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 This article presents a photovoltaic (PV) optimization approach using the 

puma optimizer (PO) approach, which has been enhanced by utilizing Lévy 

flight optimization. The name of this approach is modified puma optimizer 

(MPO). PV generation systems are essential for sustainable solar energy 

utilization. It is an innovation and clean energy. There is an urgent demand 

for suitable and reliable simulation and optimization techniques for PV 

systems. This will result in increased efficiency. Algorithms with a high 

degree of reliability are needed to ensure optimal PV parameters. This study 

was conducted with MATLAB software. This article introduces the original 

PO method as a means to evaluate the performance of the MPO approach. The 

root mean square error (RMSE) function serves as a benchmark. Based on the 

simulation findings, the MPO approach shows superior RMSE compared to 

the PO method, specifically at a value of 0.0026%. 
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1. INTRODUCTION  

The most recent energy solution is the utilization of renewable energy sources such as wind, solar, 

and tidal waves. Solar energy is a plentiful and renewable source that can be easily transformed into power 

[1]–[4]. Solar energy must undergo a conversion procedure using specialized equipment in order to be 

transformed into electricity [5], [6]. Outdoor sites are where solar-based photovoltaic (PV) generators are 

deployed. A PV device is utilized to convert solar energy into electrical energy. The potential of PV systems 

is frequently constrained by the limitations of the device itself, as well as the prevailing meteorological 

conditions and the geographical location of the system. As a consequence, there is a restricted capacity to carry 

out modifications [7]-[9]. Research on enhancing the precision of PV system characteristics is gaining 

popularity and generating attention. The challenge of determining the fundamental parameters is frequently 

attributed to the process of aging and the imperfect nature of the instrument.  

https://creativecommons.org/licenses/by-sa/4.0/
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Several endeavors have been undertaken to enhance the efficacy of power conversion from solar cells, 

including the utilization of novel materials. Furthermore, it is crucial to simulate and optimize the exact 

configuration of the PV cell model [10], [11]. The purpose of this is to enhance the efficiency and durability 

of the generation system under various weather and temperature conditions. The single diode model (SDM) is 

an often utilized and well-liked model. The precision of the PV cell model is crucial in achieving the 

characteristic analysis (I-V curve). The primary concern revolves around the determination of the PV 

parameter. Obtaining the value of model parameters that closely match the experimental data has proven to be 

challenging. This aspect hinders the PV model from achieving optimal performance. PV parameters serve as a 

benchmark for constructing solar cells, enhancing PV conversion efficiency, and optimizing the tracking of 

maximum power spots. Conventional methods for identifying PV parameters involve analyzing multiple points 

on the I-V and P-V curves using a basic function. This approach offers the benefits of being computationally 

efficient and straightforward to implement. However, a significant limitation of this technique is the reliance 

on certain assumptions that are made in order to decrease the number of unknown parameters. The Newton-

Raphson and Gauss-Seidel methods are utilized to overcome the constraints of the analytical technique. The 

outcome achieved with this method is greatly influenced by the starting conditions of the unknown variables 

and effectively identifies the best answer within a specific region. The method is unsuitable for extracting PV 

model parameters in any environmental circumstances. 

Computational methodologies were employed to enhance the precision and dependability of 

optimization. Several techniques have been presented by researchers such as northern goshawk pptimization 

algorithm [12], differential evolution [13]–[15], nutcracker optimization algorithm [16], grey wolf optimization 

algorithm [17]–[20], tree seed algorithm [21], harris hawks optimization algorithm [22]–[25], and reptile search 

algorithm [26], [27]. However, optimization to obtain better PV parameters is still a popular and interesting 

field. This article presents a PV parameter optimization approach using a modified puma optimizer (MPO) 

[28]. Puma optimizer (PO) imitates the behavior of puma in nature. The puma algorithm has different operators 

in both the exploitation and exploration phases. Each of these operators demonstrated excellent abilities in 

dealing with problems with different dimensions and levels of difficulty. The contributions of this article are: 

− PV parameter optimization approach with the PO improvement method using a combination with Lévy 

flight optimization. This method is named MPO. 

− The performance of the MPO method is compared with the PO optimization algorithm. 

The structure of this paper is the section 2 regarding the PO method, PV model and Lévy flight 

optimization. Section 3 is the concept of the proposed method. Section 4 is the results and discussion.  

Section 5 is drawing conclusion. 

 

  

2. METHOD  

2.1.  Puma optimizer 

Puma is one of the most successful and well-adapted predators in the Western Hemisphere, which 

allows them to live in a variety of environments and maintain healthy populations in many regions. Pumas 

have very strong hind legs, allowing them to jump. For the first time, a novel and useful phase change method 

for the PO optimization algorithm is provided, which allows the phases of exploration and exploitation to be 

changed [28]. According to the PO method, the region occupied by the male puma represents the whole 

optimization space, and it is also thought of as the best answer. Additionally, 𝑋𝑖, another option, has been 

compared as a female puma.  

 

2.1.1. Inexperienced stage 

The mathematical formulas and statements that clarify the optimization processes carried out by PO 

are then provided. Pumas are brilliant animals and have a perfect memory. For hunting, they often go to places 

where hunting is more likely, which is based on their previous experiences. These targeted hunting trips can 

be to areas where it has previously hunted and hidden its prey. It can be modeled in (1) to (10). 

 

𝑓1𝐸𝑥𝑝𝑙𝑜𝑟𝑒 = PF1(
𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒

1

𝑆𝑒𝑞𝑇𝑖𝑚𝑒
) (1) 

 

𝑓1𝐸𝑥𝑝𝑙𝑜𝑖𝑡 = PF1(
𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡

1

𝑆𝑒𝑞𝑇𝑖𝑚𝑒
) (2) 

 

𝑓1𝐸𝑥𝑝𝑙𝑜𝑟 = PF1(
𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒

1 +𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
2 +𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒

3

𝑆𝑒𝑞1𝑇𝑖𝑚𝑒+𝑆𝑒𝑞
2
𝑇𝑖𝑚𝑒+𝑆𝑒𝑞

3
𝑇𝑖𝑚𝑒

) (3) 
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𝑓2𝐸𝑥𝑝𝑙𝑜𝑖𝑡 = PF2(
𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡

1 +𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
2 +𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡

3

𝑆𝑒𝑞1𝑇𝑖𝑚𝑒+𝑆𝑒𝑞
2
𝑇𝑖𝑚𝑒+𝑆𝑒𝑞

3
𝑇𝑖𝑚𝑒

) (4) 

 

𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
1 = |𝐶𝑜𝑠𝑡𝐵𝑒𝑠𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
1 | (5) 

 

𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
2 = |𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒

2 − 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
1 | (6) 

 

𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
3 = |𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒

3 − 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
2 | (7) 

 

𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
1 = |𝐶𝑜𝑠𝑡𝐵𝑒𝑠𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
1 | (8) 

 

𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
2 = |𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡

2 − 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
1 | (9) 

 

𝑆𝑒𝑞𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
3 = |𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡

3 − 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
2 | (10) 

 

In the initialization phase, the cost of the first-rate solution developed is denoted as 𝐶𝑜𝑠𝑡𝐵𝑒𝑠𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 

Additionally, there are six variables: 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
1 , 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒

2 , 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑟𝑒
3 , 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡

1 , 𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
2 , and 

𝐶𝑜𝑠𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡
3 . Utilize the cost of the optimal solution achieved from each phase. Exploitation and exploration 

occur in iterations 1, 2, and 3. After evaluating the functions 𝑓1 and 𝑓2 at the conclusion of the 3rd iteration, 

only one of the exploration and exploitation phases will be chosen going forward. Other pumas had a positive 

experience; thus, they can select one of the two phases by calculating the exploitation and exploration points 

using (11) and (12). 

 

𝑆𝑐𝑜𝑟𝑒𝐸𝑥𝑝𝑙𝑜𝑟𝑒 = (𝑃𝐹1 ∙ 𝑓1𝐸𝑥𝑝𝑙𝑜𝑟𝑒) + (𝑃𝐹2 ∙ 𝑓2𝐸𝑥𝑝𝑙𝑜𝑟𝑒) (11) 

 

𝑆𝑐𝑜𝑟𝑒𝐸𝑥𝑝𝑙𝑜𝑖𝑡 = (𝑃𝐹1 ∙ 𝑓1𝐸𝑥𝑝𝑙𝑜𝑖𝑡) + (𝑃𝐹2 ∙ 𝑓2𝐸𝑥𝑝𝑙𝑜𝑖𝑡) (12) 

 

2.1.2. Advanced stage 

Pumas has gained sufficient expertise to make the decision to modify the phase. As the iterations 

continue, they chose to select only one phase for the optimization process. During this phase, three distinct 

functions 𝑓1, 𝑓2, and 𝑓3, are employed for the purpose of scoring. The primary function places greater focus on 

the phase of exploration. The initial function is computed using (1). 

 

𝑓1𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

= PF1 |
𝐶𝑜𝑠𝑡𝑜𝑙𝑑

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤

𝐸𝑥𝑝𝑙𝑜𝑖𝑡

𝑇𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡 | (13) 

 

𝑓1𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

= PF1 |
𝐶𝑜𝑠𝑡𝑜𝑙𝑑

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤

𝐸𝑥𝑝𝑙𝑜𝑟𝑒

𝑇𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒 | (14) 

 

𝑓2𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

= PF2 |
(𝐶𝑜𝑠𝑡𝑜𝑙𝑑,1

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤,1

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
)+(𝐶𝑜𝑠𝑡𝑜𝑙𝑑,2

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤,2

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
)+(𝐶𝑜𝑠𝑡𝑜𝑙𝑑,3

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤,3

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
)

𝑇𝑡,1
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

+𝑇𝑡,2
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

+𝑇𝑡,3
𝐸𝑥𝑝𝑙𝑜𝑟𝑒 | (15) 

 

𝑓2𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

= PF2 |
(𝐶𝑜𝑠𝑡𝑜𝑙𝑑,1

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤,1

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
)+(𝐶𝑜𝑠𝑡𝑜𝑙𝑑,2

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤,2

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
)+(𝐶𝑜𝑠𝑡𝑜𝑙𝑑,3

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
−𝐶𝑜𝑠𝑡𝑛𝑒𝑤,3

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
)

𝑇𝑡,1
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

+𝑇𝑡,2
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

+𝑇𝑡,3
𝐸𝑥𝑝𝑙𝑜𝑖𝑡 | (16) 

 

𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

= {
𝑖𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑓3𝑡

𝐸𝑥𝑝𝑙𝑜𝑖𝑡
= 0 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

+ PF3
 (17) 

 

𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

= {
𝑖𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑓3𝑡

𝐸𝑥𝑝𝑙𝑜𝑟𝑒
= 0 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

+ PF3
 (18) 

 

The variables 𝑓1𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

 and 𝑓1𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

 reflect the quantity of the first function during the exploration 

phase or the exploitation phase, respectively. The variable t represents the current iteration number. 𝐶𝑜𝑠𝑡𝑜𝑙𝑑
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

 

and 𝐶𝑜𝑠𝑡𝑜𝑙𝑑
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

 represent the expenses associated with the optimal option prior to any enhancements in the 
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current selection. However, 𝐶𝑜𝑠𝑡𝑛𝑒𝑤
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

 and 𝐶𝑜𝑠𝑡𝑛𝑒𝑤
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

 represent the expenses of the optimal solution 

achieved through enhancing the current selection. 𝑇𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

 and 𝑇𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

 represent the count of iterations that 

were not chosen in the prior selection but are included in the current selection. The PF1 parameter is a user-

adjustable variable that must be assigned a value between 0 and 1 prior to the optimization process. The 

variables 𝑓2𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

 and 𝑓2𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

 denote the second function associated with the exploration stage or the 

exploitation step. 𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

 and 𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

 denote the third function associated with the exploration stage or the 

exploitation step, with t representing the current iteration number. 

 

𝐹𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

= (∝𝑡
𝑒𝑥𝑝𝑙𝑜𝑖𝑡

∙ (𝑓1𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

)) + (∝𝑡
𝑒𝑥𝑝𝑙𝑜𝑖𝑡

∙ (𝑓2𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

)) + (δ𝑡
𝑒𝑥𝑝𝑙𝑜𝑖𝑡

∙ (𝑙𝑐. 𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑖𝑡

)) (19) 

 

𝐹𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

= (∝𝑡
𝑒𝑥𝑝𝑙𝑜𝑟𝑒

∙ (𝑓1𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

)) + (∝𝑡
𝑒𝑥𝑝𝑙𝑜𝑟𝑒

∙ (𝑓2𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

)) + (δ𝑡
𝑒𝑥𝑝𝑙𝑜𝑟𝑒

∙ (𝑙𝑐. 𝑓3𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒

)) (20) 

 

𝑙𝑐 = {{(𝑐𝑜𝑠𝑡𝑜𝑙𝑑 − 𝑐𝑜𝑠𝑡𝑛𝑒𝑤)}
𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 , {(𝑐𝑜𝑠𝑡𝑜𝑙𝑑 − 𝑐𝑜𝑠𝑡𝑛𝑒𝑤)}

𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛}, 0 ∉ 𝑙𝑐 (21) 

 

𝑥𝑡
𝐸𝑥𝑝𝑙𝑜𝑟𝑒,𝐸𝑥𝑝𝑙𝑜𝑖𝑡

= {
𝑖𝑓 𝐹𝑒𝑥𝑝𝑙𝑜𝑖𝑡 > 𝐹𝑒𝑥𝑝𝑙𝑜𝑟𝑒 , 𝛼𝑒𝑥𝑝𝑙𝑜𝑖𝑡 = 0.09, 𝛼𝑒𝑥𝑝𝑙𝑜𝑟𝑒 = ⌈𝛼𝑒𝑥𝑝𝑙𝑜𝑟𝑒 − 0.01,0.01⌉

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝛼𝑒𝑥𝑝𝑙𝑜𝑟𝑒 = 0.09, 𝛼𝑒𝑥𝑝𝑙𝑜𝑖𝑡 = ⌈𝛼𝑒𝑥𝑝𝑙𝑜𝑖𝑡 − 0.01,0.01⌉
(22) 

 

δ𝑡
𝑒𝑥𝑝𝑙𝑜𝑟𝑒

= 1 −∝𝑡
𝑒𝑥𝑝𝑙𝑜𝑟𝑒

 (23) 

 

δ𝑡
𝑒𝑥𝑝𝑙𝑜𝑖𝑡

= 1 −∝𝑡
𝑒𝑥𝑝𝑙𝑜𝑖𝑡

 (24) 

 

2.1.3. Exploration 

At this stage, pumas engage in a stochastic exploration throughout their region to locate food or 

approach other pumas in a random manner to exploit their prey. Hence, the puma sporadically leaps into the 

search area or forages for sustenance within the vicinity of the puma. Initially, the complete population is 

arranged in ascending order. Then, puma enhances its solutions during the exploration phase by employing (24). 

 

𝑖𝑓 𝑅𝑎𝑛𝑑 > 0.5, 𝑍𝑖,𝑔 = 𝑅𝐷𝑖𝑚 × (𝑈𝑏 − 𝐿𝑏) + 𝐿𝑏n 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑍𝑖,𝑔 = 𝑋𝑎,𝐺 + 𝐺 ∙ (𝑋𝑎,𝐺 − 𝑋𝑏,𝐺) + 𝐺 ∙ (((𝑋𝑎,𝐺 − 𝑋𝑏,𝐺) − (𝑋𝑐,𝐺 − 𝑋𝑑,𝐺)) + 

((𝑋𝑐,𝐺 − 𝑋𝑑,𝐺) − (𝑋𝑒,𝐺 − 𝑋𝑓,𝐺))) (25) 

 

G = 2 ∙ 𝑅𝑎𝑛𝑑 − 1 (26) 

 

In (25), 𝑈𝑏 and 𝐿𝑏 represent the minimum and maximum values of the problem. 𝑅𝐷𝑖𝑚 refers to 

randomly generated integers that fall between 0 and 1 and are in the same dimensions as the problem. 𝑅𝑎𝑛𝑑 is 

a randomly generated number that falls within the range of 0 and 1. 𝑋𝑎,𝐺, 𝑋𝑏,𝐺 , 𝑋𝑐,𝐺 , 𝑋𝑑,𝐺, 𝑋𝑒,𝐺 , and 𝑋𝑓,𝐺 are 

randomly picked solutions from the entire population. The value of G is determined by applying (26). 

 

𝑥𝑛𝑒𝑤 = {
𝑧𝑖,𝐺  𝑖𝑓𝑗 = 𝑗𝑟𝑎𝑛𝑑  𝑜𝑟 𝑟𝑎𝑛𝑑 ≤ 𝑈

𝑥𝛼,𝐺,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (27) 

 

𝑁𝐶 = 1 − 𝑈 (28) 
 

𝑝 =
𝑁𝐶

𝑁𝑝𝑜𝑝
 (29) 

 

𝑝 =
𝑁𝐶

𝑁𝑝𝑜𝑝
 (29) 

 

where 𝑧𝑖,𝐺 is a solution that is obtained using (25). 𝑗𝑟𝑎𝑛𝑑 is an integer that is created randomly within the range 

of dimensions of the problem. The parameter U is defined before to the optimization phase and takes on a value 

between 0 and 1. With each iteration, the quantity of dimensions that are substituted by new solutions grows. 
 

𝑖𝑓 𝑐𝑜𝑠𝑡𝑥𝑛𝑒𝑤 < 𝑐𝑜𝑠𝑡𝑥𝑖 , 𝑈 = 𝑈 + 𝑝  (30) 
 

𝑥𝑎,𝐺 = 𝑥𝑛𝑒𝑤 , 𝑖𝑓 𝑥𝑖,𝑛𝑒𝑤 < 𝑥𝑎,𝐺   (31) 
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2.1.4. Exploitation 

During the exploitation stage, the PO algorithm employs two distinct operators to enhance the 

solutions. These operators are derived from the two behaviors exhibited by pumas, namely hunting through 

ambush and dashing. 

𝑥𝑛𝑒𝑤 =

{
 
 

 
 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5, 𝑥𝑛𝑒𝑤 =

(
𝑚𝑒𝑎𝑛(𝑆𝑜𝑙𝑡𝑜𝑡𝑎𝑙

𝑁𝑝
) ∙𝑥1

𝑟−(−1)𝛽 𝑥 𝑥𝑖

1+(𝛼∙𝑟𝑎𝑛𝑑)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 𝐿, 𝑥𝑛𝑒𝑤 = 𝑃𝑢𝑚𝑎𝑚𝑎𝑙𝑒 + (2 ∙ 𝑟𝑎𝑛𝑑) ∙ 𝑒𝑥𝑝(𝑟𝑎𝑛𝑑) ∙ 𝑥2
𝑟−𝑥𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑥𝑛𝑒𝑤 = (2 ∙ 𝑟𝑎𝑛𝑑) ∙
(𝐹1∙𝑅∙𝑋(𝑖)+𝐹2∙(1−𝑅)∙𝑃𝑢𝑚𝑎𝑚𝑎𝑙𝑒)

(2∙𝑟𝑎𝑛𝑑−1+𝑟𝑎𝑛𝑑𝑛)
− 𝑃𝑢𝑚𝑎𝑚𝑎𝑙𝑒

  (32) 

 

𝑥2
𝑟 = 𝑟𝑜𝑢𝑛𝑑(1 + (𝑁𝑝 − 1) ∙ 𝑟𝑎𝑛𝑑10  (33) 

 

𝑅 = 2 ∙ 𝑟𝑎𝑛𝑑 − 1  (34) 

 

𝐹1 = 𝑟𝑎𝑛𝑑𝑛 ∙ 𝑒𝑥𝑝 (2 − 𝐼𝑡𝑒𝑟 ∙ (
2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
))  (35) 

 

𝐹2 = 𝑤 × (𝑣)
2 ∙ cos ((2 × 𝑟𝑎𝑛𝑑) ∙ 𝑤)  (36) 

 

𝑤 = 𝑟𝑎𝑛𝑑𝑛  (37) 

 

𝑣 = 𝑟𝑎𝑛𝑑𝑛  (38) 

 

The variable 𝑁𝑝 represents the total number of populations that will be used in the optimization procedure. 

𝑆𝑜𝑙𝑡𝑜𝑡𝑎𝑙  is the aggregate of all solutions. 𝑃𝑢𝑚𝑎𝑚𝑎𝑙𝑒  is the optimal solution for the entire population. 

 

2.2.  Lévy flight optimization 

A random walk is a probabilistic process in which particles or waves traverse unpredictable 

trajectories. The initial utilization of random walks was to elucidate the motion of particles in fluids, 

specifically known as Brownian motion. Lévy flight refers to a specific type of random walk where the duration 

of each step is determined by a probability distribution that has a large tail [29]. They have the ability to 

characterize all stochastic processes that exhibit scale invariance.  

 

𝐿(𝑋𝑗) ≈ |𝑋𝑗|
1−𝛼

 (39) 

 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
1

𝜋
∫ 𝑒𝑥𝑝(−𝛾𝑞𝛼) cos  (𝑞𝑥)
∞

0
 𝑑𝑞  (40) 

 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
𝛾Γ(1+𝛼) sin(

𝛼𝜋

2
)

𝜋𝑋(1+𝛼)
 , 𝑥 → ∞  (41) 

 

𝐿𝑒𝑣𝑦(𝛼) = 0.05 ×
𝑥

|𝑦|1/𝛼
  (42) 

 

𝑥 = 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑥
2)  (43) 

 

𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑥
2)  (44) 

 

𝜎𝑥 = [
Γ(1+𝛼) sin(

𝛼𝜋

2
)

Γ(
(1+𝛼)

2
)𝛼 2

(𝛼−1)
2

] 1/𝛼 𝑎𝑛𝑑 𝜎𝑥  = 1 dan 𝛼 = 1.5 (45) 

 

where 𝑋𝑗 is the flight length, and 1 < 𝛼 ≤ 2 is the exponential power. The probability density of the Lévy stable 

process in integral form is defined as (40). α is the distribution index and controls the scale properties of the 

process while 𝛾 selects the scale units. Integrals in (39) have an analytical solution only in some cases. When 

𝛼 equals 2, it represents a Gaussian distribution and when 𝛼 equals 1, it represents a Cauchy distribution. Γ is 

gamma function. Mantegna proposed an accurate and fast algorithm to generate stable Lévy processes for 

absolute values of the index distribution (𝛼) ranging between 0.3 and 1.99. 𝑥 and 𝑦 are two normally distributed 

variables with standard deviations 𝜎𝑥 and 𝜎𝑦. 
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2.3.  Solar photovoltaic modelling 

This is necessary to mathematically simulate the behavior of PV cells. This work employs a PV 

modeling approach utilizing a single diode solar PV model system. This device possesses the benefit of 

exhibiting high precision while maintaining a straightforward design. The source is supposed to be solar PV. 

Figure 1 displays an illustration of an equivalency circuit diagram [30]. This variant is ideal for PV systems 

that necessitate cheap production expenses and rapid response. The mathematical equations for the SDM 

system are as stated: 

 

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ (46) 

 

𝐼𝑑 = 𝐼𝑠𝑑 [exp (
(𝑉𝐿+𝑅𝑠𝐼𝐿)

𝑉𝑡
) − 1] (47) 

 

𝐼𝑠ℎ =
𝑉𝐿+𝑅𝑠𝐼𝐿

𝑅𝑠ℎ
 (48) 

 

𝑉𝑡 =
𝛼𝐾𝑇

𝑞
 (49) 

 

 

 
 

Figure 1. PV circuit consisting of a single diode  

 

 

The symbol 𝛼 denotes the ideality factor of the diode. The value of 𝑞 is 1.60217646 ×  10−19C, 

which represents the charge of an electron. The value of q is also 1.3806503 ×  10−23J/K, which represents 

the Boltzmann constant. In (46) reveals that accurate estimation of the parameters (𝐼𝑝ℎ, 𝐼𝑠𝑑 , 𝑅𝑠, 𝑅𝑠ℎ, and 𝛼) is 

essential in SDM. 

 

2.3.1. Newton–Raphson technique 

The Newton-Raphson (NR) method is a commonly used technique for finding the roots of nonlinear 

equations. The NR method is defined as (50)-(52): 

 

𝐼𝐿(𝑚+1) = 𝐼𝐿(𝑚) −
𝑓(𝐼𝐿(𝑚)

𝑓′(𝐼𝐿(𝑚)
 , 𝑚 ≥ 0 (50) 

 

𝑓(𝐼𝐿(𝑚) = 𝐼𝐿(𝑚) − 𝐼𝑝ℎ + 𝐼𝑠𝑑 [exp (
(𝑉𝐿+𝑅𝑠𝐼𝐿)

𝑉𝑡
) − 1] +

𝑉𝐿+𝑅𝑠𝐼𝐿

𝑅𝑠ℎ
= 0 (51) 

 

𝑓′(𝐼𝐿(𝑚) = 1 +
𝐼𝑠𝑑∙𝑅𝑠

𝑉𝑡
[exp (

(𝑉𝐿+𝑅𝑠𝐼𝐿)

𝑉𝑡
) − 1] +

𝑅𝑠

𝑅𝑠ℎ
= 0 (52) 

 

The NR approach offers the benefit of rapid and uncomplicated convergence. Nevertheless, the NR 

technique has disadvantages. The NR approach proved unsuitable for estimating a significant number of 

unknown variables. Determining the initial value to commence this procedure for a substantial number of 

unknown variables poses a significant challenge. Inaccurate beginning values can result in erroneous estimates. 

 

 

3. METHOD 

The suggested approach integrates the PO algorithm with Lévy flight optimization. The Lévy Flight 

method can attain a globally optimal solution in a vast and intricate search space. This is attributed to its 
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capacity to integrate thorough exploration with the utilization of potential regions. Furthermore, employing the 

Lévy Flight algorithm in PO enhances the capacity to address situations that entail intricate parameters. 

Consequently, the Lévy flight trajectory is employed to revise the position following the position update.  

Figure 2 represents an object-oriented analysis flow diagram. The MPO method is a modified version of the 

PO method. It involves altering (11) and including (42) into (11). Therefore, it transforms into the subsequent: 

 

𝑆𝑐𝑜𝑟𝑒𝐸𝑥𝑝𝑙𝑜𝑟𝑒 = (𝑃𝐹1 ∙ 𝑓1𝐸𝑥𝑝𝑙𝑜𝑟𝑒) + (𝑃𝐹2 ∙ 𝑓2𝐸𝑥𝑝𝑙𝑜𝑟𝑒) × 𝐿𝑒𝑣𝑦(𝛼) (53) 

 

 

 
 

Figure 2. Proposed method MPO 
 

 

4. RESULTS AND DISCUSSION  

MPO performance is measured and validated with the global optima function and applied to obtain 

solar PV parameters with the SDM model. The results are compared with the original PO. The simulation was 

carried out using MATLAB/Simulink on a laptop with AMD A9-9425 (3.1 Ghz) specifications with 4 GB 

memory. By considering and comparing 20 global optimal functions. Each function has its own character. 

Functions F1-F7 are unimodal functions. This function has one global optimum and no local optimum. This 

function can be seen in Figures 3(a) to (g) (in Appendix). F8-F13 are multimodal functions. This function plays 

a role in reducing the local optimal position of the algorithm. This function can be seen in Figures 3(h) to (m) 

(in Appendix). F14-F23 are composite functions. This function is a combination of multimodal test functions. 

This function can be seen in Figures 3(n) to (w) (in Appendix). 

The current experimental parameter values consist of solar cells manufactured by R.T.C France. The 

solar cell has a diameter of 57 mm and the data is simulated at a temperature of 33 °C. Table 1 provides the 

specific numerical information about SDM. Figure 4 will display the characteristic curves of solar PV, 

specifically the P-V and I-V curves. Figure 4(a) displays the empirical current and predicted current data with 

voltage observations. Figure 4(b) displays the observed power trend and the calculated power as the voltage 

increases. Figures 4(a) and (b) displays the characteristic curves of solar PV, specifically the P-V and I-V 

curves. 

 

 

Table 1. Parameter range for SDM 
Parameter LB UB 

𝐼𝑝ℎ 0 1 
𝐼𝑠𝑑 0 1 
𝛼 1 2 
𝑅𝑠ℎ 0 100 
𝑅𝑠 0 0.5 

 

 

Table 2 presents the related parameter sets calculated by several algorithms. To obtain accurate 

parameter estimates in a PV model, the initial step involves identifying an error function that is able to capture 

the differences between the measured and experimental current data. The parameter values of the proposed and 

benchmark methods have little difference. Table 3 is the result of SDM using MPO. The proposed method has 
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a small power error value. The primary objective of this essay is to get a collection of PV parameters with the 

least amount of inaccuracy. The root mean square error (RMSE) was utilized to quantify the entire error, 

employing the following mathematical model: 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑓(𝑉𝐿 , 𝐼𝐿 , 𝑋)
𝑁
𝑖=1  (54) 

 

where N is the number of experimental data.  
 

 

 
(a) 

 
(b) 

 

Figure 4. Comparison of curves with; (a) simulation model I-V of MPO and (b) simulation model P-V of 

MPO 
  
 

Table 2. Performance comparison between MPO and its competitors with SDM 
Algorithm 𝐼𝑝ℎ 𝐼𝑠𝑑 𝛼 𝑅𝑠ℎ 𝑅𝑠 RMSE 

PO 0.76079 0.3108 1.47732 52.8871 0.0365 7.7298e-04 
MPO 0.76079 0.3107 1.4773 52.8899 0.0365 7.7296e-04 

 

 

Table 3. Individual absolute error (IAE) from MPO with SDM 
Simulation current (A)  Simulation power (W) 
Isim(A) IAE − I P(W) Psim(W) IAE − P 

0.76415 0.00015 -0.15715 -0.15719 0.00003 

0.76270 0.00070 -0.09837 -0.09846 0.00009 
0.76137 0.00087 -0.04472 -0.04477 0.00005 

0.76015 0.00035 0.004335 0.00433 0.00000 

0.75904 0.00096 0.049096 0.04903 0.00006 
0.75801 0.00099 0.089942 0.08982 0.00012 

0.75705 0.00005 0.127025 0.12703 0.00001 

0.75608 0.00092 0.161392 0.16120 0.00020 
0.75502 0.00048 0.192275 0.19215 0.00012 

0.75360 0.00040 0.22047 0.22035 0.00012 

0.75133 0.00083 0.245338 0.24561 0.00027 
0.74731 0.00081 0.26762 0.26791 0.00029 

0.74008 0.00158 0.286021 0.28663 0.00061 

0.72743 0.00057 0.301174 0.30094 0.00024 
0.70703 0.00053 0.308952 0.30918 0.00023 

0.67540 0.00010 0.310055 0.31001 0.00005 

0.63100 0.00100 0.302349 0.30187 0.00048 
0.57217 0.00083 0.284208 0.28380 0.00041 

0.49954 0.00054 0.255438 0.25571 0.00028 

0.41348 0.00048 0.217445 0.21770 0.00026 
0.31716 0.00066 0.170847 0.17120 0.00036 

0.21202 0.00002 0.117045 0.11705 0.00001 

0.10264 0.00086 0.058302 0.05782 0.00049 
-0.00930 0.00070 -0.00574 -0.00533 0.00040 

-0.12436 0.00136 -0.07175 -0.07254 0.00079 

-0.20910 0.00090 -0.1239 -0.12337 0.00053 

Sum IAE 0.00068  Sum IAE 0.00025 
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5. CONCLUSION  

This paper discusses the enhancement of PO through the utilization of Lévy flight optimization. PO 

is introduced as a new optimization algorithm inspired by the intelligence and behavior of puma in nature. 

Lévy flight refers to a particular type of random walk where the distance traveled during each step is determined 

by a probability distribution that has a strong tail. This method is referred to as MPO. This article uses MPO 

to optimize the parameters of PV solar panels using a SDM, relying on an experimental data set. To verify the 

effectiveness of the MPO technique. This article uses the original puma as a reference point for comparison. 

The benchmark function used is the root mean square error. Simulation results show that the MPO approach 

outperforms the original PO method, with an accuracy of 0.0026%. The MPO technique has the most optimal 

RMSE value. This research needs to be further developed by conducting experimental tests and using more 

complex models to obtain validation of the MPO method. 
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Figure 3. Convergence curve of benchmark function (a) F1, (b) F2, (c) F3, (d) F4, (e) F5, (f) F6(g) F7, (h) F8, 

(i) F9, (j) F10, (k) F11, and (l) F12 
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Figure 3. Convergence curve of benchmark function; (m) F13, (n) F14, (o) F15, (p) F16, (q) F17, (r) F18,  

(s) F19, (t) F20, (u) F21, (v) F22, and (w) F23 (continued) 
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