammation, mitochondrial 

dysfunction [10], axonal transport [11], RNA metabolism and processing [12]. Precise prediction of IC50 

values is essential for understanding and combating the biochemical mechanisms underlying ALS and 

directly aiding in drug discovery [13]-[16]. The analysis of machine learning (ML) and deep learning 

algorithms is thoroughly discussed in this research. 

https://creativecommons.org/licenses/by-sa/4.0/
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Early quantitative structure-activity relationship (QSAR) [17] technologies for IC50 prediction 

lacked versatility and relied heavily on traditional ML methods using 2D and 3D molecular descriptors and 

expert interpretation. Integrating big data with advanced ML algorithms has significantly enhanced QSAR 

models' ability to handle unstructured data, thereby improving the process of discovering new drugs. The 

review highlights the evolution of QSAR techniques, combining wet lab experiments, molecular dynamics 

simulations, and ML approaches. The importance of merging data inputs to optimize drug development is 

emphasized. A study [18] outlines an automated framework for QSAR model building, automating tasks like 

data curation, feature selection, and validation, leading to 19% reduced error and 49% increased explained 

variance. Another paper [19] explores meta-learning, improving QSAR prediction accuracy by up to 13% 

across 2,700 datasets, showing that random forests with fingerprints as an alternative for molecular 

descriptors often perform best. The final [20] study finds no universally superior algorithm for QSAR but 

notes that non-linear methods, such as radial basis function support vector machine (RBF SVM), extreme 

gradient boosting (XGBoost), and deep learning algorithms, generally outperform linear ones, with ensemble 

methods providing further enhancements. 

The regression of IC50 values relies on access to high-quality, annotated datasets. The data includes 

both molecular and biological information. Integrating extensive datasets that include various targets, 

compounds, their interactions, and disease data, such as gene expression, into ML algorithms is challenging. 

Therefore, it has been overcome and prompted research into the utilization of deep learning in ALS IC50 

problems. 

The paper by Deng et al. [21] has made a significant impact in the area of neurodegenerative 

diseases. The dataset utilized in the research comprised substances sourced from Chinese medicine databases 

and the ZINC database. The authors employed various artificial intelligence techniques, specifically deep 

learning methods and XGBoost models, to identify molecules that bind to the target protein galectin 3. 

Galectin 3 has been used as a protein that requires inhibition. The numerous modeling attempts by the deep 

learning-based algorithm and the obtained R-square correlation coefficient of 0.9 on test sets demonstrated its 

effectiveness. The XGBoost model produces a 0.97 R-square correlation coefficient and 0.01 mean square 

error. The study by Knutson et al. [22] utilized the novel parallel graph neural networks (GNN) technique to 

predict and assess complex chemical interactions. The thorough analysis showed that GNN can accurately 

predict the protein-ligand complex activity by capturing the binary interactions that existed between them, 

with test accuracy for GNN for ligand-feature interactions (GNNF) being 0.979 and for GNN for protein-

feature interactions (GNNP) being 0.958. The interactions between proteins and ligands have been enhanced 

through GNNs and parallel computing. 

Sagingalieva et al. [23] developed a distinctive computational approach for predicting drug 

responses by integrating traditional ML with quantum information processing elements. The hybrid quantum 

neural network (HQNN) model evolved as a fresh and possibly revolutionary technique in drug response 

prediction, leveraging the computational capacity of quantum bits (qubits) for specialized calculations. The 

study utilized the genomics of drug sensitivity in cancer (GDSC) dataset, which offers data on the responses 

of cancer cell lines to anticancer drugs, along with genetic associations. The study discovered that the HQNN 

outperformed standard models, with a 15% lower error rate in predicting IC50 values. Zuo et al. [24] 

described a strategy that combines compound chemical structures with cancer genetic signatures to predict 

drug response. The study used the SWnet technology, which employs convolutional and recurrent neural 

network architectures for deployment. The model provides a flexible and adaptive approach to detecting drug 

interactions. The incorporation of attention techniques and feature fusion increased architectural 

performance. The parameters provided were accuracy, sensitivity, specificity, and area under the receiver 

operating characteristic curve (AUC-ROC) paired with and without attention mechanisms. The architecture 

using attention mechanisms yielded higher precision. 

One of the key contributions to personalized medicine was made by Park et al. [25]. The study 

compared various models that predicted the IC50 values for cell viability of 24 distinct drugs, utilizing gene 

expression and mutation data from cancer cell lines. The EC-11K gene expression and the MC-9K mutation 

dataset were trained for building drug response prediction models. Deep learning models utilized 

convolutional neural networks (CNN), ResNet architectures, and ML models such as lasso, ridge, support 

vector regression (SVR), random forest, XGBoost, and ElasticNet. The researchers assessed the models' 

performance using visual inspection, R2, and root mean squared. Among the 24 personalized drugs, the ridge 

model of Panobinostat proved to be the best with an R2 score of 0.470 and RMSE of 0.623. 

In the previous work, ML-based IC50 prediction models were built with inappropriate drug 

descriptors. Many GNNs algorithms for building IC50 prediction models employ drug-induced gene 

expression which produces less prediction accuracy. Thus, the proposed methodology uses drug simplified 

molecular input line entry system (SMILES) and gene expression as global features with various advanced 

GNN architectures graph attention network (GAT), message passing neural network (MPNN), and graph 

isomorphism network (GIN) for building IC50 regression models. The proposed work combines drug 
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SMILES and gene expressions with advanced deep learning algorithms to construct an accurate IC50 

prediction model that effectively learns drug-gene interactions. 

This research paper is further arranged as follows: the method is presented in section 2 with various 

processes namely data collection, data transformation, and IC50 regression model building process. At the 

same time, the results and discussion of the model are demonstrated in section 3. At last, the conclusion of 

this research is given in section 4. 

 

 

2. METHOD 

The method uses the novel methodology of integrating drug SMILES with gene expressions and 

passing them to GNN variants. Figure 1 represents the flow of the research. It starts with data collection of 

ninety drug graphs from ChEMBL and gene expressions from DepMap PRISM drug repurposing hub for 

ninety drug-related genes. The collected data is transformed into feature and adjacency matrices, followed by 

k-fold cross-validation with a train-test data split. Three GNN variants namely GAT [26], MPNN [27], and 

GIN [28] are used for the IC50 regression model building process. The model is evaluated with three metrics 

mean absolute error (MAE), root mean square error (RMSE), and R2 score. 

 

 

 
 

Figure 1. Flow of research 
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2.1.  Dataset collection and transformation 

The data is collected from different sources like UniProt [29], ChEMBL [30], and DepMap [31]. 

The UniProt database is searched for the ALS targets, and they are retrieved. It is discovered through 

pathway analysis that all 32 protein targets are present in ALS. The ChEMBL database is used to identify the 

drugs linked to the 32 ALS targets and the associated SMILES of drugs. Only ninety authorized drugs are 

selected from the list of compounds compiled through ChEMBL target mapping. 

Drugs and their targets associated with ALS are identified using pathway analysis [29], [32] as 

shown in Figure 2. Pathway analysis is employed to clarify complex biological processes such as ALS by 

identifying interconnected molecular pathways. In the figure, only the best results are deployed where the 

adjusted P-value is lower and the Effect size is larger. The drug SMILES and pIC50 values are obtained from 

the ChEMBL database through target mapping to find the drug characteristics. Drug SMILES offer a 

condensed and standardized method of employing a certain collection of characters to indicate the structure 

of a drug molecule. IC50 quantifies the potency or inhibitory effect of a medicinal molecule. pIC50 is the 

negative logarithm of base 10 of the medication concentration needed to 50% block a target. The pIC50 is a 

normalized value of IC50 frequently utilized in drug discovery. It ranges from 0 to 10 where values near 10 

indicate better drugs. The drugs having values above or below the range are not used for model building. 

  

 

 
 

Figure 2. Pathway analysis 

 

 

The DepMap database has cellular gene expression data from which 90 drugs studied about ALS are 

collected. DepMap is a large database that provides transcriptome, the genome, and variations in the genome 

for disease-related cell lines. A sample gene expression is shown in Table 1. Genes with positive values 

signify that these genes are inhibited by drugs and are expressed at levels higher than the baseline. The higher 

the positive value, the higher the expression level relative to the baseline. Genes with negative values signify 

that growth is induced by drugs and are expressed at levels lower than the baseline are removed. The lower 

the negative value, the lower the expression level relative to the baseline. A value of 0 indicates that the gene 

is expressed at the baseline level. The DepMap database receives the query and identifies ALS-related cell 

lines in the PRISM drug repurposing center. The PRISM drug repurposing hub in DepMap is the basis for the 

drug repurposing. As a result, information regarding the expression levels of particular genes in ALS-related 

cell lines is retrieved. The values signify the need for inhibitory characteristics of drug targets in the ALS 

disease. 
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Table 1. Sample gene expression 

depmap_id cell_line_display_name lineage_1 

Expression 

public 
23Q2 

KCNA1 

Expression 

public 
23Q2 

KCNA10 

Expression 

public 
23Q2 

KCNA3 

Expression 

public 
23Q2 

KCNA2 

Expression 

public 
23Q2 

KCNA4 

ACH-000102 GMS10 CNS/Brain 0 0.028569 0.028569 0 0.014355 
ACH-000200 NMCG1 CNS/Brain 0 0 0.014355 0 0 

ACH-000504 SNB75 CNS/Brain 0 0.124328 0 1.144046 0 

ACH-001211 TTC549 CNS/Brain 0 0 0 0.070389 0 
ACH-000597 TTC709 CNS/Brain 0 0 0 0 1.111031 

ACH-000623 SNU201 CNS/Brain 0 0 0 0.189034 0.028569 

ACH-000543 SNU489 CNS/Brain 0.137504 0 0 0.056584 0 

 

 

During the dataset transformation, a featurization procedure is used, drug SMILES are converted 

into feature vectors and the gene expressions are standardized. The three different types of feature vectors are 

node, edge, and global feature vectors. The node features include attributes like atom type, formal charge, 

hybridization, and aromaticity. The edge features have attributes of bond type, bond distance, and graph 

distance. Gene expression and drug SMILES work together to create feature vectors. The gene expression for 

each drug is standardized using Min-Max normalization and added to the corresponding drug SMILES graph 

feature vector. These gene expression data are added to the graph feature of each drug in addition to the node 

and edge features. Gene expression in different cell lines is utilized as a feature to determine the impact of the 

drug on them. Gene expression data relating to each drug SMILES is provided as a global feature vector. The 

adjacency matrix is provided as input to the model to find graph structure. The purpose of the adjacency 

matrix is to provide details on the structure of drug molecules such as the presence of atoms, bonds, and 

global features. Global features can be incorporated by adding additional rows and columns to the adjacency 

matrix. 

Following featurization, the feature extraction procedure happens in various GNN topologies. This 

process varies in GNN variants based on its architecture producing node embeddings, where information is 

iteratively exchanged between neighboring atoms in iterations. This information exchange enables the 

refinement of node representations by incorporating insights from neighboring atoms. As a result of feature 

extraction, the feature representation of each atom becomes enriched with contextual information about its 

surrounding atoms and bonds. Aggregate node-level features are converted into a fixed-size vector, thereby 

capturing the collective characteristics of the entire molecule. It is usually done by a readout function 

producing molecule-level features. These features are used for regression tasks. 

The above process is repeated for 90 drug graphs and the feature extraction varies based on the 

architecture of GNN variants which will be discussed in the model building section. The GNN architecture 

uses separate adjacency matrices, global features, node features, and edge features for ninety drugs and is 

further used for building IC50 regression models. 

 

2.2.  Building IC50 regression model 

The IC50 regression model uses three architectures namely GAT, MPNN, and GIN. These 

architectures integrate drug SMILES with gene expression thus enhancing and aiding in precise IC50 values 

prediction. The gene expression is given as global features for building IC50 prediction models. The three 

models employ distinct architectures to capture different graph perspectives, including feature projection 

with attention mechanism, user-defined aggregation functions, and permutation invariance. This enhances 

accuracy and offers diverse insights into molecular graphs. 

 

2.2.1. Graph attention network architecture 

The attention mechanism prioritizes relevant components over less relevant ones. As a result, by 

focusing on the most important parameters, the model can produce more accurate predictions. In the general 

agreement on trade in services (GATS) scenario, the significance of the connections among nodes in a graph 

is assessed by utilizing the attention mechanism. Conventional graph convolutional networks (GCNs) employ 

a preset connection weighting strategy, which might not be the best option for all kinds of graphs. However, 

depending on the task and network structure, attention mechanisms allow the model to give varying weights 

to different connections between them. The GAT architecture is given in Figure 3 for a single graph. 

In this model, the feature matrix (30 features for each atom) and adjacency matrix are input into the 

GAT layers. The atom features encoded properties like atom type, formal charge, hybridization, hydrogen 

bonding, aromatic, degree, number of hydrogens, chirality, and partial charge. GAT layers update each 

node's features based on neighboring nodes, guided by the adjacency matrix. The main model combines 

GATLayers, readout, and prediction layers. Each GATLayer applies a graph attention mechanism with fully 
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connected layers, feature and attention dropouts (0.2), Leaky rectified linear units (LeakyReLU) activation, 

and residual connections. The first GAT layer transforms 30 features to 64, while the second maintains 64 

features. Attention dropout applies to attention weights, and LeakyReLU introduces non-linearity. The 

adjacency matrix guides node interactions during attention-based updates, with only connected nodes 

influencing each other. After GAT layers, each atom has an 8-dimensional feature vector used in the readout 

layer, where a WeightedSumAndMax mechanism computes weights for each atom, emphasizing relevant 

nodes. The resulting graph-level feature vector that has extracted node features with concatenated gene 

expression features is input to a multi-layer perceptron (MLP) predictor, starting with a linear layer 

expanding features from 16 to 128, followed by rectified linear units (ReLU), batch normalization, and a 

final linear layer producing a single regression output. 

 

 

 
 

Figure 3. GAT architecture 

 

 

2.2.2. Message passing neural network architecture 

MPNNs are a general framework for GNNs. They use a flexible message-passing mechanism, which 

can involve passing information between nodes in various ways. User-defined functions and aggregations are 

utilized to make the message-passing mechanism flexible. GCNs are a specific type of MPNN with a fixed, 

simple message-passing mechanism. MPNNs are a more general framework that allows for greater flexibility 

in propagating information across nodes in a graph. The MPNN architecture is given in Figure 4 for a single 

graph. 

 

 

 
 

Figure 4. MPNN architecture 
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The MPNN architecture includes node projection, message passing, a readout layer, and predictor 

operations. The node projection transforms 30 input node features into 64 features using a linear 

transformation followed by ReLU activation, projecting them to a higher-dimensional space. The GNN layer 

employs graph convolution and gated recurrent units (GRU) layers. The graph convolution uses the 

adjacency matrix to aggregate information from neighboring nodes, where the edge function processes 11 

edge features (e.g., bond type, same ring, conjugated, stereo) to modulate message passing. The GRU layer 

refines 64-node features iteratively, learning dependencies across nodes to capture complex structures. 

During message passing, node and edge features generate messages, which update node representations 

through recurrent processing with GRU, maintaining a dynamic state. The Readout layer concatenates gene 

expression features with node features and aggregates them to form a graph-level representation, using a long 

short-term memory network (LSTM) (running for six iterations) to refine the global summary. Predictor 

layers use a dense network with `Linear` and `ReLU` transformations to produce the final prediction, such as 

the predicted drug response. 

 

 

2.2.3. Graph isomorphism network architecture 

GINs are designed to be permutation invariant and can operate on both directed and undirected 

graphs. They use multiple aggregation steps and apply a shared MLP to aggregate features from the node's 

neighborhood. Figure 5 provides a simplified representation of the GIN architecture. The GIN combines an 

input layer with 67 node features, graph isomorphism conv layers, and a readout mechanism. 

 

 

 
 

Figure 5. GIN architecture 

 

 

GraphIsomorphismConv` with layers that involve transformations from `67` features to `1`, and then 

from `1` to `1`. The'[1]' in 'hidden_dims' indicates that the hidden layer has a size of one, which is consistent 

with the output of the MLP layers. The GraphIsomorphismConv layer is the key operation that combines the 

feature matrix and adjacency matrix. The MLP inside this layer takes the node features (from the feature 

matrix), processes them through linear layers, and then uses the adjacency matrix to aggregate the 

transformed features from neighboring nodes. The output of the GINConv layer is likely a refined set of node 

representations that captures information from neighboring nodes in a permutation-invariant manner. The 

extracted node features are concatenated with gene expression features in the readout layer. After the sum 

readout is performed that aggregates entire features into a graph-level representation. This aggregation sums 

up the features of all nodes, which have already been updated considering their neighbors, thus incorporating 

both the feature matrix and the graph structure defined by the adjacency matrix which is passed to the linear 

output layer for IC50 prediction. 

 

 

3. EXPERIMENTS AND RESULTS 

DeepChem [33] is a front-end software package specialized in cheminformatics [34] tasks, whereas 

TensorFlow is the backend that handles model computations. The three distinct IC50 regression models were 

created using GNN variants in Python through training the adjacency matrix, node features, edge features of 

drug SMILES, and global features of gene expression. The tests are carried out with different epoch lengths 

and other hyperparameters, as indicated in Table 2. A single neuron is defined in the output layer for 

regression purposes. The Adam optimizer is employed here to eliminate errors and improve efficiency. 
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Table 2. Hyperparameters setting for GNN variants 
GAT model  MPNN model GIN model 

Epoch 500 Epoch 500 Epoch 500 
GAT layer 2 MPNN layer 1 GIN layer 1 

GAT neuron size 32 MPNN neuron size 32 GIN neuron size 67 

Dense layer 1 Dense layer 1 Dense layer 1 
Dense layer neurons 64 Dense layer neurons 64 Dense layer neurons 1 

Learning rate 0.001 Learning rate 0.001 Learning rate 0.001 

Output size 1 Output size 1 Output size 1 
Optimizer Adam Optimizer Adam Optimizer Adam 

 

 

The GAT, MPNN, and GIN network is trained iteratively from epoch 10 to 500 at different folds. 

The GAT, MPNN, and GIN prediction outcomes for MAE, RMSE, and R2 score over numerous epochs are 

shown in Table 3. The maximum accuracy generated by the GAT is an R2 score of 0.92, with losses of 0.20 

for MAE and 0.17 for RMSE. The maximum accuracy generated by the MPNN is an R2 score of 0.85, with 

losses of 0.26 for MAE and 0.24 for RMSE. The maximum accuracy generated by the GIN is an R2 score of 

0.80, with losses of 0.44 for MAE and 0.42 for RMSE. MAE, RMSE, and R2 score are computed for all 

epochs at intervals of 100. The precision and error rate have continually increased, leading to maximum 

accuracy in the R2 score and minimal error values for MAE and RMSE. Similarly, the highest accuracy 

provided by the R2 score is 0.92, indicating a 92% precision rate. The performance findings of the IC50 

regression model utilizing drug SMILES and gene expression are provided in Table 3 and illustrated in 

Figures 6(a) to (c). 
 

 

Table 3. Performance results of IC50 regression models 
 GAT-based IC50 prediction model MPNN-based IC50 prediction model GIN-based IC50 prediction model 

7-fold cross 
validation 

Epoch MAE RMSE R2 score Epoch MAE RMSE R2 score Epoch MAE RMSE R2 score 

 100 0.48 0.38 0.40 100 0.60 0.49 0.30 100 0.68 0.58 0.25 

 200 0.40 0.30 0.50 200 0.42 0.40 0.41 200 0.52 0.50 0.30 
 300 0.31 0.28 0.56 300 0.43 0.39 0.44 300 0.51 0.48 0.42 

 400 0.32 0.22 0.62 400 0.44 0.33 0.53 400 0.49 0.42 0.52 

 500 0.20 0.17 0.92 500 0.26 0.24 0.85 500 0.44 0.40 0.80 
5-fold cross 

validation 

Epoch MAE RMSE R2 score Epoch MAE RMSE R2 score Epoch MAE RMSE R2 score 

 100 0.44 0.36 0.30 100 0.57 0.44 0.28 100 0.76 0.60 0.23 
 200 0.40 0.30 0.42 200 0.45 0.41 0.36 200 0.61 0.59 0.37 

 300 0.31 0.28 0.48 300 0.43 0.43 0.41 300 0.47 0.50 0.45 

 400 0.42 0.31 0.60 400 0.40 0.47 0.59 400 0.52 0.49 0.58 
 500 0.32 0.29 0.80 500 0.26 0.35 0.78 500 0.48 0.45 0.75 

2-fold cross 

validation 

Epoch MAE RMSE R2 score Epoch MAE RMSE R2 score Epoch MAE RMSE R2 score 

 100 0.62 0.67 0.10 100 0.60 0.49 0.20 100 0.88 0.78 0.18 

 200 0.52 0.48 0.20 200 0.56 0.50 0.25 200 0.65 0.61 0.20 
 300 0.49 0.40 0.30 300 0.43 0.39 0.36 300 0.52 0.51 0.34 

 400 0.47 0.39 0.50 400 0.49 0.40 0.54 400 0.57 0.52 0.46 

 500 0.39 0.38 0.70 500 0.34 0.36 0.65 500 0.52 0.49 0.60 

 
 

The performance results of the above three GNN variants based IC50 regression models built with 

drug SMILES and gene expression are compared with each other and also with IC50 regression models built 

with basic GCN. The highest accuracy is achieved at epoch 500. GAT-IC50 regression model obtains 0.92 

R2 score, RMSE 0.17, and MAE 0.20. MPNN-IC50 regression model obtains an R2 score of 0.85, RMSE 

0.24, and MAE 0.26. GIN-IC50 regression model obtains an R2 score of 0.80, RMSE 0.40, and MAE 0.44. 

GCN-IC50 regression model obtains an R2 score of 0.78, RMSE 0.48, and MAE 0.50. The comparative 

results are also given in Figure 6(d). 

The proposed GNN variations that use drug SMILES and gene expression show enhanced IC50 

prediction ability. Integrating gene expression data as global traits improves the model's prediction ability. 

The GNN variant's level of recognition validates its capacity to predict IC50. Compared to other artificial 

intelligence or deep learning methods, the GNN variants-based IC50 prediction system accurately depicts 

drug compounds with gene expression. Based on the IC50 model building process GAT performs well, after 

which MPNN and finally GIN for our dataset. GAT-IC50 regression model uses an additional attention 

mechanism assigning dynamic weights to node connections. MPNN-IC50 regression model allows flexible 

message-passing functions to be defined and finally GIN-IC50 regression model achieves permutation 

invariance in graph data. 
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(a)  

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 6. Performance results for; (a) GAT regression model, (b) MPNN regression model, (c) GIN 

regression model, and (d) comparative results 
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3.1.  Comparative analysis 

The comparative analysis of the GNNs IC50 regression model with the previous works like the ML-

based IC50 model, GRU-based IC50 regression model [35], and graph convolutional neural network IC50 

regression model [32], [35] on evaluation with various datasets for ALS disease is displayed in Table 4. To 

overcome the issues of huge data size, irrelevant feature selection in ML models, and huge vector size in 

GRU models, the proposed model uses the advantage of GNN architectures to make better feature extraction 

on drug SMILES and gene expression of ALS disease. The GAT regression model results in the best 

accuracy in terms of MAE of 0.20, RMSE of 0.17, and R2 score of 0.92. The MPNN IC50 regression model 

results in an MAE of 0.26, RMSE of 0.24, and R2 score of 0.85. The GIN IC50 regression model results in 

an MAE of 0.44, RMSE of 0.40, and R2 score of 0.80. GNNs outperform previous models. Different 

algorithms were tried like random forest regressor, support vector machine (SVM), multi-layer perceptron 

regressor (MLPRegressor), GRU, and GCN on drug SMILES data but the proposed method leverages drug 

SMILES and gene expression data and improves the accuracy by using enhanced GNN algorithms and 

hyperparameter settings. The proposed method can be used in scenarios where gene expression is considered 

for disease analysis and drug-gene interactivity is to be learned thereby contributing to drug discovery. 

  

 

Table 4. Comparative analysis 

Datasets Models used 
Results 

RMSE MAE R2 score 

Molecular descriptors of 500 drug SMILES ML model 0.4 0.48 0.58 

Drug sequences of 500 drug SMILES GRU 0.32 0.23 0.63 

Drug-induced Gene expressions of 201 drugs GCNs 0.0038 - - 

Drug graph of 2,100 drugs GCNs 0.2 0.3 0.73 
Drug SMILES and gene expressions of 80 drugs GCNs 0.18 0.16 0.90 

 

 

3.2.  Discussion 

This section addresses the benefits of the proposed GNN variations method over earlier approaches 

for predicting IC50 in ALS. The limitation of the previous work, the ML-based model was that it was 

difficult to train the ML model to obtain high robustness and accuracy due to molecular descriptors as 

training data. Similarly, GRU and graph convolutional neural network models were previously trained with 

drug SMILES alone. However, analyzing gene expression data necessitates a sophisticated model and a 

creative methodology. It is accomplished by adding gene expression as a global feature into drug graphs via 

graph convolutional neural network architecture but with limited generalizability. It is further improved with 

the proposed enhanced GNN variants GAT, MPNN, and GIN to overcome the above challenges, this 

research introduces better drug-gene interactivity learning with robustness for 90 drugs. The GNN variants 

use different feature extraction techniques like attention mechanisms, customized aggregation functions, and 

permutation invariant representations. The proposed method results are compared with the existing methods 

like the ML-based IC50 model, GRU-based IC50 regression model [32], and graph convolutional neural 

network IC50 regression model [32], [33]. Compared to GCN trained using 80 drugs and their gene 

expression data, the proposed enhanced GNN IC50 regression model achieves higher accuracy and greater 

generalizability. It attains superior results when compared to the previous works. However, the proposed 

method does not support datasets like mutation and copy number variation which in the future should 

approach a different methodology and algorithms for their analysis in drug discovery. 

 

 

4. CONCLUSION 

This study describes the use of innovative GAT, MPNN, and GIN architectures to develop an IC50 

regression model using drug SMILES in graph form with gene expression as global characteristics. The 

model employs GAT, MPNN, and GIN to record structural data and interconnections inside a drug molecule, 

depicted as graphs. The Uniprot, ChEMBL, and Depmap databases were utilized in this work. The drug 

SMILES and gene expression data obtained for 90 medications are transformed and employed as an 

adjacency matrix, node features, and edge features to train the GNN variants. The GNN variants were 

developed using the DeepChem framework, and the trials were performed with suitable hyperparameter 

settings. The IC50 prediction model was tested for efficiency using typical metrics and showed promising 

outcomes in predicting the IC50. In the future, other data modalities can be used for IC50 regression and 

analysis. This approach enhances understanding of the factors influencing IC50 values and allows for more 

precise predictions, aiding drug optimization. 
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