
Bulletin of Electrical Engineering and Informatics 

Vol. 14, No. 3, June 2025, pp. 1969~1980 

ISSN: 2302-9285, DOI: 10.11591/eei.v14i3.8903      1969  

 

Journal homepage: http://beei.org 

Enhancing low-light pedestrian detection: convolutional neural 

network and YOLOv8 integration with automated dataset 
 

  

Rendi, Devi Fitrianah 

Department of Computer Science, Binus Graduate Program, Master of Computer Science, Bina Nusantara University, Jakarta, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 23, 2024 

Revised Dec 14, 2024 

Accepted Dec 25, 2024 

 

 This research aims to enhance the you only look once (YOLO) model for 

pedestrian detection in environments with varying lighting conditions, 

particularly in low-light scenarios. The primary contribution of this work is 

the integration of a convolutional neural network (CNN)-based low-light 

enhancement model, which transforms dark images into brighter, more 

discernible ones. This enhanced dataset is subsequently used to train the 

YOLO model, allowing it to learn from both the original and transformed 

data distributions. Unlike traditional YOLO training approaches, this method 

generates more accurate data representations in challenging lighting 

environments, leading to improved detection outcomes. The novelty of this 

approach lies in its dual-stage training process, which integrates a CNN-

based low-light enhancement model with YOLO’s detection capabilities. 

This combination not only enhances pedestrian detection but also has the 

potential for application in other domains, such as vehicle detection and 

surveillance, particularly in challenging lighting conditions. The automatic 

dataset collection pipeline provides an efficient way to gather diverse 

training data across various scenarios. The YOLOv8 model trained on the 

low-light enhanced dataset significantly outperformed the baseline model 

trained only on the original dataset, with precision increased by 9.8%, recall 

by 45.7%, mAP50 by 26.8%, and mAP50-95 by 41.0% when validated on 

dark images. 
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1. INTRODUCTION 

Pedestrian detection systems are integral to autonomous driving, providing critical safety and 

navigation capabilities. Recent studies, such as "Localized semantic feature mixers for efficient pedestrian 

detection in autonomous driving" [1], have demonstrated promising results across various global datasets. 

Additionally, the research titled "Faster region-based convolutional neural network (R-CNN) deep learning 

model for pedestrian detection from drone images" [2] highlighted the effectiveness of you only look once 

(YOLO) and faster R-CNN algorithms in achieving high accuracy levels in drone imagery. However, despite 

these advancements, practical implementations of pedestrian detection systems encounter significant 

challenges. The diverse nature of environments, particularly variations in lighting conditions, directly 

impacts the accuracy and reliability of these systems. 

The YOLO model has emerged as one of the leading approaches in real-time object detection, 

demonstrating remarkable speed and accuracy in detecting pedestrians. Nevertheless, achieving high 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 1969-1980 

1970 

accuracy requires large, diverse training datasets, often challenging to obtain. This is where the concept of 

streaming data-generated datasets becomes particularly relevant. By employing streaming data collection 

methods, we can create larger and more representative datasets, enhancing the performance of pedestrian 

detection models. However, these streaming datasets introduce complexities, including intricate data 

processing and a deep understanding of the factors influencing pedestrian detection. 

This paper aims to address these challenges by integrating a CNN-based low light enhancement 

model into pedestrian detection systems, focusing on enhancing performance in suboptimal lighting 

conditions where traditional algorithms may struggle. The novelty of our dual-stage training process 

significantly enhances the YOLO model’s ability to detect pedestrians in varying lighting environments, 

resulting in substantial performance improvements compared to baseline models. 

Additionally, we propose a framework for streaming dataset collection to complement the 

integration of the low light enhancement model. This framework incorporates real-time data acquisition 

methods from multiple sources, such as cameras and sensors, facilitating the continuous generation of a 

diverse and extensive dataset. By utilizing streaming data, we ensure the availability of up-to-date and 

representative data for training and testing pedestrian detection models, significantly improving their 

robustness and adaptability in real-world scenarios. 

In summary, our contributions can be delineated as follows: i) we propose a training mechanism that 

integrates outputs from the low light enhancement model into the training process of pedestrian detection 

systems, allowing the system to learn the data distribution derived from enhanced images. This integration 

aims to improve the overall detection performance quantitatively; ii) we introduce a comprehensive 

framework for streaming dataset collection that enhances the integration of the low light enhancement model; 

and iii) we conduct an examination of various factors influencing pedestrian detection performance, 

including environmental conditions, providing valuable insights for future advancements in pedestrian 

detection technology. 

 

 

2. RELATED WORKS 

The YOLOv8 approach has proven effective in rapid object detection, while the low light 

enhancement CNN model has been identified as a potential solution to address the common challenges of 

low-light conditions encountered in CCTV recordings. Studies [1], [2] highlight specific pedestrian detection 

approaches, along with findings from [3], [4] regarding YOLO and YOLOv8, provide a solid foundation for 

building a pedestrian detection model. 

Recent research emphasizes the potential of integrating advanced techniques such as domain 

adaptation, transfer learning, and generative methods to improve object detection performance across various 

environments [5]-[9]. These findings suggest that similar approaches may enhance pedestrian detection 

capabilities, particularly in suboptimal lighting conditions when integrated with the low light enhancement 

model and YOLOv8. 

Further exploration into deep learning techniques reveals their capacity to enhance visual 

information in challenging scenarios. For instance, Kuang et al. [10] leverages a conditional generative 

adversarial network (CGAN) to transform grayscale thermal images into realistic RGB counterparts, while 

Qiu et al. [11] proposes IDOD-YOLOV7, a method combining dehazing and a self-adaptive image 

processing module with a pre-trained YOLOv7 network to address object detection in low-light, foggy traffic 

environments. These investigations underscore the potential of deep learning for enriching visual data across 

diverse domains. 

Additionally, studies [12]-[19] propose training deep neural networks to process low-light images 

through techniques like color transformations, noise reduction, histogram equalization, and self-calibrated 

illumination frameworks. These conclusions support the integration of the low light enhancement model to 

improve the quality of data used in pedestrian detection, thereby adding significant value to this research. The 

authors in [20] collected a dataset, creating normal and low-light image twins known as the LOL dataset, 

simulating normal lighting conditions for corresponding low-light images through specific transformations. 

Moreover, Cauldron [21] discusses modifications made to the YOLOv3 object detection model, 

enhancing its performance for vision-impaired users in low-light environments. Rather than directly training 

YOLO on dark images, the author proposes utilizing a learned low-light image processing model called see 

in the dark (SID) as a pre-processing pipeline before running YOLO. Similarly, Roy and Bhaduri [22] 

explores the DenseSPH-YOLOv5 model, which combines DenseNet blocks with a swin-transformer 

prediction head, showcasing the integration of advanced architectures to improve object detection in complex 

scenarios. Research by Roy et al. [23] also introduce a fast and accurate fine-grain object detection model 

based on YOLOv4, highlighting its versatility across applications, including plant disease detection. 
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This literature review provides a strong theoretical basis for combining the low light enhancement 

CNN model with YOLOv8 in pedestrian detection. By leveraging the strengths of each model and 

responding to recent findings in the literature, this research is expected to contribute to the development of 

efficient and reliable solutions for pedestrian detection in CCTV recording environments with varying 

lighting conditions. 

 

 

3. METHOD 

3.1.  Framework for streaming dataset generation 

Camera placement has been strategically placed out to collect a dataset specifically focusing on 

pedestrian behavior. These cameras are positioned at optimal heights and strategic locations, providing broad 

coverage of significant pedestrian traffic areas. Particularly for facial identification and other important 

attributes. Avoiding placement that is too high, which may reduce detail, or too low, which may obstruct the 

view. 

This research adjusts the focused area coverage to include the most frequently used pedestrian 

pathways while avoiding recording areas that may involve individuals' privacy, thus complying with 

applicable ethical standards and privacy regulations. 

As shown in Figure 1, the dataset preparation process for the YOLOv8 model in pedestrian 

detection from CCTV footage involves several crucial steps. Firstly, after recording the video from CCTV, 

data can be sent to the system using an application programming interface (API). It is then processed to 

extract individual frames at a 3-second interval. This approach provides a sufficiently good representation of 

pedestrian movements and positions over a certain period. 

 

 

 
 

Figure 1. Streaming dataset collection framework 

 

 

After obtaining this set of frames, the next step is to utilize the pre-trained YOLOv8 model trained 

on the COCO dataset [24]. The pretrained model provides a broad initial knowledge of various objects in a 

general context, including humans (people). Therefore, the model can better capture features specific to 

pedestrian detection. 

Subsequently, the inference process is conducted using the YOLOv8 model on each frame, with a 

specific focus on the "people" class. By limiting attention to this class, the model concentrates on identifying 

and tagging pedestrian locations in each frame. This process enables the automatic creation of bounding 

boxes around detected human objects, providing the necessary location and size information for the next 

stage, annotation. 

However, in some intervals of the footage, no pedestrians were present, so those images need to be 

removed from the dataset to maintain relevance. The elimination process relied on the YOLOv8 model for 

label detection. If the model failed to detect any label in each image, indicating the absence of pedestrians, 

the image was flagged for deletion from the dataset. This ensured that only images containing pedestrian 

labels were used for further processing and analysis. 

Annotation is a crucial step in dataset development, and by using the inference results from the 

YOLOv8 model, the generated bounding boxes can be considered as automatic annotations. Each bounding 

box, signifies the location of pedestrians in that frame. This process significantly accelerates dataset creation, 

reducing the manual effort required to label each object individually. 

<object-class> is an integer representing the object class. Class indices must start from 0 and 

increase by 1 for each unique class in the dataset. <x-center> and <y-center> are the coordinates of the 
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bounding box center, each normalized based on the width and height of the image. Values should be in the 

range of 0 to 1. <width> and <height> are the width and height of the bounding box, each normalized based 

on the width and height of the image. Values should be in the range of 0 to 1. 

The dataset is split into three sections: the training set (60%), used to teach the model; the validation 

set (30%), used to check how well the model learns; and the test set (10%), used to see how good the model 

is after learning. Afterwards, these sets are organized into folder structures. 

 

3.2.  Low light image enhancement model 

Advanced processing techniques, such as scaling or histogram stretching, can be applied, but they 

do not address the low signal-to-noise ratio (SNR) caused by the low number of photons. The camera is not 

able to take the perfect image at low light because of the noise created at the camera sensors. During night 

mode the noise is cancelled out by the camera to get the perfect image [12]. Various denoising, deblurring, 

and enhancement techniques like [11] have been proposed, but their effectiveness is limited in extreme 

conditions, such as nighttime imaging at high speeds. However, solely increasing the brightness of dark 

regions will inevitably amplify image degradation. 

There are physical ways to improve SNR in low-light conditions, including widening the aperture, 

lengthening exposure time, and using flash as stated in [17]. However, each has its own characteristic 

limitations. For example, lengthening exposure time can result in blur due to camera shake or object 

movement. 

To address the challenges posed by low-light conditions, a promising solution is the utilization of a 

low light enhancement model. The model for low light enhancement that we are utilizing is inspired by [16]. 

This approach offers a practical means to mitigate the limitations associated with traditional methods like 

widening the aperture or lengthening exposure time. It often helps to visualize its internal structure. One way 

to do this is by displaying images from each layer of the model, as shown in Figure 2.  
 
 

 
 

Figure 2. Low light enhancement model visualization 
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While some research explores networks that require specialized data formats, following the path of 

[19], this model offers a practical advantage by working with standard image formats like JPEG and PNG 

making it more suitable for real-world applications. 

A resizing process is implemented following the application of the low light enhancement model to 

address the dimensional changes produced by the model. After enhancing the brightness of the images, the 

dimensions of the processed images are reverted to their original size before being input into the YOLOv8 

model. This step is crucial for maintaining consistent image dimensions, significantly contributing to the 

accuracy and efficiency of pedestrian detection, particularly in suboptimal lighting conditions. This 

adaptation serves as a key element in the workflow of this study, ensuring a seamless integration between 

image quality enhancement and the object detection process. 

Supervised learning is a machine learning approach that’s defined by its use of labeled datasets [25], 

meaning each input data point is associated with a corresponding target or output. In the context of the low 

light enhancement (CNN), each input image in the training dataset must have a corresponding ground truth 

enhanced image to guide the learning process effectively. By incorporating simulation algorithms to augment 

the dataset, the model is exposed to a wider range of low-light scenarios, enhancing its ability to generalize 

and produce high-quality enhancements in various real-world conditions. 

 

3.3.  Low light image augmentation 

Training a supervised low light enhancement model typically requires paired low-light and normal-

light images. Various approaches have been used in previous research to collect the necessary dataset. 

Research [12] involves using collected a dataset of short exposure. While [16] simulates low-light image 

condition using algorithms like salt and pepper and gamma reduction are applied to the dataset. 

It is important to note that the dataset used in training the low light enhancement model does not 

have paired lighting conditions needed for training. To address this limitation, this study decided to introduce 

variations in low-light image conditions by incorporating several simulation algorithms. To simulate low-

light image condition, algorithms like salt and pepper and gamma reduction are applied to the dataset, as 

shown in Figure 3. The salt and pepper algorithm are used to introduce random noise into the pixels of the 

image, while the gamma reduction algorithm is used to reduce the brightness of the image. Figure 3(a) shows 

the original image without any modifications, Figure 3(b) illustrates the image with added salt and pepper 

noise, Figure 3(c) represent the image after applying both salt and pepper and gamma reduction. By 

introducing these variations, the CNN model can be trained to recognize and enhance images under 

suboptimal lighting conditions, even though the main dataset does not encompass a variety of lighting 

conditions. 

 

 

   
(a) (b) (c) 

 

Figure 3. Image processing stages; (a) original image, (b) image with salt-and-pepper noise, and (c) image 

with salt-and-pepper noise and gamma reduction 

 

 

Let 𝐼 be the input image with dimensions row×col×ch. Let 𝑆𝑣𝑠_𝑝 represent the salt vs. pepper ratio, 

and amount denote the noise amount. The number of salt pixels (𝑛𝑢𝑚𝑠𝑎𝑙𝑡) and pepper pixels (𝑛𝑢𝑚𝑝𝑒𝑝𝑝𝑒𝑟) 

are calculated based on the noise amount and salt vs. pepper ratio as in (1) and (2). The coordinates of salt 

and pepper pixels are randomly selected within the image dimensions. Finally, the salt and pepper pixels are 

set to their respective intensity values. This equation represents the salt and pepper noise generation process 

in the code. 

 

𝑛𝑢𝑚𝑠𝑎𝑙𝑡 = [𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑠𝑖𝑧𝑒(𝐼) × 𝑆𝑣𝑠_𝑝] (1) 

 

𝑛𝑢𝑚𝑝𝑒𝑝𝑝𝑒𝑟 = [𝑎𝑚𝑜𝑢𝑛𝑡 × 𝑠𝑖𝑧𝑒(𝐼) × 1 − 𝑆𝑣𝑠_𝑝] (2) 
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To analyze both unprocessed and processed images, we used grayscale histograms to assess their 

similarity. “Histograms in general are frequency distributions, and histograms of images describe the 

frequency of the intensity values that occur in an image” [26]. 

 

3.4.  Training YOLOv8 using enhanced low light images 

In this study, propose an approach involving the use of enhanced image quality results from the low 

light enhancement model as training dataset for the YOLOv8 model. This approach aims for the model to 

learn the changes in data distribution that occur in images processed through low light enhancement model. 

During the training process of YOLO for pedestrian detection, images that have been processed by a 

low light enhancement model are utilized. In this scenario, YOLOv8 is employed with various model sizes, 

namely YOLOv8n, YOLOv8m, and YOLOv8x [27] for comparison purposes. This approach aims to assess 

the performance and efficiency of different YOLOv8 configurations in detecting pedestrians in low-light 

conditions, thereby informing decisions on model selection and optimization for improved accuracy and 

reliability. 

For this research, the default configuration was used for training YOLOv8. For each YOLOv8 

variant, training was conducted with varying numbers of epochs 10, 20, 30, 40, and 50 as base standards, 

learning rate of 0.002, image size of 640, and batch size 16. The purpose of training these models with 

different numbers of epochs is to evaluate their performance and convergence over time. 

 

3.5.  Evaluation criteria 

Evaluation criteria for the low-light enhancement model involve comparing histograms of the 

original and enhanced images. First, each image is converted from red, green, blue (GRB) to hue, saturation, 

value (HSV) color space, which helps in separating hue from intensity, facilitating better analysis of 

brightness and color consistency. Histograms are then computed for each HSV channel to represent pixel 

intensity distributions, and each histogram is normalized for consistency. These normalized histograms are 

merged into a feature vector to capture the image’s overall color and brightness distribution. To evaluate 

similarity, a correlation method is used to compare the feature vectors of the original and enhanced images, 

providing a similarity score. The average similarity score is then calculated across all image pairs, using (3): 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑁
∑ 𝐶(𝐻̂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙,𝑖 , 𝐻̂𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑,𝑖)

𝑛
𝑖=0  (3) 

 

where 𝐶(𝐻̂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙,𝑖, 𝐻̂𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑,𝑖) is the correlation score for each original-enhanced image pair. This average 

score reflects the model’s overall effectiveness in enhancing low-light images while retaining natural image 

quality. 

The main criteria used for target detection are mainly precision, recall, mean average precision 

(mAP), and other relevant measures. Precision evaluates the ratio of correctly identified objects to the total 

number of detections, as in (4). Recall measures its capability to detect all instances of objects present in the 

images, as in (5). Intersection over union (IoU) measures the degree of overlap between a predicted bounding 

box and an actual bounding box. It plays a fundamental role in evaluating the accuracy of object localization 

as in (6). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑥𝑒𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑥𝑒𝑠
 (6) 

 

mAP50 is a mean average precision at an IoU threshold of 0.50 offers a specific measure of the 

model's accuracy, particularly for objects that are easily detectable. While mAP50-95 is mean average 

precision calculated across IoU thresholds between 0.50 and 0.95. It gives a comprehensive view of the 

model's performance across different levels of detection difficulty. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Generated dataset 

The framework proposed tested on video data with duration around 4 to 5 hours managed to extract 

a total of 4,994 images from the video. It's important to note that this dataset primarily consists of indoor 
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photos taken within a shopping. These images were captured using the Xiaomi C300 CCTV with a 2K 

resolution and F1.4 aperture. 

Following the removal process of images lacking pedestrian labels, the dataset was reduced to  

4,970 images. These images were then divided into three folders for training, validation, and testing 

purposes. The ratio between the three sets was as follows: the training set contained approximately 60% of 

the images (2,982 images), the validation set contained approximately 30% (1,491 images), and the testing 

set contained the remaining approximately 10% (497 images) of the dataset. 

After the data split, each folder was supplemented with a data.yaml file specifying the dataset for 

YOLOv8. The file contains information about the location of images and labels for each part of the dataset, 

namely training, validation, and testing. Each part has a path entry for the location of images and labels for 

the location of corresponding labels. There is also a nc entry indicating the number of classes in the dataset, 

and names which is a list of class names which is set to 1 since we are detecting only one class, there is only 

one class label, which is "people". 

 

4.2.  Low light enhancement model 

The training process progressed smoothly and consistently, with each epoch contributing to the 

model's refinement. To evaluate the performance of the low-light enhancement model, various metrics were 

analyzed to assess its effectiveness in improving image quality under low-light conditions. These metrics 

provided quantitative insights into the model's capabilities, offering a systematic assessment of its 

performance, as illustrated in Figure 4. 

 

 

 
 

Figure 4. Low light enhancement model training loss 

 

 

In addition, a quantitative evaluation was conducted to assess the similarity between the original 

images and those processed with the low-light enhancement model, specifically within the test dataset. The 

method used was histogram comparison, where each image was converted into the HSV color space to 

produce a more stable histogram representation. Histograms were calculated for each channel and 

normalized. The histograms of the original and enhanced images were then compared using the correlation 

method, which measures the degree of similarity between the two histogram distributions. The processed 

images achieve a strong similarity to the originals, suggesting the processing preserves the image integrity 

very well, as shown in Figure 5. Figure 5(a) shows the histogram of the original image, Figure 5(b) illustrates 

the histogram of the dark image after undergoing low-light enhancement. 

This process was applied to all image pairs in the test dataset, where images from both the original 

and enhanced folders were matched and compared individually. After completing all comparisons, the 

average histogram comparison score was calculated, yielding a result of 0.836. This indicates a high degree 

of similarity between the original and enhanced images, suggesting that the enhanced images retained visual 

characteristics closely resembling the original ones, despite undergoing low-light enhancement. 

While quantitative metrics provide valuable numerical insights, they may not fully capture the 

qualitative aspects of image enhancement. A qualitative assessment, which involves visually inspecting the 

enhanced images and evaluating their perceptual quality, offers a more comprehensive understanding of the 

model's capabilities. By combining both quantitative metrics and qualitative evaluations, we can ensure that 

the low-light enhancement model’s performance is thoroughly assessed based on its ability to produce 

visually pleasing and perceptually enhanced images, as shown in Figure 6. Figure 6(a) shows the original or 

ground truth image, Figure 6(b) presents the low-light image before enhancement, and Figure 6(c) displays 

the enhanced image after applying the low-light enhancement model. 
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(a) 

 
(b) 

 

Figure 5. Histogram comparison; (a) original histogram and (b) processed grayscale histogram 

 

 

   
(a) (b) (c) 

 

Figure 6. Comparison of image enhancement stages; (a) original or ground truth image, (b) low-light image, 

and (c) enhanced image after applying the low-light enhancement model 

 

 

4.3.  Pedestrian detection YOLOv8 model 

Table 1 presents the validation results for precision, recall, mAP50, and mAP50-95 obtained from 

three variants of YOLOv8: YOLOv8n, YOLOv8m, and YOLOv8x. These models were trained using both 

the original dataset and the dataset processed by the low-light enhancement model. 

The validation was conducted exclusively on images pre-processed through the low-light 

enhancement model, under the assumption that all images would undergo this preprocessing step before 

detection. As shown in Table 1, the training consistently yielded higher mAP values for models trained using 

the enhanced dataset compared to those trained on the original dataset. 

Figure 7 shows a batch image from the YOLOv8x validation results, demonstrating the model’s 

accuracy in detecting objects when using the CNN-processed dataset. The bounding boxes in the figure 

indicate that the YOLOv8x model correctly identifies individuals in the image. 
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Table 1. YOLOv8 original and enhanced dataset validation result 

No 
Results 

Description Epoch Precision Recall mAP50 mAP50-95 

1 YOLOv8n  

trained with original dataset 

10 

20 

30 
40 

50 

0.745 

0.821 

0.841 
0.854 

0.85 

0.711 

0.751 

0.767 
0.768 

0.781 

0.775 

0.835 

0.853 
0.858 

0.861 

0.484 

0.591 

0.625 
0.642 

0.653 

2 YOLOv8n  
trained with CNN processed dataset 

10 
20 

30 

40 
50 

0.782 
0.824 

0.851 

0.846 
0.851 

0.684 
0.759 

0.763 

0.78 
0.787 

0.776 
0.842 

0.855 

0.863 
0.865 

0.493 
0.59 

0.622 

0.642 
0.657 

3 YOLOv8m  

trained with original dataset 

10 

20 
30 

40 

50 

0.816 

0.858 
0.852 

0.859 

0.875 

0.764 

0.787 
0.813 

0.804 

0.795 

0.838 

0.869 
0.873 

0.877 

0.879 

0.601 

0.677 
0.7 

0.71 

0.72 

4 YOLOv8m  

trained with CNN processed dataset 

10 

20 

30 
40 

50 

0.828 

0.859 

0.874 
0.859 

0.874 

0.764 

0.794 

0.802 
0.819 

0.81 

0.842 

0.878 

0.885 
0.888 

0.891 

0.608 

0.682 

0.711 
0.722 

0.732 
5 YOLOv8x  

trained with original dataset 

10 

20 

30 
40 

50 

0.839 

0.865 

0.861 
0.865 

0.877 

0.764 

0.788 

0.806 
0.81 

0.806 

0.846 

0.876 

0.879 
0.883 

0.882 

0.628 

0.699 

0.722 
0.731 

0.736 

6 YOLOv8x  
trained with CNN processed dataset 

10 
20 

30 

40 
50 

0.827 
0.863 

0.864 

0.868 
0.878 

0.775 
0.805 

0.818 

0.817 
0.816 

0.849 
0.884 

0.889 

0.894 
0.894 

0.623 
0.704 

0.732 

0.742 
0.75 

 

 

 
 

Figure 7. YOLOv8x trained with CNN processed dataset validation prediction 

 

 

In addition to validation with the low-light enhanced dataset, validation was also performed on 

images that underwent augmentation (darkening). The evaluation of YOLOv8’s object detection performance 

showed significant differences between the two approaches. YOLOv8x-CNN, trained using the low-light 

enhanced dataset, demonstrated superior performance at epoch 50 with a precision of 0.878, recall of 0.816, 

mAP50 of 0.894, and mAP50-95 of 0.75. In contrast, YOLOv8x-Orig-Dark, trained on the original dataset 

and validated on darkened images, performed worse with a precision of 0.800, recall of 0.560, mAP50 of 

0.705, and mAP50-95 of 0.532. Table 2 shows the results of this validation, providing evidence that the low-

light enhancement model offers superior performance compared to darkened images processed via 

augmentation alone. 
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The high precision observed in the darkened dataset indicates that the model maintains accuracy in 

detecting recognized objects. However, the lower recall reveals difficulty in identifying all objects in darker 

images. This precision-recall imbalance suggests that while the model ensures correct detections, it often 

misses objects in low-light scenarios. Figure 8 shows validation results on darkened images, where the 

YOLOv8 model trained on the original dataset struggled to produce accurate bounding boxes on augmented 

dark images. 

 

 

Table 2. YOLOv8 dark dataset validation result 

No 
Results 

Description Epoch P R mAP50 mAP50-95 

1 YOLOv8x-Orig-Dark 10 

20 
30 

40 

50 

0.510 

0.804 
0.878 

0.832 

0.800 

0.129 

0.272 
0.388 

0.407 

0.560 

0.317 

0.545 
0.643 

0.633 

0.705 

0.206 

0.382 
0.469 

0.469 

0.532 
2 YOLOv8x-CNN-Dark 10 

20 

30 
40 

50 

0.731 

0.803 

0.890 
0.719 

0.895 

0.175 

0.488 

0.511 
0.556 

0.590 

0.455 

0.666 

0.715 
0.672 

0.761 

0.285 

0.464 

0.533 
0.495 

0.586 

*Orig: trained with original dataset 
*CNN: trained with processed dataset 

*Dark: validate dark dataset 

  

 

 
 

Figure 8. YOLOv8x validation on dark dataset prediction 

 

 

5. CONCLUSION 

In conclusion, this study demonstrates significant improvements in pedestrian detection 

performance by integrating the YOLOv8 model with a low light enhancement CNN. The YOLOv8 model, 

trained on a dataset enhanced with low-light image processing, achieved notable performance gains, 

including a 9.8% increase in precision, a 45.7% increase in recall, a 26.8% increase in mAP50, and a 41.0% 

improvement in mAP50-95, particularly when validated on dark images. These results highlight the 

effectiveness of incorporating the low light enhancement model into the YOLOv8 training pipeline, enabling 

the model to better adapt to low-light conditions and produce more accurate pedestrian detection. 

Despite these advancements, several limitations indicate opportunities for future research. The 

separate application of the low-light enhancement model, while beneficial for accuracy, may slow down 

detection speed. Additionally, the image resizing process risks losing important details, which suggests that 

more advanced image processing techniques should be explored. Future work should also investigate more 

sophisticated low-light enhancement models, such as GANs, to further improve detection performance under 

challenging lighting conditions. 
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