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 The use of hyperspectral image classification algorithms has garnered 

increasing interest from the scientific community in recent years, especially 

in the field of geosciences for pattern recognition applications. In order to 

extract full spectral-spatial characteristics, this study presents feature 

extraction with hyperspectral CNN (HSCNet), a unique hierarchical neural 

network architecture. HSCNet can handle computational complexity issues 

and capture extensive spectral-spatial information with ease. We use 

factorized cross entropy (FACE) to address the common problem of class 

imbalance in both experimental and real-world hyperspectral datasets in 

order to construct an accurate land cover classification system. FACE makes 

it easier to reconstruct the loss function, which helps to effectively 

accomplish the goals that have been expressed. We provide a new 

framework for hyperspectral image (HSI) classification called FACE, which 

combines components from HSCNet and FACE. Next, we carry out in-depth 

studies using two different remote sensing datasets: Botswana (BS) and 

Indian Pines (IP). We compare the effectiveness of different backbone 

networks in terms of categorization and compare its classification 

performance under various loss functions. Comparing our suggested 

classification system against the state-of-the-art end-to-end deep-learning-

based techniques, we find encouraging results. 
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1. INTRODUCTION 

In agriculture, hyperspectral imaging (HSI) has proven to be highly useful for a variety of activities, 

including disease identification, crop management, yield forecasting, and soil, water, and land condition 

monitoring [1]-[6]. In agricultural sectors, deep learning approaches have shown great promise as tools that 

can help farmers make timely and educated decisions. Their ability to automatically extract relevant features 

gives them an advantage over traditional machine learning (ML) techniques. Deep learning algorithms have 

made tremendous progress in crop categorization tasks in particular, and numerous efforts are being made to 

improve these techniques in order to better solve agricultural concerns [7]. Agricultural operations have been 

completely transformed by the integration of deep learning with HSI, which has improved crop 

categorization accuracy and efficiency among other related applications. A more profitable and sustainable 

agriculture industry is promoted by this synergy and the recent strides in artificial intelligence (AI) have 

facilitated its integration with diverse applications across research and industry landscapes. 

Concurrently providing a multitude of spectral and geographical data are hyperspectral images 

(HSIs). The spatial dimension displays details on the ground surface, whereas the spectral aspect reveals the 
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distinct spectral curve properties of each pixels, both spectral and spatial information are easily integrated by 

HSIs [8]. However, they complicate feature extraction and terrain categorization because to high 

dimensionality and information redundancy [9]. In order to overcome this, HSI spectral pixels are frequently 

projected onto lower-dimensional feature spaces using dimensionality reduction techniques [10]. Two 

prominent methods in this field are linear discriminant analysis (LDA) and principal component analysis 

(PCA), finding the eigenvectors that correspond to the greatest eigenvalues in the original data's covariance 

matrix is the first step in PCA [11]. In order to achieve feature extraction and dimensionality reduction, the 

original spectral pixels are projected into an orthogonal subspace formed by these eigenvectors. In contrast, 

LDA enhances data separability within the subspace by projecting spectral pixels onto a low-dimensional 

subspace that is tuned for maximizing intra-class scatters and decreasing between-class scatters. 

In addition to dimensionality reduction via feature extraction, other data analysis methods can 

improve spectral differences between various terrains. It has been demonstrated at [12] that derivatives of 

HSI spectral features capture unique properties of different land-cover classes. In particular, they discovered 

that first-order spectral differentiation avoids dimensionality problems and increases recognition rates, 

especially when applied to small sample sizes or poorly quality data. Building on this, spectral first-order 

differentials were recovered from HSIs in a subsequent work, and dimensionality reduction was achieved 

through the use of locality Fisher discrimination analysis (LFDA) and locality preserving nonnegative matrix 

factorization (LPNMF), also the subsequent feature fusion greatly improved classification performance [13]. 

Fractional differentiation has been popular in spectrum analysis, mostly for predicting element or 

ion compositions in soil or plants, but it is still not often used in spectral classification [14]. For example, 

fractional differentiation on soil spectral pixels in visible near-infrared spectroscopy was used in a study 

Vantaggiato et al. [15] to determine the amount of salt and soluble ions in the soil. Fractional differentiation 

was also used to measure soil organic carbon in another study [16], and in order to get the best SOC 

estimation accuracy, this required merging spectral parameters obtained from various spectral indices based 

on fractional differentiation. CNNs have demonstrated incredible skill in the terrain categorization of HSIs in 

recent years [17]. For example, Bougourzi et al. [18] used HRSIs with a one-dimensional convolutional 

neural network (1D-CNN) that only processed spectral data, ignoring spatial cues. Later, spectral pixels' 

dimensionality was decreased in a different study [19], after which a two-dimensional convolutional neural 

network (2D-CNN) was used to extract and classify features, therefore including spatial information from 

HSIs. There is a significant research gap because fractional differentiation, a useful tool for analyzing data in 

different frequency ranges, is not widely used in classifying spatial and spectral features. This is despite its 

success in analyzing soil and plant areas. By using fractional differentiation more often in techniques that 

classify spatial and spectral data, we could improve accuracy and make these methods more useful in 

different applications. 

In this research, a unique method for classifying HSI is presented, utilizing spatial-spectral 

properties that are acquired by deep learning approaches. First, a convolutional neural network (CNN) named 

HSCNet is suggested in order to extract crucial spectral and spatial information for HSI characteristics. In 

comparison to simple 3D-CNN models, HSCNet reduces computational complexity by concentrating on 

capturing correlations among nearby bands in the HSI. The results show that when comparing models of 

similar scale, the HSI classification performance is increased and second, the framework called factorized 

cross entropy (FACE) is used as a loss function to solve the class-imbalanced character of HSI classification. 

Numerous studies attest to FACE's efficacy in producing the intended classification results. When compared 

to current deep-learning-based techniques, the suggested classification framework performs satisfactorily, 

providing a reliable and effective solution for making land cover categorization more efficient. 

 

 

2. RELATED WORK 

Due to deep learning's remarkable feature extraction skills and several domain triumphs, it has 

become a potent technique for HSI classification in recent years. Several deep learning techniques have been 

developed to improve the extraction of spatial and spectral information from HSIs by utilizing convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs). Certain 

methods use a two-branch design, extracting spectral and spatial characteristics independently and then 

merging them using different neural networks [20]. On the other hand, some people choose to collect joint 

spatial-spectral data using a unified feature extractor, like 3D-CNNs [21]. For example, Hu et al. [22] 

presented a 1D-CNN technique that emphasizes the extraction of spectral features, however this frequently 

turns out to be insufficient for precise classification. In order to overcome this drawback, Makantasis et al. 

[23] developed a 2D-CNN strategy that focuses exclusively on spatial information learning for the 

categorization of HSI. But these techniques might not completely take advantage of HSI cubes' intrinsic 

three-dimensionality. In order to close this disparity, Hamida et al. [24] proposed a 3D-CNN technique that 

improves classification performance by utilizing both spectral and spatial data. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 1890-1900 

1892 

By combining 2D and 3D CNN, a hybrid spectral CNN was created in [25]. In this case, 2D-CNN 

concentrates on extracting higher-level spatial representations, whereas 3D-CNN helps to capture joint 

spatial-spectral data early in the process. Other works provide evidence that similar approaches are present in 

the literature [26]. The channel attention mechanism and its use in HSI classification have been the subject of 

substantial research in recent years in an effort to improve classification performance even further. A 

prominent illustration is the squeeze and excitation approach, which simulates inter-channel interdependence 

to improve overall performance and feature representation capabilities. To improve the representation of 

spatial-spectral information buried within HSI data, for instance, the incorporation of SE blocks into residual 

networks was suggested in [27]. Furthermore, some research indicates that handling images in the frequency 

domain provides direct access to both high and low-frequency components, which may enhance the process 

of extracting features. Few-shot learning techniques are becoming more popular as a result of the realization 

that deep learning methods sometimes require a large number of labeled training samples, which can be 

expensive and time-consuming to annotate manually [28], [29]. 

As a subclass of deep learning, few-shot learning focuses on teaching models to identify classes of 

samples with as little as three to five examples per class that have been labeled, this skill is comparable to 

one that people possess. Transfer learning is the mainstay of modern few-shot learning techniques because 

there are so many labeled samples accessible and this means using previously learned strategies from large-

scale labeled sample data to challenges with sparse labeled data. Meta-learning strategies are used in many 

few-shot learning approaches to help transmit knowledge effectively and these methods entail creating a 

large number of tasks that closely resemble the target task and using these created tasks to train a model so 

that the target task can be easily adapted to. Many techniques designed for the categorization of HSIs have 

been developed, building on well-established few-shot learning models such as the prototype network [28]. 

For example, DFSL [30] extracted enhanced spatial-spectral joint features from HSIs by using a 3D residual 

network as a feature extractor. SSPN [31], on the other hand, used local pattern coding to combine spectral 

and spatial data while utilizing a 1D-CNN to extract features. Unlike other efforts, HSEMD-Net [32] learned 

prototype representations for each hyperspectral class by using the earth mover distance rather than the 

Euclidean distance. Furthermore, for few-shot HSI classification, RL-Net [33] used an interactive RE 

network [34], which is an enhanced version of the model network. 

 

 

3. METHOD 

We present a novel joint network, called HSCNet, that combines the FACE with a hybrid 3D-2D 

CNN architecture to achieve HSI categorization. Figure 1 illustrates how our method is designed to utilize 

spectral-spatial feature maps to extract abstract representations from hierarchical space. Using the hybrid 3D-

2D-CNN model, we hope to successfully extract meaningful information from hyperspectral data. Moreover, 

we utilize the FACE to tackle any difficulties arising from the classification of HSIs, as illustrated in Figure 1. 

By helping to handle challenging samples, the FACE improves classification performance as a whole. 

  

 

 
 

Figure 1. Overview of the proposed feature extractor HSCNet and entire framework HSCNet-FACE 

 

 

FACE integrated hyperspectral CNN mechanism. The spatial-spectral hyperspectral data cube in 

this case is represented by the notation 𝐴𝑖𝑚𝑎𝑔𝑒 ∈  𝐵𝑋×𝑌×𝑆, where 𝑋, 𝑌, and 𝑆 stand for the height, width, and 

spectral bands, respectively, in the HSI. The initial picture, 𝐴𝑖𝑚𝑎𝑔𝑒  has a one-hot label vector  

𝐶 =  {𝐶1, 𝐶2, . . . , 𝐶𝐷 }  ∈  𝐵1×1×𝐷, where 𝐷 is the total number of land cover classes, linked with each pixel. 

However, the intrinsic complexity of high-dimensional hyperspectral pixels, which frequently display mixes 

of various land cover classes, presents a considerable barrier in real-world circumstances. Significant spectral 

intravariability and noticeable similarities between classes are the outcomes of this phenomena. 
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In order to properly preprocess the data, the image must be segmented into small, overlapping 3D 

blocks. This segmentation makes it possible to apply our deep learning technique to every single 3D block. 

The hyperspectral data cube serves as the basis for each neighboring 3D block, which is uniquely recognized 

by its central spatial coordinates. Every 3D block is represented as 𝐴𝑒 ∈  𝐵𝑓×𝑓×𝑆, where S is the depth of 

spectral bands in each block and f is the size of each spatial window. As a result, the 3D blocks are (𝑋 −
 𝑓 +  1)  ×  (𝑌 −  𝑓 +  1) from the hyperspectral data cube. More specifically, the appropriate spatial 

window will encompass the height range [𝜀 − (𝑓 −  1)/2, 𝜀 + (𝑓 −  1)/2] and the width range [𝛿 −
 (𝑓 −  1)/2, 𝛿 + (𝑓 −  1)/2] for each given hyperspectral 3D block with center spatial coordinates (δ, ε). 

We present the HSCNet-FACE framework, which has a hierarchical convolutional structure 

intended for categorization of HSI and Gradient descent optimization is used in supervised methods [35] to 

train the CNNs' parameters. Conventional 2D-CNNs ignore spectral information in favor of constructing 

discriminative feature maps only over spatial dimensions and as opposed to this, a single 3D-CNN can 

interact with both spatial and spectral dimensions by traversing the convolutional kernel along all three 

dimensions (height, width, and spectral). Because of this special feature, the 3D-CNN is able to fully extract 

spectral and spatial information from the high-dimensional hyperspectral data. HSCNet, the central 

component of HSCNet-FACE, combines three 3D convolutions, two 2D convolutions, and three fully linked 

layers in a hierarchical fashion to produce a well-balanced fusion of spectral and spatial information that 

improves the efficacy of HSI classification. 

The output results of 2D-CNN are produced by a convolution method that uses pre-sized 2D filters, 

also called convolutional kernels, to convolution the input image. The input image's pixels and the filter's 

weights are multiplied element-by-element in this operation, and the resultant new output pixel value is then 

computed by summing. Sliding the filter over the whole input image and determining the output pixel value 

at each place is the convolution process. Through the use of multiple filters at different layers, 2D-CNN is 

able to efficiently learn a variety of intrinsic properties from the image. The model is then able to perform 

picture classification and feature extraction tasks by combining these learned features to create higher-level 

representations. An activation function is used to the features obtained from the convolutional procedure, 

which adds nonlinearity to the model and the activation value of the r-th feature map in the q-th layer at 

spatial point (g, h) in 2D convolution is represented by the symbol 𝑚(q,r)
(g,h) 

, which can be written using (1): 

 

𝑚(𝑞,𝑟)
(𝑔,ℎ) 

= 𝜑 (𝑠(𝑞,𝑟) + ∑ ∑ ∑ ℵ(𝑞,𝑟,𝜌)
(𝜇,𝜗) 

× 𝑝(𝑞−1,𝜌)
(𝑔+𝜇,ℎ+𝜗) 𝛽

𝜇=−𝛽
𝛼
𝜗=−𝛼

𝑛𝑙−1
𝜌=1 ) (1) 

 

In this case, 𝑛𝜌 indicates the number of feature maps in the ρth layer, ψ stands for the nonlinear 

activation function, and 𝑠𝑞,𝑟  for the bias parameter connected to the r-th feature map of the q-th layer. The 

pre-designed size of the convolutional kernel is represented as (2α+1)×(2β+1) and the weight parameter for 

the j-th feature map of the ith layer is represented by ℵ𝑞,𝑟. 

We perform convolutional operations on HSIs using 3D convolutional kernels, as defined in [36] 

and using discrete or consecutive spectral bands of the input layer, 3D convolutional kernels are applied to 

create feature maps in the convolutional layer of the HSCNet-FACE architecture. Which efficiently capture 

spectral information and the activation value of the r-th feature map at spatial location (g, h, and t) in the q-th 

layer in 3D convolution, 𝑚(q,r)
(g,h,t) 

, can be represented as (2): 

 

𝑚(𝑞,𝑟)
(𝑔,ℎ,𝑡) 

= 𝜑 (𝑠(𝑞,𝑟) + ∑ ∑ ∑ ∑ ℵ(𝑞,𝑟,𝜌)
(𝜇,𝜗,𝜆) 

× 𝑝(𝑞−1,𝜌)
(𝑔+𝜇,ℎ+𝜗,𝑡+𝜆) 𝛿

𝜎=−𝛿
𝛾
𝜌=−𝛾

𝜕
𝜆=−𝜕

𝑑𝑙−1
𝜏=1 ) (2) 

 

where the depth of the kernel along the spectral dimension is 2∂+1, while other parameters remain consistent 

with those in (1). We design different 3D convolution kernels in HSCNet with different topologies. 𝑍 ∈
𝑆1

𝑤  ×  𝑆2
𝑤 ×  𝑆3

𝑤 is the structure of the 3D kernel; w is the layer index of the current kernels, and Z is the 

number of output channels for the current convolution layer. Z stays constant with the 3D kernel, and the 

structure of the 2D kernel is similarly indicated as 𝑍 ∈ 𝑆1
𝑛  ×  𝑆2

𝑛, where n is the layer index of the current 

kernels. Batch normalization (BN) layers are included as essential elements in our suggested approach and by 

stabilizing the input data distribution across all network layers, these BN layers are essential in accelerating 

the training of the overall framework and (3) is the formula for BN: 

 

𝐵𝑛(𝑣) =
𝑣−𝑣̅

√𝐷(𝑣)+𝜀
∙ 𝑖 + 𝑗 (3) 

 

The variance in the equation is denoted by 𝐷(𝑣) and the mean by 𝑣̅. Learnable parameter vectors are 

indicated by the parameters 𝑖 and 𝑗, whereas ε is a parameter that maintains numerical stability. In order to 
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provide nonlinear properties to the network, the nonlinear layer is also included and notably, each 3D/2D 

convolutional layer uses the rectified linear unit [37]. The relative merits of using resampling algorithms 

versus not using them in HSI classification are up for debate. As a result, we choose to use the Framework 

FACE as our loss function and it outperforms other traditional loss functions, including entropy loss and 

multiclass hinge loss, and resolves class imbalance problems more successfully. Adding weighted factors 𝑘 

and (1 − 𝑘) for positive and negative classes, respectively, is a commonly used approach to address class 

imbalance problems. The inverse class frequency, or the reverse of the ratio of positive class samples to 

negative class samples, is typically used to initialize the parameter α. The goal of this initialization is to 

balance the class distribution by giving classes with fewer samples during training bigger weights. This is the 

notation for the k-balanced cross entropy (CE) loss: 

 

𝐶𝐸(𝑥, ℎ) = 𝐶𝐸(𝑥𝑡) = −𝑘𝑡 𝑙𝑜𝑔(𝑥𝑡) (4) 

 

where 𝑥𝑡 is articulated as (5). 

 

𝑥𝑡 = {
𝑥,

1 − 𝑥,
ℎ=1
ℎ=0

 (5) 

 

The definition of k in this context is similar to the definition of 𝑥𝑡, where ℎ ∈  {0, 1} denotes the 

negative classes and positive classes, respectively. It is usually the case that easily classified negatives 

account for most of the loss [38]. 𝑘 does not discriminate between easy and hard cases; instead, it strikes a 

balance between the significance of positive and negative examples. In order to overcome this constraint, the 

framework FACE reconstructs the balanced cross-entropy loss to down-weight simple examples, shifting the 

training attention to hard negatives. In (6) is how FACE is formulated: 

 

𝐹𝐴𝐶𝐸(𝑥𝑡) = −(1 − 𝑥𝑡)𝐶 𝑙𝑜𝑔(𝑥𝑡) (6) 

 

properly, we can use an 𝑘-balanced approach of the FACE as (7). 

 

𝐹𝐴𝐶𝐸(𝑝𝑡) = −𝑘𝑡(1 − 𝑥𝑡)𝐶 𝑙𝑜𝑔(𝑥𝑡) (7) 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Dataset and configuration 

The system configuration includes an Intel(R) Core (TM) i7-10750H CPU @ 2.60 GHz, 16 GB 

RAM, and an NVIDIA GeForce GTX 1650 with 4 GB GPU memory. Python programming and essential 

packages like Keras, TensorFlow, Spectral, and SciPy are utilized. We perform experiments utilizing four 

publicly accessible hyperspectral datasets, Indian Pines (IP) and Botswana (BS), to evaluate the efficacy of 

the suggested technique there are three primary measures are used to assess each method: Kappa coefficient, 

average accuracy (AA), and overall accuracy (OA). While AA indicates the average accuracy across all 

categories, OA shows the percentage of correctly identified samples out of all test samples and the degree of 

agreement between the true values and the categorization outcomes is shown by the Kappa coefficient, here 

greater classification performance is indicated by higher values of these indicators. 5% of each class from the 

data was randomly chosen to serve as the training data and the remaining samples as the test data in order to 

confirm the efficacy of the suggested method's classification. 

The IP dataset [39] was collected in 1992 over an area of Indian pine trees in Indiana, USA, using 

the airborne visible infrared imaging spectrometer (AVIRIS). It consists of 145×145-pixel pictures that span 

220 continuous bands at a wavelength between 0.4 and 2.5 µm. Since some bands-the 104th to 108th, 150th to 

163rd, and 220th do not reflect water, 200 bands representing 16 different types of ground objects that are used 

for training. Conversely, the NASA EO-1 satellite collected the BS dataset [39] in May 2001 while it was in 

the Okavango Delta of BS. This dataset has a spatial resolution of about 20 meters, with dimensions of 

1476×256 pixels and a sensor with a wavelength range of 400–2500 nm. Following the removal of noise 

bands (1 to 9, 56 to 81, 98 to 101, 120 to 133, 165 to 186), 145 bands, which corresponded to 14 different 

types of ground objects, were used for training. 

 

4.2.  Classification results 

Among the techniques considered for comparison are the support vector machine (SVM) [40], the 

spectral-spatial residual network (SSRN) [41], and the fast dense spectral-spatial convolutional network 

(FDSSC) [42]. A feedback attention-based dense CNN network with a dual-branch multi-attention 
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mechanism network (DBMA) that makes use of the convolutional block attention module is shown in [43]. 

Furthermore, a dual-branch dual-attention mechanism network (DBDA) based on the dual attention network 

(DANet) is introduced in [44]. In order to capture spectral and spatial characteristics, respectively, another 

technique called dense pyramidal convolution and multi-feature fusion (DPCMF) [45] combines two 

branches: the spectrum branch and the spatial branch. 

Here Figure 2 shows the classification maps for the IP dataset; Figure 2(a) IP single spectral view, 

Figure 2(b) Ground-truth (GT), and Figure 2(c) GT classes. Furthermore, the Figure 3 shows the OA for 

different approaches in the IP dataset, where HSCNet-FACE archives 99.71% AA. Here various methodology 

showcases at x-axis and OA percentage shows at y-axis. Figure 4 shows the Kappa for different approaches in 

the IP dataset, where HSCNet-FACE archives 99.67% that is 3.35 more compared to top considered model. At 

Figure 4 various methodology showcases at x-axis and Kappa percentage shows at y-axis. 

 

 

  
(a) (b) 

 

 
(c) 

  

Figure 2. Classification maps for the IP dataset; (a) IP single spectral view, (b) GT, and (c) GT classes 

 

 

  

 

Figure 3. OA for different approaches in the IP dataset 

 

Figure 4. Kappa for different approaches in the 

IP dataset 

 

 

Figure 5 displays classification maps for the BS dataset, including Figure 5(a) BS single spectral 

view, Figure 5(b) GT, and Figure 5(c) GT classes. These maps provide visual representations of the 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 1890-1900 

1896 

classification results obtained from different methods. In Figure 6, the OA for various approaches in the BS 

dataset is presented. Notably, the HSCNet-FACE approach achieves an impressive 99.73% AA, highlighting 

its superior performance compared to other methods. Here various methodology showcases at x-axis and OA 

percentage shows at y-axis. Figure 7 illustrates the Kappa coefficients for different approaches applied to the 

BS dataset. Here various methodology showcases at x-axis and Kappa percentage shows at y-axis. The 

Kappa coefficient is a measure of agreement between the true values and the classification results. In this 

context, the HSCNet-FACE approach achieves a Kappa coefficient of 99.71%, which is notably 3.14% 

higher than the DPCMF approach, indicating its enhanced consistency and accuracy in classifying ground 

objects. The Tables 1 and 2 displays the classification accuracies (%) of different methods for various classes 

in a HSI classification task. Each row represents a different class, and each column corresponds to a specific 

classification method. The last row presents the AA across all classes for each method. Class number 

indicates the specific class being classified. SVM, SSRN, FDSSC, DBMA, DBDA, and DPCMF: 

classification accuracies achieved by each respective method for the corresponding class. 

 

 

   
(a) (b) (c) 

 

Figure 5. Classification maps for the BS dataset; (a) BS single spectral view, (b) GT, and (c) GT classes 

 

 

  

 

Figure 6. OA for different approaches in the BS 

dataset 

 

Figure 7. Kappa for different approaches in the BS 

dataset 

 

 

The significance of the HSCNet-FACE approach lies in its superior performance compared to other 

methods across multiple classes. It consistently achieves high classification accuracies, often reaching 100%, 

indicating its effectiveness in accurately classifying various types of ground objects present in the 

hyperspectral imagery. The HSCNet-FACE approach achieves the highest overall classification AA 

(99.73%) compared to other methods at Table 1 and 99.77 at Table 2. It demonstrates superior performance 

in accurately classifying hyperspectral data across diverse classes. This approach effectively integrates the 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Factorized cross entropy integrated hyperspectral CNN (HSCNet-FACE) for … (Pawankumar C. Patil) 

1897 

HSCNet backbone network with the FACE loss function, enabling the model to capture both spatial and 

spectral features comprehensively. By leveraging the dual-branch architecture and attention mechanisms, 

HSCNet-FACE excels in handling the inherent complexities and nuances present in HSIs. Additionally, its 

robustness is evident in its consistent high accuracy across various classes, showcasing its reliability and 

effectiveness in practical applications. Overall, the HSCNet-FACE approach stands out as a promising 

solution for HSI classification tasks, offering state-of-the-art performance and advancing the capabilities in 

this domain. 

 

 

Table 1. Categorized results for the IP dataset 
Class no. SVM SSRN FDSSC DBMA DBDA DPCMF HSCNet-FACE 

1 24.19 60 97.67 83.33 97.72 100 100 

2 56.71 91.47 99.12 92.27 96.43 97.62 99.5 
3 65.09 93.51 95.85 92.37 97.81 95.83 99.66 

4 39.63 88.95 100 100 97.56 100 100 

5 87.33 100 98.35 98.24 98.3 92.86 99.41 
6 83.87 95.95 88.44 98.4 96.75 95.24 99.8 

7 57.5 86.2 82.75 39.59 88 90.26 100 

8 89.28 94.5 100 99.1 100 100 100 
9 22.58 69.56 93.33 26.31 100 100 100 

10 66.7 84.35 87.31 83.98 91.12 93.1 99.85 

11 62.5 91.86 99.09 95.65 98.63 97.26 99.59 
12 51.86 86.74 89.01 85.05 93.55 94.12 99.76 

13 94.79 98.97 98.92 100 97.97 100 100 

14 90.42 94.74 96.24 93.73 94.4 97.3 100 
15 62.82 95.09 94.41 94.37 92.98 90.91 99.63 

16 98.46 91.11 94.38 96.51 95.45 93.44 98.46 

AA (%) 65.86 88.94 94.68 86.18 95.69 96.12 99.73 

 

 

Table 2. Categorized results for the BS dataset 
Class no. SVM SSRN FDSSC DBMA DBDA DPCMF HSCNet-FACE 

1 100 98.47 94.02 97.76 95.97 97.76 100 

2 70.7 94.62 100 98.98 98 100 100 
3 84.1 87.89 100 100 100 100 100 

4 65.95 86.8 96.89 89.4 85.77 88.28 100 

5 82.62 74.5 87.5 92.27 93.96 94.36 98.94 
6 65.71 80.19 69.76 80.13 87.04 88.65 98.4 

7 78.77 90.35 100 96.93 100 99.21 100 

8 65.87 87.11 95.6 100 99.32 100 100 
9 75.18 93.76 100 94.42 91.04 100 99.55 

10 69.82 81.56 91.04 92.77 100 89.7 100 

11 95.49 100 100 100 100 100 100 
12 93.1 100 88.88 100 100 100 100 

13 76.25 96.25 100 100 100 100 100 
14 90.41 100 100 97.43 100 100 100 

AA (%) 79.57 90.82 94.45 95.72 96.5 97.08 99.77 

 

 

5. CONCLUSION 

The research addresses a gap in HSI classification by proposing the integration of fractional 

differentiation methods and deep learning techniques. The proposed method, consisting of the HSCNet 

convolutional neural network and the FACE loss function, effectively captures spatial-spectral features and 

mitigates class imbalance issues. Results demonstrate improved classification performance compared to 

traditional methods, offering a reliable and efficient solution for land cover categorization. A comprehensive 

investigation into HSI classification using various methods and approaches is provided. Through 

experimentation on datasets such as IP and BS, we have demonstrated the effectiveness of different 

techniques, including SVM, SSRN, FDSSC, and others. These results highlight the significance of 

integrating spatial and spectral information effectively, as demonstrated by the HSCNet-FACE approach. 

Overall, our findings underscore the importance of advanced methodologies in HSI classification and suggest 

promising avenues for future research in this field. Future research could explore the application of the 

HSCNet-FACE approach to a wider range of hyperspectral datasets beyond IP and BS. This would help 

validate its robustness across different environments and land cover types. Developing more efficient 

versions of the proposed method could enable real-time HSI processing, which is crucial for applications in 

areas like precision agriculture, environmental monitoring, and disaster management. 
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