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 This paper introduces a system for detecting and evaluating an algorithm that 

segments the urinary bladder in medical images obtained from contrast-less 

computed tomography (CT) scans of patients with bladder tumors. Multiple 

segmentation methods are needed in situations where tumors in the bladder 

cause structural changes that appear as irregularities in images, complicating 

the slicing process. The segmentation process begins with viewing the urinary 

bladder DICOM in three different perspectives, and then enhancing the image 

to expand the dataset. Next, the areas of the urinary bladder are pinpointed, 

with the urinary bladder dataset being split into 70% for training and 30% for 

testing to distinguish it from the nearby tissues, organs, and bones. The 

suggested system was evaluated on eight 3D CT images obtained from the 

cancer imaging archive (TCIA). Results from the experiment show that the 

designed system is effective in identifying and delineating the urinary bladder. 
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1. INTRODUCTION 

Bladder cancer ranks as the ninth most prevalent cancer globally, with highest incidence in men in 

Western and Southern Europe, North America, North Africa, and Western Asia. Additionally, women 

consistently have lower rates of infection compared to men, although gender disparities differ across countries 

[1]. Based on the latest data, The American Cancer Society predicts that bladder cancer will result in 25,870 

fatalities (19,240 among males and 6,630 among females) in the US in 2026 [2], with 76,030 new diagnoses 

(60,490 in males and 18,540 in females) [3]. Even with this data, urinary bladder cancer remains one of the 

most treatable types of cancer. If cancer is detected early and remains only in the bladder, 94% of patients have 

been effectively treated and survived. Nonetheless, if diagnosed late, the chances of survival drop significantly 

to just 6% [4]. This distinct variation necessitates a precise and thorough review of all instances in which 

hemorrhagic bleeding is the sole typical and visible sign [5], in order to identify tumors prior to them infiltrating 

nearby structures or giving rise to a malignant tumor, thereby maximizing the patient's chances of survival [6]. 

During this competition with the clock, the bladder examination is standard and typically mandatory [7]-[9]. 

Identifying bladder boundaries in computed tomography (CT) scans poses various difficulties. 

Contrast material injected intravenously can fill the bladder, leading to partial or complete opacity. 

Distinguishing between wall of bladder and surrounding soft tissue is difficult due to the very low contrast, 
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presenting a challenge in clear definition. Additionally, bladders may present themselves in different sizes and 

shapes during imaging. 

Nonetheless, it comes with several drawbacks as it is highly restricted, requires a lot of time, causes 

discomfort, and is intrusive. Imaging techniques are now taking the place of it [10]. CT and magnetic resonance 

imaging (MRI) are commonly selected options. MRI is most commonly utilized in the creation of computer-

aided diagnostic systems for the urinary bladder due to its ability to provide detailed imaging and align soft 

tissues, making it easier to distinguish between them [11]. Nevertheless, doctors frequently utilize CT scans 

for manual diagnosis and staging due to their reduced expenses, quicker processing times, and increased patient 

comfort [12]. 

In these cases, the training sets were usually limited, typically containing fewer than 500 examples. 

With the increase in computational power, it becomes feasible to utilize convolutional neural networks (CNNs) 

with intricate structures that need to be trained with extensive datasets. The deep learning convolutional neural 

network (DL-CNN), powered by graphics processing units (GPUs), has demonstrated the ability to categorize 

real-life images with high accuracy when trained on a large dataset. Dheman et al. [13] Demonstrated in their 

study that the use of DL-CNN resulted in lower error rates and accurate classification on Image Net ILSVRC-

2011 and ILSVRC-2013 data sets as well as the CIFAR-10 data set [14]. Our research focuses on implementing 

DL-CNN for bladder segmentation. DL-CNN was learned on identifying patterns in and around bladder, 

producing a map indicating the likelihood of the bladder to assist in level set segmentation [15]-[17]. To 

compare, we also created a map showing the probability of a bladder using Haar features to distinguish the 

bladder area from nearby structures identified by a random forest classifier [18]. The efficiency of template-

based approach was evaluated by comparing their performances with our previous class using the local contour 

refinement (LCR) technique [19]-[21]. 

In this research, we investigated the use of DL-CNN for segmenting bladders. The DL-CNN was 

learned to identify bladder patterns and create a bladder probability map to assist in level set segmentation. The 

paper's outline is as follows. Firstly, the method for constructing the bladder using CNN is explained. Following 

that, the results of the segmentation method using CNN are presented. Finally, the conclusion is investigated. 

 

 

2. METHOD 

The study's design consists of three stages. The initial step involves preprocessing, which relies on 

data augmentation techniques; following that, 70% of dataset is used for training while 30% for test. Second 

step involves preparing the model using a complex CNN, and the third step involves implementing the process 

on the prepared model. Figure 1 depicts these three stages. 

 

 

 
 

Figure 1. Suggested design for semantic segmentation model 

 

 

2.1.  Preprocessing phase 

In order to prevent and combat overfitting, images are enlarged using label-preserving transformations 

[22]. Data augmentation is used on the training set in order to make the resulting model more resilient and 

resistant to any transformation that may occur during the medical scanning process. The rotation technique 

adopted in this study involves angles of 35, 65, 95, 125, 155, 185, 215, 245, 275, 305, and 335 [23]. In (1) and 

(2) are utilized to calculate image transformation through rotation. 
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𝐼2 = 𝑐𝑜𝑠(𝜃) ∗ (𝐼1 − 𝐼0)  + 𝑠𝑖𝑛(𝜃) ∗ (𝐽1 − 𝐽0) (1) 

 

𝐽2 = −𝑠𝑖𝑛(𝜃) ∗ (𝐼1 − 𝐼0)  + 𝑐𝑜𝑠(𝜃) ∗ (𝐽1 − 𝐽0) (2) 

 

where the coordinates of a point (I1, J1), when rotated by an angle θ around (I0, J0), become (I2, J2) in the 

augmented image [24]. 

The implemented augmentation method increased the dataset size to 11 times its original size. This 

collection now contains 9110 images that will be utilized in both the training and testing stages. This will 

greatly enhance the testing accuracy of CNNs and increase the robustness of the proposed model against 

various rotation scenarios [25]. Figure 2 shows different rotation angles for images within dataset. 

 

 

    
 

Figure 2. The dataset images rotated at angles of 35, 65, ..., 275 degrees for a sample image 

 

 

2.2.  Semantic segmentation method 

Recommended semantic segmentation model utilizes deep CNNs. It includes 10 convolutional layers, 

15 ReLU activation layers, 6 max-pooling layers, 6 de-convolution layers, 1 soft-max activation layer, and an 

output layer for pixel classification. First step of the model takes in a 256*256-pixel medical image, and 

additional layers are included in the order specified. The 1st and 2nd convolutional layers contain 128 filters 

each, 3rd and 4th have 256, 5th and 6th have 512, the 7th and 8th have 1024, and the 9th and 10th have 2,048 filters, 

all with a window size of 5*5. A ReLU activation layer comes before every convolutional layer. Also, there 

are max pooling layers following each 2 convolutional layers that reduce image's dimensions by 0.5. 

Deconvolutional part is composed of 4 layers: 2,048 filters in the first, 1,024 in the second, 512 in the third, 

and 256 in the fourth. A ReLU activation layer follows each deconvolutional layer. The model concludes with 

two ultimate layers: pixel classification layer and soft-max layer. Figure 3 shows suggested structure. 

 

 

 
 

Figure 3. Visual representation of the semantic segmentation model 

 

 

3. RESULTS AND DISCUSSION 

The suggested model was put into effect using a software package (MATLAB). The GPU was 

explicitly used. All the tests were conducted on a computer equipped with Intel Core i7 processor operating at 
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4 GHz and RAM of 64 GB. As previously stated, the dataset contains 9,110 images following the augmentation 

process. Following the expansion process, dataset was divided into two parts: the first part for training and 

second portion for testing. The division is split into 70% for preparation and 30% for testing. The total number 

of images used for training is 6,377, and the total number of images used for testing is 2,733. 

The proposed model achieved an overall testing accuracy of 97.86% based on the testing images. 

Figure 4 shows the results of suggested model for three distinct individuals. Figure 4(a) shows initial image, 

Figure 4(b) displays manual segmented image, Figure 4(c) illustrates segmented image from suggested model, 

and Figure 4(d) introduce discrepancy between ground truth image and segmented image, highlighting 

incorrect segmentation with a red pixel. The images show a cumulative error of 1.1% in all output segmented 

images due to a summation error. To test the strength and durability of the suggested model, a set of rotated 

medical images was chosen from testing dataset to confirm if model could accurately obtain and separate liver 

despite different angles of rotation. The model proposed was capable of accurately detecting liver, irrespective 

of its position, dimensions, and hue in image, achieving an average error rate of 1.1%. 

 

 

    
    

    
    

    

(a) (b) (c) (d) 

 

Figure 4. Images for 3 patients; (a) initial urinary bladder image, (b) identification of the urinary bladder,  

(c) accurate representation of the urinary bladder, and (d) segmented image created by proposed model on 

original image 
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4. CONCLUSION 

In this research, we employed a deep semantic segmentation CNN to autonomously partition the 

urinary bladder in abdominal CT scans. Moreover, we created a deep semantic CNN model to generate CT 

scans displaying the urinary bladder. Furthermore, we acquired a likelihood map for the urinary bladder in 

order to start the segmentation procedure. The main benefit of our suggested approach is that it is easily usable 

by beginners as it does not need any input from users to start. Therefore, this method is appropriate for novices. 

Our suggested approach is one of the first attempts to utilize CNN and deep semantic segmentation for 

identifying the boundaries of the urinary bladder. The performance was assessed using the the cancer imaging 

archive (TCIA) and 3Dircadb1 public datasets in computer-assisted intervention and medical image computing. 

Our model has achieved a segmentation accuracy that exceeds the performance of the most advanced 

automated liver segmentation techniques. Suggested model reached a testing accuracy of 97.86% and is 

considered suitable for urinary bladder segmentation, supported by the close match between our segmentation 

findings and manual reference. In future research, it is essential to include lesions of bladder within the 

segmented bladder boundaries, and there are ongoing efforts to improve the segmentation process and 

accuracy. This project is a move towards developing a reliable bladder segmentation system, which is necessary 

for a CAD system to detect urothelial lesions found in CT urography images. 
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