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 Due to the fast growth of social networks, humans have transformed from 

being general users to creators of network information’s by providing 

reviews, evaluations, and thoughts on social websites expressing their 

feelings on various topics. Recently, feedback analysis has become 

important not only for business owners to improve their products based on 

user feedback, but also for users to help them select the most suitable 

products by benefiting from other's experiences. Extracting and identifying 

human emotional states such as happiness, anger, and worry in texts are 

targets of emotion analysis due to their importance in providing suggestions 

for companies and users according to their needs. Although, there has been a 

lot of work on emotion detection in English text, there is currently lack of 

research on French text that is because of not existing of French emotion 

dataset. This paper presents an emotion detection model that integrates the 

Camembert tokenizer with bidirectional long short-term memory (Bi-LSTM) 

for emotion detection in French text. The proposed model is trained and 

validated using a dataset that has been annotated for emotions in French. The 

proposed model achieved accuracy and an F1-score of 98.66% and 98.66%, 

respectively, outperforming previous work by 26.36%. 
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1. INTRODUCTION 

Emotion detection, an extension of sentiment analysis, involves discerning emotions such as 

depression, anger, anxiety, happiness, and sadness, as well as utilizing this insight to help future decision-

making [1]. Emotions are integral to human life, affecting decision-making and enriching communication 

with the world. Identifying an individual's various feelings or emotions, such as joy, sadness, or happiness is 

referred to as emotion detection or emotion recognition. Emotion detection and analysis are among the most 

important challenging new issues in the field of natural language processing (NLP). So that detecting a 

human’s emotional status from text data is an active area of research, alongside the identification of emotions 

from facial expressions and audio recordings. The study of emotions has several applications in different 

fields, like human-computer interaction, data mining, neuroscience, psychology, e-learning, information 

filtering systems and cognitive science. The high availability of text sources, such as blogs, customer 

reviews, social media, and news articles, presents valuable resources to research various aspects in text 

mining, including emotions [2]. In recent years, automated emotion detection has become a vital area of 

research [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Emotions detection can be detected through physical activities, such as heart rate, hand shaking, 

perspiring, and voice tones, which also express the emotional state of humans [4]. However, detecting 

emotions from text is more challenging. Text emotion detection is more complicated due to the introduction 

of new slang and various ambiguities that arise with each passing day [5]. Emotion analysis approaches 

based on text are classified into three categories: i) lexicon based, ii) machine and deep learning (DL) based, 

and iii) hybrid approaches [6]. In lexicon-based approaches, text is classified using a list of manually labeled 

words. There are two available lexicons namely EmoSenticNet and NRC-Emo Lex. EmoSenticNet [7] is an 

online lexicon for emotion that includes 13,171 words labeled with emotions such as sadness, joy, disgust, 

surprise, anger, and fear. While, National Research Council (NRC) emotion word organized lexicon 

(EmoLex) [8] contains above of 14,000 words labeled into eight categories of emotion. The NRC dataset is 

translated into more than 40 languages.   

Furthermore, machine learning-based (ML) approaches combine ML techniques with textual 

features to classify the text. Textual features are extracted to provide numerical or categorical representations 

used as input for ML models [9]. Finally, hybrid approaches combine lexicon and ML techniques to enhance 

the performance of emotion classification. The size, quality, and language of the data play significant role in 

the effectiveness of these approaches.  

The most widely used ML techniques are support vector machines (SVM), Naive Bayes (NB), and 

random forests, while DL models like convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) have also been utilized. Felbo et al. [10] introduced a DL approach called DeepMoji, which uses 

RNNs and attention mechanisms to detect emotion from text. The proposed approach was trained and 

evaluated using a large dataset of 1246 million English tweets containing about 64 common emojis. The 

proposed approach achieved great performance on multitasks of emotion classification, such as Amazon 

Mechanical Turk's sentiment prediction of tweets. 

Buechel and Hahn [11] constructed a multiclass balanced emotion dataset called EmoBank 

consisting of 10,000 English sentences. Then, authors analyzed dimensional emotion performance using 

different models, including lexicon-based and ML methods. The experimental results proved that the 

automatic mapping between categorical and dimensional formats using ML techniques is similar to human 

performance compared to other methods. 

Haryadi and Kusuma [12] developed a multi-class emotion detection model based on long short 

term memory (LSTM), Nested LSTM, and SVM approaches. The proposed model was trained and evaluated 

using 980,549 and 144,160 tweets for the training and testing datasets, respectively. The depicted 

experimental results showed that Nested LSTM outperformed other methods by achieving an accuracy of 

99.167%. 

Machová et al. [13] compared different ML, and lexicon-based techniques, such as SVM, NB, and 

deep neural networks (DNN) for the task of emotion detection. The proposed models were trained using 

20,000 posts gathered from the social network’s conversations, containing six emotions: joy, love, sadness, 

surprise, anger, and fear. The experiments showed that DL model utilizing 1D convolutional layer (Conv1D) 

and LSTM network achieved the greatest accuracy of about 91%. 

Blandin et al. [14] analyzed the views and emotions contained in emails to gauge their effect on 

open and click rates, investigating how analyzing emotions in French emails can boost market success. This 

study utilized K-means clustering approach to construct the dataset by categorizing the emails based on their 

emotional content. Emotional embeddings were then employed to explore the relations between email 

performance metrics, such as click and open rates. Hints on how to write effective email campaigns were 

then provided. The proposed AdaBoost-based emotion model achieved an accuracy of 72.23%. 

Genest et al. [15] presented an emotion detection model based on bidirectional encoder 

representations from transformers (BERT) to detect emotions from French text. Around 14,997 English 

scripts gathered from the TV show Friends were translated into French for model training. Filtering the 

dataset and extracting emotional lines resulted in 9,965 samples. For translation, Needleman-Wunsch 

algorithm was utilized for aligning both English and French scripts. The BERT-based model achieved an F1 

score of 67%. Yohanes et al. [16] investigated the performance of various RNN DL models, such as LSTM, 

Bi-LSTM and gated recurrent unit (GRU) for detecting emotions in textual data. On evaluating the proposed 

models using the ISEAR dataset, GRU-based emotion detection model outperformed the others by achieving 

an accuracy and F1-score of 60.26% and 59.87%, respectively. 

Sharma et al. [17] developed a LSTM-based emotion detection system in textual data. This study 

leveraged the capability of LSTM network to capture long-term dependencies in textual data to make it 

suitable for emotion classification. A dataset of about 16,000 rows of data, classified into six emotions, was 

collected and used for training and evaluating the proposed system. The Bi-LSTM model achieved the best 

performance with an accuracy of 88%. 
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Essebbar et al. [18] utilized pre-trained models like multilingual BERT (mbret), Camembert and 

Flaubert, and some DL techniques to detect aspect based sentiment analysis (ABSA). On evaluating the 

proposed models using SemEval2016, experiments showed that Flaubert French pre-trained model 

outperformed other models by achieving an accuracy and F1-score of 84.83% and 73.84%, respectively. 

Adoma et al. [19] proposed a two-stage architecture utilizing BERT and Bi-LSTM as encoder and decoder 

for emotion detection. On evaluating the proposed architecture using ISEAR dataset, a F1-score of 73% was 

achieved.  

Abas et al. [20] proposed a hybrid emotion detection model based on BERT and CNN. BERT was 

utilized to extract the word context. Then, BERT output was passed to CNN for emotion prediction. On 

evaluating the proposed model using ISEAR, an accuracy and F1-score of 75.8% and 76% were achieved, 

respectively. When using semeval 2019 task3 dataset, the proposed model achieved an accuracy of 94.7%, 

and an F1-score of 94%. 

Bharti et al. [21] proposed a hybrid DL and ML text-based emotion recognition model. The 

proposed model utilized three different datasets, namely, ISEAR, WASSA, and the emotion-stimulus dataset. 

The hybrid proposed model utilized word2vec as embedding layer. The resulted embedding vector was fed 

into both CNN and bidirectional gated recurrent unit (Bi-GRU), which acted as encoders after removing their 

last layer. Finally, SVM was used as a classifier. The proposed hybrid model achieved a precision, a recall, 

an F1 score, and an accuracy of 82.39%, 80.40%, 81.27%, and 80.11%, respectively. 

Alvi et al. [22] presented a novel hybrid method based on ML techniques and recursive data 

munging module to extract user’s opinions from a Twitter dataset regarding warming and weather changes. 

The proposed model achieved an accuracy of 86.18%. Deshpande and Paswan [23] proposed a hybrid 

method for emotion detection from Twitter posts, which is based on a rule-based component and ML 

algorithms. The experimental results showed that the proposed method achieved better performance 

compared to the older Unison model with an average accuracy of 88.39%. 

In this paper, a novel model for emotion analysis, integrating the Camembert tokenizer with Bi-

LSTM classifier, is proposed to detect emotions from French text. The main contributions of this paper are 

summarized as follows: 

- Constructing an annotated French emotion detection dataset from an existed sentiment dataset. 

- Developing a novel emotion detection model to detect emotions from French text, which overcomes the 

limitations of other models. 

- Outperforming other French emotion detection models by achieving an accuracy of 98.66%, with an 

increase of 26.36%. 

The remaining of this paper is organized as follows phases of the proposed emotion detection model 

are described in section 2. The obtained experimental results are presented and discussed in section 3, and 

section 4 introduces the conclusions and future work. 

  

 

2. METHOD 

This section presents the proposed model phases, which leverages the power of Camembert and Bi-

LSTM. Camembert is based on the BERT technique, which is specifically designed for French text. It was 

trained using a large French corpus and achieved state-of-the-art performance in various tasks, such as 

questions answering, sentiment analysis, and part-of-speech tagging in French text [24]. Bi-LSTM is one of 

RNN architectures, which enhances the traditional LSTM network by integrating bidirectional processing. 

This approach replaced each word in sentence with its corresponding integer value from the vocabulary 

index. Consequently, an input sentence can be converted to a vector with size equal to the number of words it 

contains [3]. The proposed model uses the tokenizer of Camembert alongside Bi-LSTM for emotions 

detection in French text. It consists of four phases: data collecting and cleaning, preprocessing, emotion 

identification, and testing phases as shown in Figure 1. 

 

2.1.  Data collection and cleaning phase 

Since there is no available French emotion dataset. The dataset utilized in this paper was constructed 

using the following steps: 

a. Downloading French sentiment analysis dataset from Kaggle [25]. 

b. Annotating about 50,000 records from the downloaded dataset as emotion dataset consisting of 5 emotion 

labels (happy, stratification, angry, sad, and worry), manually. 

c. Removing duplicated rows and empty rows. 

Figure 2 shows emotion distribution in the constructed dataset, which is 25.9%, 14%, 10.2%, 23%, 

and 27% records for happiness, sadness, angry, satisfaction, and worry classes, respectively. 
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Figure 1. Proposed emotion detection model 
 
 

 
 

Figure 2. Emotions distribution 

 

  

2.2.  Data preprocessing phase 

Preprocessing is a crucial phase for text data to eliminate noise in order to help classifiers achieve 

higher performance and effectiveness. Steps in the preprocessing phase can be different based on the problem 

and the used data. In this paper, the following steps are utilized and performed on text before training or 

evaluating the model: 

a. Unique labels: the data is manually annotated, which may result in misspelling in labels, a python 

dictionary is used to correct these errors.  

b. Tokenization: this step involves dividing text into smaller units called tokens, without understanding the 

meaning or relationships of words. These tokens are then used as input for the next steps. In this work, the 

Camembert tokenizer [23] is utilized. For example, given the following input: text="J'aime le chocolat.", 

MAX_LENGTH=10. The Camembert tokenizer divides the text into the following tokens: tokens = ['▁J', 

"'", 'aime', '▁le', '▁chocolat', '.']. This is because of Camembert tokenizer is aware of the linguistic 

features of the French language. It provides superior tokenization for French text compared to the Keras 

Tokenizer. 

c. Stop words removal: this step is responsible for removing stop words from the tokenized text. Stop words 

are the general words that often do not contribute much to the general meaning of a sentence. In this 

work, natural language toolkit’s (NLTK) list of stop words is used. 

d. Padding: the maximum sequence length (MAX_LENGTH) is set to 200. As shown in Figure 3, some 

sentences have a length longer than 200. To uniform the input, this step padded all tokens to a length of 

200. 

e. Input-IDs conversion: in NLP tasks, this step converts textual data into input IDs, a form that the models 

such as NN can process. Each token is replaced with a specific number. For example, tokenizing a 

sentence and replacing each token with its corresponding ID create a sequence of integers the represents 

the original sentence. 

f. Label encoding: this step converts the class/category labels into numeric values for ML processing. The 

labels-sad, angry, worry, happy, and satisfaction, are encoded as 0, 1, 2, 3, and 4 respectively. 

g. Train-validation and test split: in this step, dataset is divided into training and testing datasets to train and 

evaluate model performance. 
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Figure 3. Emotions sentences length 

 

 

2.3.  Emotion identification phase 

The proposed classification model is designed to detect emotion from French text, where it accepts a 

train data to train on to predict the class or emotion to which the text has. The proposed model has four main 

components: 

a. Embedding layer: the words or tokens are classically represented as one-hot vectors, where every word is 

assigned a unique index in a vocabulary. However, one-hot vectors are high-dimensional and sparse, 

making them less efficient for most ML algorithms. The embedding layer aims is to address this issue by 

learning a dense representation for each word or token. During the training process, the embedding layer 

adjusts its parameters to map each word to a continuous-valued vector of lower dimensionality. The 

resulting embeddings effectively capture the semantic relationships between words, such as similarity and 

context. These learned representations can be used as input to downstream tasks such as sentiment 

analysis, machine translation, text classification, and more. 

b. Bidirectional LSTM layer: this layer captures sequential information in the input embeddings. It receives 

the input text in shape of (batch size, MAX_LENGTH, embedding size), and produces as output with 

shape of (batch size, hidden_size1). 

c. Dense layers: these layers perform non-linear transformations on the LSTM output to learn complex 

representations. They receive the input text in shape of (batch size, hidden_size1), and produces output 

with shape of (batch size, dense size). 

d. Output layer: this layer computes the final output predictions for every class using the SoftMax activation 

function. It receives the input text in the shape of (batch size, dense size), and produces output with shape 

of (batch size, Num classes). 

 

2.3.1. Training model 

After conducting several experiments to select the parameters, which achieve the best performance, 

the proposed model is trained and validated using training and validation datasets. The number of epochs, 

batch size, learning rate for Adam optimizer are set to 400, 64, and 0.001, respectively. 

 

2.4.  Testing phase 

Finally, the proposed model is tested and evaluated using testing dataset. The experimental results 

will be discussed in section 3. The utilized performance metrics for model evaluation are accuracy, and F-

measure, recall and precision, which are commonly used in classification problems. 

 

 

3. RESULTS AND DISCUSSION 

This section reports and discusses the experimental results in details to show the superiority of the 

proposed model compared to the state-of-art models using various evaluation metrics. Experiments were 

performed on Kaggle platform and developed using Python. 

 

3.1.  Dataset 

As mentioned above, the used dataset was constructed utilizing a French sentiment dataset. Then, 

about 57000 records were annotated manually in five categories, namely, (sad, angry, worry, happy, and 

stratification). Samples of data are shown in Figure 4. Column 1 presents French statement and column 2 

presents emotion label. The dataset is divided into 60%, 20%, and 20% for training, validation, and testing 

datasets respectively. 
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Figure 4. Dataset samples 

 

 

3.2.  Experiments results 

After investigated several experiments, the depicted results shows that integration between 

Camembert tokenizer and Bi-LSTM classifier achieved the best performance because the Camembert 

tokenizer is aware of French linguistic patterns. As shown in Table 1, the proposed model utilizing 

Camembert tokenizer achieved an accuracy of 98.66%, an F1-measure of 98.66%, a recall of 98.66%, and a 

precision of 98.66%. On the other hand, using the same model utilizing Keras tokenizer achieved an accuracy 

of 81.4%, an F1-measure of 81.3%, a recall of 81.52%, and a precision of 81.25%. 

The accuracy and loss for both training and validation of the model using Keras tokenizer are shown 

in Figures 5 and 6. As depicted, the model shows no improvement after a limited number of epochs.  

Figures 7 and 8 show the accuracy and loss for both training and validation of the model using Camembert 

tokenizer. As illustrated, the model shows a significant improvement over the epochs. The confusion matrix 

is shown in Figure 9, illustrating that model is able to accurately predict emotions by achieving an accuracy 

of 97%, 98%, 99%, 99%, and 99% for sadness, angry, satstification, and happiness emotions, respectively. 

However, the sad emotion was confused by other emotions. 
  

 

Table 1. Performance of the proposed model using Keras tokenizer and Camembert tokenizer 
Evolution matrix Using Camembert tokenizer Using Keras tokenizer 

Accuracy 98.66 81.4 

F-score 98.66 81.3 

Precision 98.66 81.52 
Recall 98.66 81.25 

 

 

 
 

Figure 5. Training and validation accuracies using Keras tokenizer 

 

 

 
 

Figure 6. Training and validation losses using Keras tokenizer 
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Figure 7. Accuracy and validation accuracy using Camembert tokenizer 

 

 

 
 

Figure 8. Accuracy and validation loss using Camembert tokenizer 

 

 

 
 

Figure 9. Confusion matrix using Camembert tokenizer 

 

 

The innovation of the proposed French model is its training and testing using French text. Previous 

work on emotion detection in French text hasn’t reached the proposed model accuracy as shown in Table 2. 

For example, in Genest et al. [15] built their dataset using scripts translated from English to French and 

achieved an F1-score of 67%. Meanwhile, in Blandin et al. [14] classified the content of e-mails and 

achieved an F1-score of 72.3%. The proposed model outperforms both, with an improvement of 26.36%. 
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Table 2. State of art French text 

Model 
F1-score 

(%) 

Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 
Dataset Method 

Number 

of classes 

The proposed 

model 

98.66 98.66 98.66 98.66 Annotated dataset Proposed model 5 

[14] 72.3 - 72.3 72.3 French mail contents AdaBoost 2 

[15] 67 - - - Translated scripts Classifier depends on 

BERT 

4 

 

 

4. CONCLUSION 

This paper presented a novel model for emotion detection in French text that integrates the power of 

Camembert tokenizer, an embedding layer and a BI-LSTM classifier. As mentioned, there is no available 

French emotion dataset. Therefore, in this study, an emotional French dataset was manually generated by 

transforming a sentiment dataset into emotion one. The experimental results showed that Camembert 

tokenizer improved the model performances as it built especially for French text. The proposed emotion 

detection model achieved an accuracy of 98.66%, outperforming previous work by 26.36%. For future work, 

several challenges and research directions could be considered, such as studying the effect of considering 

various aspects of the text on emotion detection accuracy and conducting more experiments with datasets in 

low-resource languages, such as Arabic, where there has been less research and performance analysis. 
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