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This research aims to enhance the you only look once (YOLO) model for
pedestrian detection in environments with varying lighting conditions,
particularly in low-light scenarios. The primary contribution of this work is
the integration of a convolutional neural network (CNN)-based low-light
enhancement model, which transforms dark images into brighter, more
discernible ones. This enhanced dataset is subsequently used to train the
YOLO model, allowing it to learn from both the original and transformed
data distributions. Unlike traditional YOLO training approaches, this method
generates more accurate data representations in challenging lighting
environments, leading to improved detection outcomes. The novelty of this
approach lies in its dual-stage training process, which integrates a CNN-
based low-light enhancement model with YOLO’s detection capabilities.
This combination not only enhances pedestrian detection but also has the
potential for application in other domains, such as vehicle detection and
surveillance, particularly in challenging lighting conditions. The automatic
dataset collection pipeline provides an efficient way to gather diverse
training data across various scenarios. The YOLOv8 model trained on the
low-light enhanced dataset significantly outperformed the baseline model
trained only on the original dataset, with precision increased by 9.8%, recall
by 45.7%, mAP50 by 26.8%, and mAP50-95 by 41.0% when validated on
dark images.
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1. INTRODUCTION

Pedestrian detection systems are integral to autonomous driving, providing critical safety and
navigation capabilities. Recent studies, such as "Localized semantic feature mixers for efficient pedestrian
detection in autonomous driving" [1], have demonstrated promising results across various global datasets.
Additionally, the research titled "Faster region-based convolutional neural network (R-CNN) deep learning
model for pedestrian detection from drone images" [2] highlighted the effectiveness of you only look once
(YOLO) and faster R-CNN algorithms in achieving high accuracy levels in drone imagery. However, despite
these advancements, practical implementations of pedestrian detection systems encounter significant
challenges. The diverse nature of environments, particularly variations in lighting conditions, directly
impacts the accuracy and reliability of these systems.

The YOLO model has emerged as one of the leading approaches in real-time object detection,
demonstrating remarkable speed and accuracy in detecting pedestrians. Nevertheless, achieving high
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accuracy requires large, diverse training datasets, often challenging to obtain. This is where the concept of
streaming data-generated datasets becomes particularly relevant. By employing streaming data collection
methods, we can create larger and more representative datasets, enhancing the performance of pedestrian
detection models. However, these streaming datasets introduce complexities, including intricate data
processing and a deep understanding of the factors influencing pedestrian detection.

This paper aims to address these challenges by integrating a CNN-based low light enhancement
model into pedestrian detection systems, focusing on enhancing performance in suboptimal lighting
conditions where traditional algorithms may struggle. The novelty of our dual-stage training process
significantly enhances the YOLO model’s ability to detect pedestrians in varying lighting environments,
resulting in substantial performance improvements compared to baseline models.

Additionally, we propose a framework for streaming dataset collection to complement the
integration of the low light enhancement model. This framework incorporates real-time data acquisition
methods from multiple sources, such as cameras and sensors, facilitating the continuous generation of a
diverse and extensive dataset. By utilizing streaming data, we ensure the availability of up-to-date and
representative data for training and testing pedestrian detection models, significantly improving their
robustness and adaptability in real-world scenarios.

In summary, our contributions can be delineated as follows: i) we propose a training mechanism that
integrates outputs from the low light enhancement model into the training process of pedestrian detection
systems, allowing the system to learn the data distribution derived from enhanced images. This integration
aims to improve the overall detection performance quantitatively; ii) we introduce a comprehensive
framework for streaming dataset collection that enhances the integration of the low light enhancement model;
and iii) we conduct an examination of various factors influencing pedestrian detection performance,
including environmental conditions, providing valuable insights for future advancements in pedestrian
detection technology.

2. RELATED WORKS

The YOLOvV8 approach has proven effective in rapid object detection, while the low light
enhancement CNN model has been identified as a potential solution to address the common challenges of
low-light conditions encountered in CCTV recordings. Studies [1], [2] highlight specific pedestrian detection
approaches, along with findings from [3], [4] regarding YOLO and YOLOVS, provide a solid foundation for
building a pedestrian detection model.

Recent research emphasizes the potential of integrating advanced techniques such as domain
adaptation, transfer learning, and generative methods to improve object detection performance across various
environments [5]-[9]. These findings suggest that similar approaches may enhance pedestrian detection
capabilities, particularly in suboptimal lighting conditions when integrated with the low light enhancement
model and YOLOVS.

Further exploration into deep learning techniques reveals their capacity to enhance visual
information in challenging scenarios. For instance, Kuang et al. [10] leverages a conditional generative
adversarial network (CGAN) to transform grayscale thermal images into realistic RGB counterparts, while
Qiu et al. [11] proposes IDOD-YOLOV7, a method combining dehazing and a self-adaptive image
processing module with a pre-trained YOLOvV7 network to address object detection in low-light, foggy traffic
environments. These investigations underscore the potential of deep learning for enriching visual data across
diverse domains.

Additionally, studies [12]-[19] propose training deep neural networks to process low-light images
through techniques like color transformations, noise reduction, histogram equalization, and self-calibrated
illumination frameworks. These conclusions support the integration of the low light enhancement model to
improve the quality of data used in pedestrian detection, thereby adding significant value to this research. The
authors in [20] collected a dataset, creating normal and low-light image twins known as the LOL dataset,
simulating normal lighting conditions for corresponding low-light images through specific transformations.

Moreover, Cauldron [21] discusses modifications made to the YOLOv3 object detection model,
enhancing its performance for vision-impaired users in low-light environments. Rather than directly training
YOLO on dark images, the author proposes utilizing a learned low-light image processing model called see
in the dark (SID) as a pre-processing pipeline before running YOLO. Similarly, Roy and Bhaduri [22]
explores the DenseSPH-YOLOvV5 model, which combines DenseNet blocks with a swin-transformer
prediction head, showcasing the integration of advanced architectures to improve object detection in complex
scenarios. Research by Roy et al. [23] also introduce a fast and accurate fine-grain object detection model
based on YOLOV4, highlighting its versatility across applications, including plant disease detection.
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This literature review provides a strong theoretical basis for combining the low light enhancement
CNN model with YOLOvV8 in pedestrian detection. By leveraging the strengths of each model and
responding to recent findings in the literature, this research is expected to contribute to the development of
efficient and reliable solutions for pedestrian detection in CCTV recording environments with varying
lighting conditions.

3. METHOD
3.1. Framework for streaming dataset generation

Camera placement has been strategically placed out to collect a dataset specifically focusing on
pedestrian behavior. These cameras are positioned at optimal heights and strategic locations, providing broad
coverage of significant pedestrian traffic areas. Particularly for facial identification and other important
attributes. Avoiding placement that is too high, which may reduce detail, or too low, which may obstruct the
view.

This research adjusts the focused area coverage to include the most frequently used pedestrian
pathways while avoiding recording areas that may involve individuals' privacy, thus complying with
applicable ethical standards and privacy regulations.

As shown in Figure 1, the dataset preparation process for the YOLOv8 model in pedestrian
detection from CCTV footage involves several crucial steps. Firstly, after recording the video from CCTV,
data can be sent to the system using an application programming interface (API). It is then processed to
extract individual frames at a 3-second interval. This approach provides a sufficiently good representation of
pedestrian movements and positions over a certain period.
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Figure 1. Streaming dataset collection framework

After obtaining this set of frames, the next step is to utilize the pre-trained YOLOv8 model trained
on the COCO dataset [24]. The pretrained model provides a broad initial knowledge of various objects in a
general context, including humans (people). Therefore, the model can better capture features specific to
pedestrian detection.

Subsequently, the inference process is conducted using the YOLOv8 model on each frame, with a
specific focus on the "people” class. By limiting attention to this class, the model concentrates on identifying
and tagging pedestrian locations in each frame. This process enables the automatic creation of bounding
boxes around detected human objects, providing the necessary location and size information for the next
stage, annotation.

However, in some intervals of the footage, no pedestrians were present, so those images need to be
removed from the dataset to maintain relevance. The elimination process relied on the YOLOvV8 model for
label detection. If the model failed to detect any label in each image, indicating the absence of pedestrians,
the image was flagged for deletion from the dataset. This ensured that only images containing pedestrian
labels were used for further processing and analysis.

Annotation is a crucial step in dataset development, and by using the inference results from the
YOLOvV8 model, the generated bounding boxes can be considered as automatic annotations. Each bounding
box, signifies the location of pedestrians in that frame. This process significantly accelerates dataset creation,
reducing the manual effort required to label each object individually.

<object-class> is an integer representing the object class. Class indices must start from 0 and
increase by 1 for each unique class in the dataset. <x-center> and <y-center> are the coordinates of the
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bounding box center, each normalized based on the width and height of the image. Values should be in the
range of 0 to 1. <width> and <height> are the width and height of the bounding box, each normalized based
on the width and height of the image. Values should be in the range of 0 to 1.

The dataset is split into three sections: the training set (60%), used to teach the model; the validation
set (30%), used to check how well the model learns; and the test set (10%), used to see how good the model
is after learning. Afterwards, these sets are organized into folder structures.

3.2. Low light image enhancement model

Advanced processing techniques, such as scaling or histogram stretching, can be applied, but they
do not address the low signal-to-noise ratio (SNR) caused by the low number of photons. The camera is not
able to take the perfect image at low light because of the noise created at the camera sensors. During night
mode the noise is cancelled out by the camera to get the perfect image [12]. Various denoising, deblurring,
and enhancement techniques like [11] have been proposed, but their effectiveness is limited in extreme
conditions, such as nighttime imaging at high speeds. However, solely increasing the brightness of dark
regions will inevitably amplify image degradation.

There are physical ways to improve SNR in low-light conditions, including widening the aperture,
lengthening exposure time, and using flash as stated in [17]. However, each has its own characteristic
limitations. For example, lengthening exposure time can result in blur due to camera shake or object
movement.

To address the challenges posed by low-light conditions, a promising solution is the utilization of a
low light enhancement model. The model for low light enhancement that we are utilizing is inspired by [16].
This approach offers a practical means to mitigate the limitations associated with traditional methods like
widening the aperture or lengthening exposure time. It often helps to visualize its internal structure. One way
to do this is by displaying images from each layer of the model, as shown in Figure 2.

[ input_1 I input: l [(None, 500, 500, 3)] ]
I InputLayer l output: I [(None, 500, 500, 3)] I

[ convad | input: | (None, 500,500,3) | [ conv2d 3 [ input: | (None, 500,500,3) |
[ Conv2D | ouput: | (None, 500, 500, 16) | [ Conv2D | outpur: | (None, 500, 500, 32) |
I conv2d_1 l input: I (None, 500, 500, 16) l I conv2d_4 ] input: l (None, 500, 500, 32) |

[ Conv2D | output: | (None, 500,500, 32) | | Conv2D | output: | (None, 500, 500, 64) |

I conv2d_2 ] input: ] (None, 500, 500, 32) I I conv2d_5 ] input: [ (None, 500, 500, 64) I
[ Conv2D l output: l (None, 500, 500, 64) J I Conv2D l output: [ (None, 500, 500, 64) I

[ add | input: | {(None, 500, 500, 64), (None, 500, 500, 64), (None, 500, 500, 64)] |
| Add [ output: I (None, 500, 500, 64) I
[ conv2d_6 [ input I (None, 500, 500, 64) ] [ conv2d 9 ] input: l (None, 500, 500, 64) I
[ Conv2D | output: | (None, 500, 500, 64) | | Conv2D | output: | (None, 500, 500, 32) |
[[conv2d_7 | input: | (None, 500, 500, 64) | [ convad_11 T input: | (None, 500, 500, 64) |
l Conv2D ] output: l (None, 500, 500, 32) ] l Conv2D l output: | (None, 500, 500, 16) ]

l conv2d_8 1 input l (None, 500, 500, 32) I | conv2d_10 l input: | (None, 500, 500, 32) ]
[ Comv2D | output: | (None, 500, 500, 16) | | Conv2D | output: | (None, 500, 500, 16) |

[ conv2d_13 T input: | (None, 500, 500, 64) |
[ ConvaD | output: | (None, 500, 500, 16) |

[(add_1 | input:  ((None, 500, 500, 16), (None, 500, 500, 16), (None, 500, 500, 16)] |
[ Add | output: | (None, 500, 500, 16)

com2d_12 | input: | (None, 500, 500, 16) |
| Conv2D l output: | (None, 500, 500, 16) l

I add_2 l input [ [(None, 500, 500, 16), (None, 500, 500, 16), (None, 500, 500, 16)] I
| Add | outpur: | (None, 500, 500, 16) |

[[conv2d_15 | input: | (None, 500, 500, 16) |
[ Conv2D | output: | (None, 500, 500, 16) |

[ conv2d_16 ] input: | (None, 500, 500, 16) J
l Conv2D Iompu!‘ (None, 500, 500, 3)]

Figure 2. Low light enhancement model visualization
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While some research explores networks that require specialized data formats, following the path of
[19], this model offers a practical advantage by working with standard image formats like JPEG and PNG
making it more suitable for real-world applications.

A resizing process is implemented following the application of the low light enhancement model to
address the dimensional changes produced by the model. After enhancing the brightness of the images, the
dimensions of the processed images are reverted to their original size before being input into the YOLOV8
model. This step is crucial for maintaining consistent image dimensions, significantly contributing to the
accuracy and efficiency of pedestrian detection, particularly in suboptimal lighting conditions. This
adaptation serves as a key element in the workflow of this study, ensuring a seamless integration between
image quality enhancement and the object detection process.

Supervised learning is a machine learning approach that’s defined by its use of labeled datasets [25],
meaning each input data point is associated with a corresponding target or output. In the context of the low
light enhancement (CNN), each input image in the training dataset must have a corresponding ground truth
enhanced image to guide the learning process effectively. By incorporating simulation algorithms to augment
the dataset, the model is exposed to a wider range of low-light scenarios, enhancing its ability to generalize
and produce high-quality enhancements in various real-world conditions.

3.3. Low light image augmentation

Training a supervised low light enhancement model typically requires paired low-light and normal-
light images. Various approaches have been used in previous research to collect the necessary dataset.
Research [12] involves using collected a dataset of short exposure. While [16] simulates low-light image
condition using algorithms like salt and pepper and gamma reduction are applied to the dataset.

It is important to note that the dataset used in training the low light enhancement model does not
have paired lighting conditions needed for training. To address this limitation, this study decided to introduce
variations in low-light image conditions by incorporating several simulation algorithms. To simulate low-
light image condition, algorithms like salt and pepper and gamma reduction are applied to the dataset, as
shown in Figure 3. The salt and pepper algorithm are used to introduce random noise into the pixels of the
image, while the gamma reduction algorithm is used to reduce the brightness of the image. Figure 3(a) shows
the original image without any modifications, Figure 3(b) illustrates the image with added salt and pepper
noise, Figure 3(c) represent the image after applying both salt and pepper and gamma reduction. By
introducing these variations, the CNN model can be trained to recognize and enhance images under
suboptimal lighting conditions, even though the main dataset does not encompass a variety of lighting
conditions.

(©

Figure 3. Image processing stages; (a) original image, (b) image with salt-and-pepper noise, and (c) image
with salt-and-pepper noise and gamma reduction

Let I be the input image with dimensions rowxcolxch. Let S, ,, represent the salt vs. pepper ratio,
and amount denote the noise amount. The number of salt pixels (numsgq;,) and pepper pixels (num,epper)
are calculated based on the noise amount and salt vs. pepper ratio as in (1) and (2). The coordinates of salt
and pepper pixels are randomly selected within the image dimensions. Finally, the salt and pepper pixels are
set to their respective intensity values. This equation represents the salt and pepper noise generation process
in the code.

numgg, = [amount X size(I) X Sy ;] Q)

MUMpepper = [amount X size(I) X 1 — S5 ] 2
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To analyze both unprocessed and processed images, we used grayscale histograms to assess their
similarity. “Histograms in general are frequency distributions, and histograms of images describe the
frequency of the intensity values that occur in an image” [26].

3.4. Training YOLOVS8 using enhanced low light images

In this study, propose an approach involving the use of enhanced image quality results from the low
light enhancement model as training dataset for the YOLOv8 model. This approach aims for the model to
learn the changes in data distribution that occur in images processed through low light enhancement model.

During the training process of YOLO for pedestrian detection, images that have been processed by a
low light enhancement model are utilized. In this scenario, YOLOVS8 is employed with various model sizes,
namely YOLOvV8n, YOLOv8m, and YOLOvV8x [27] for comparison purposes. This approach aims to assess
the performance and efficiency of different YOLOV8 configurations in detecting pedestrians in low-light
conditions, thereby informing decisions on model selection and optimization for improved accuracy and
reliability.

For this research, the default configuration was used for training YOLOVS8. For each YOLOVS
variant, training was conducted with varying numbers of epochs 10, 20, 30, 40, and 50 as base standards,
learning rate of 0.002, image size of 640, and batch size 16. The purpose of training these models with
different numbers of epochs is to evaluate their performance and convergence over time.

3.5. Evaluation criteria

Evaluation criteria for the low-light enhancement model involve comparing histograms of the
original and enhanced images. First, each image is converted from red, green, blue (GRB) to hue, saturation,
value (HSV) color space, which helps in separating hue from intensity, facilitating better analysis of
brightness and color consistency. Histograms are then computed for each HSV channel to represent pixel
intensity distributions, and each histogram is normalized for consistency. These normalized histograms are
merged into a feature vector to capture the image’s overall color and brightness distribution. To evaluate
similarity, a correlation method is used to compare the feature vectors of the original and enhanced images,
providing a similarity score. The average similarity score is then calculated across all image pairs, using (3):

_1yn iq i
Average Score = ﬁ i=0 C(Horiginal,i: Henhanced,i) (3)

where C(ﬁorigmal,i, Henhanced,i) is the correlation score for each original-enhanced image pair. This average
score reflects the model’s overall effectiveness in enhancing low-light images while retaining natural image
quality.

The main criteria used for target detection are mainly precision, recall, mean average precision
(mAP), and other relevant measures. Precision evaluates the ratio of correctly identified objects to the total
number of detections, as in (4). Recall measures its capability to detect all instances of objects present in the
images, as in (5). Intersection over union (loU) measures the degree of overlap between a predicted bounding
box and an actual bounding box. It plays a fundamental role in evaluating the accuracy of object localization
asin (6).

TP

Precision = 4
TP+FP
Recall = —=~ (5)
TP+FN
ToU = Area of Intersection of two boxes (6)

Area of Union of two boxes

mAP50 is a mean average precision at an loU threshold of 0.50 offers a specific measure of the
model's accuracy, particularly for objects that are easily detectable. While mAP50-95 is mean average
precision calculated across loU thresholds between 0.50 and 0.95. It gives a comprehensive view of the
model's performance across different levels of detection difficulty.

4. RESULTS AND DISCUSSION
4.1. Generated dataset

The framework proposed tested on video data with duration around 4 to 5 hours managed to extract
a total of 4,994 images from the video. It's important to note that this dataset primarily consists of indoor

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025:; 1969-1980



Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 1975

photos taken within a shopping. These images were captured using the Xiaomi C300 CCTV with a 2K
resolution and F1.4 aperture.

Following the removal process of images lacking pedestrian labels, the dataset was reduced to
4,970 images. These images were then divided into three folders for training, validation, and testing
purposes. The ratio between the three sets was as follows: the training set contained approximately 60% of
the images (2,982 images), the validation set contained approximately 30% (1,491 images), and the testing
set contained the remaining approximately 10% (497 images) of the dataset.

After the data split, each folder was supplemented with a data.yaml file specifying the dataset for
YOLOV8. The file contains information about the location of images and labels for each part of the dataset,
namely training, validation, and testing. Each part has a path entry for the location of images and labels for
the location of corresponding labels. There is also a nc entry indicating the number of classes in the dataset,
and names which is a list of class names which is set to 1 since we are detecting only one class, there is only
one class label, which is "people".

4.2. Low light enhancement model

The training process progressed smoothly and consistently, with each epoch contributing to the
model's refinement. To evaluate the performance of the low-light enhancement model, various metrics were
analyzed to assess its effectiveness in improving image quality under low-light conditions. These metrics
provided quantitative insights into the model's capabilities, offering a systematic assessment of its
performance, as illustrated in Figure 4.

Training Loss

— loss

500 4
2501

6 lIU 2‘0 3I0 4‘0 5‘0
Epoch

Figure 4. Low light enhancement model training loss

In addition, a quantitative evaluation was conducted to assess the similarity between the original
images and those processed with the low-light enhancement model, specifically within the test dataset. The
method used was histogram comparison, where each image was converted into the HSV color space to
produce a more stable histogram representation. Histograms were calculated for each channel and
normalized. The histograms of the original and enhanced images were then compared using the correlation
method, which measures the degree of similarity between the two histogram distributions. The processed
images achieve a strong similarity to the originals, suggesting the processing preserves the image integrity
very well, as shown in Figure 5. Figure 5(a) shows the histogram of the original image, Figure 5(b) illustrates
the histogram of the dark image after undergoing low-light enhancement.

This process was applied to all image pairs in the test dataset, where images from both the original
and enhanced folders were matched and compared individually. After completing all comparisons, the
average histogram comparison score was calculated, yielding a result of 0.836. This indicates a high degree
of similarity between the original and enhanced images, suggesting that the enhanced images retained visual
characteristics closely resembling the original ones, despite undergoing low-light enhancement.

While quantitative metrics provide valuable numerical insights, they may not fully capture the
qualitative aspects of image enhancement. A qualitative assessment, which involves visually inspecting the
enhanced images and evaluating their perceptual quality, offers a more comprehensive understanding of the
model's capabilities. By combining both quantitative metrics and qualitative evaluations, we can ensure that
the low-light enhancement model’s performance is thoroughly assessed based on its ability to produce
visually pleasing and perceptually enhanced images, as shown in Figure 6. Figure 6(a) shows the original or
ground truth image, Figure 6(b) presents the low-light image before enhancement, and Figure 6(c) displays
the enhanced image after applying the low-light enhancement model.
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Figure 6. Comparison of image enhancement stages; (a) original or ground truth image, (b) low-light image,
and (c) enhanced image after applying the low-light enhancement model

4.3. Pedestrian detection YOLOv8 model

Table 1 presents the validation results for precision, recall, mAP50, and mAP50-95 obtained from
three variants of YOLOv8: YOLOvV8n, YOLOvV8m, and YOLOvV8x. These models were trained using both
the original dataset and the dataset processed by the low-light enhancement model.

The validation was conducted exclusively on images pre-processed through the low-light
enhancement model, under the assumption that all images would undergo this preprocessing step before
detection. As shown in Table 1, the training consistently yielded higher mAP values for models trained using
the enhanced dataset compared to those trained on the original dataset.

Figure 7 shows a batch image from the YOLOvVS8x validation results, demonstrating the model’s
accuracy in detecting objects when using the CNN-processed dataset. The bounding boxes in the figure
indicate that the YOLOV8x model correctly identifies individuals in the image.
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Table 1. YOLOVS original and enhanced dataset validation result

No Results
Description Epoch  Precision Recall mAP50 mAP50-95
1  YOLOv8n 10 0.745 0.711 0.775 0.484
trained with original dataset 20 0.821 0.751 0.835 0.591
30 0.841 0.767  0.853 0.625
40 0.854 0.768  0.858 0.642
50 0.85 0.781  0.861 0.653
2 YOLOv8n 10 0.782 0.684  0.776 0.493
trained with CNN processed dataset 20 0.824 0.759 0.842 0.59
30 0.851 0.763  0.855 0.622
40 0.846 0.78 0.863 0.642
50 0.851 0.787  0.865 0.657
3 YOLOv8m 10 0.816 0.764  0.838 0.601
trained with original dataset 20 0.858 0.787 0.869 0.677
30 0.852 0.813  0.873 0.7
40 0.859 0.804  0.877 0.71
50 0.875 0.795  0.879 0.72
4  YOLOv8m 10 0.828 0.764  0.842 0.608
trained with CNN processed dataset 20 0.859 0.794 0.878 0.682
30 0.874 0.802  0.885 0.711
40 0.859 0.819  0.888 0.722
50 0.874 0.81 0.891 0.732
5 YOLOv8x 10 0.839 0.764  0.846 0.628
trained with original dataset 20 0.865 0.788 0.876 0.699
30 0.861 0.806  0.879 0.722
40 0.865 0.81 0.883 0.731
50 0.877 0.806  0.882 0.736
6  YOLOv8x 10 0.827 0.775  0.849 0.623
trained with CNN processed dataset 20 0.863 0.805 0.884 0.704
30 0.864 0.818  0.889 0.732
40 0.868 0.817  0.894 0.742
50 0.878 0.816  0.894 0.75
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Figure 7. YOLOv8x trained with CNN processed dataset validation prediction

In addition to validation with the low-light enhanced dataset, validation was also performed on
images that underwent augmentation (darkening). The evaluation of YOLOVS8’s object detection performance
showed significant differences between the two approaches. YOLOV8x-CNN, trained using the low-light
enhanced dataset, demonstrated superior performance at epoch 50 with a precision of 0.878, recall of 0.816,
mAP50 of 0.894, and mAP50-95 of 0.75. In contrast, YOLOv8x-Orig-Dark, trained on the original dataset
and validated on darkened images, performed worse with a precision of 0.800, recall of 0.560, mAP50 of
0.705, and mAP50-95 of 0.532. Table 2 shows the results of this validation, providing evidence that the low-
light enhancement model offers superior performance compared to darkened images processed via
augmentation alone.
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The high precision observed in the darkened dataset indicates that the model maintains accuracy in
detecting recognized objects. However, the lower recall reveals difficulty in identifying all objects in darker
images. This precision-recall imbalance suggests that while the model ensures correct detections, it often
misses objects in low-light scenarios. Figure 8 shows validation results on darkened images, where the
YOLOvV8 model trained on the original dataset struggled to produce accurate bounding boxes on augmented
dark images.

Table 2. YOLOvS8 dark dataset validation result
No Results
Description Epoch P R mAP50  mAP50-95
1 YOLOv8x-Orig-Dark 10 0.510 0.129 0.317 0.206
20 0.804 0.272 0.545 0.382
30 0.878 0.388 0.643 0.469
40 0.832 0.407 0.633 0.469
50 0.800 0560 0.705 0.532
2 YOLOvV8x-CNN-Dark 10 0.731 0.175 0.455 0.285
20 0.803 0.488  0.666 0.464
30 0.890 0511 0.715 0.533
40 0.719 0556 0.672 0.495
50 0.895 0.590 0.761 0.586
*Orig: trained with original dataset
*CNN: trained with processed dataset
*Dark: validate dark dataset
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Figure 8. YOLOv8Xx validation on dark dataset prediction

5. CONCLUSION

In conclusion, this study demonstrates significant improvements in pedestrian detection
performance by integrating the YOLOv8 model with a low light enhancement CNN. The YOLOvV8 model,
trained on a dataset enhanced with low-light image processing, achieved notable performance gains,
including a 9.8% increase in precision, a 45.7% increase in recall, a 26.8% increase in mAP50, and a 41.0%
improvement in mAP50-95, particularly when validated on dark images. These results highlight the
effectiveness of incorporating the low light enhancement model into the YOLOVS training pipeline, enabling
the model to better adapt to low-light conditions and produce more accurate pedestrian detection.

Despite these advancements, several limitations indicate opportunities for future research. The
separate application of the low-light enhancement model, while beneficial for accuracy, may slow down
detection speed. Additionally, the image resizing process risks losing important details, which suggests that
more advanced image processing techniques should be explored. Future work should also investigate more
sophisticated low-light enhancement models, such as GANSs, to further improve detection performance under
challenging lighting conditions.
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