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This article presents a photovoltaic (PV) optimization approach using the
puma optimizer (PO) approach, which has been enhanced by utilizing Lévy
flight optimization. The name of this approach is modified puma optimizer
(MPO). PV generation systems are essential for sustainable solar energy
utilization. It is an innovation and clean energy. There is an urgent demand
for suitable and reliable simulation and optimization techniques for PV
systems. This will result in increased efficiency. Algorithms with a high
degree of reliability are needed to ensure optimal PV parameters. This study
was conducted with MATLAB software. This article introduces the original
PO method as a means to evaluate the performance of the MPO approach. The
root mean square error (RMSE) function serves as a benchmark. Based on the
simulation findings, the MPO approach shows superior RMSE compared to
the PO method, specifically at a value of 0.0026%.
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1. INTRODUCTION

The most recent energy solution is the utilization of renewable energy sources such as wind, solar,
and tidal waves. Solar energy is a plentiful and renewable source that can be easily transformed into power
[1]-[4]. Solar energy must undergo a conversion procedure using specialized equipment in order to be
transformed into electricity [5], [6]. Outdoor sites are where solar-based photovoltaic (PV) generators are
deployed. A PV device is utilized to convert solar energy into electrical energy. The potential of PV systems
is frequently constrained by the limitations of the device itself, as well as the prevailing meteorological
conditions and the geographical location of the system. As a consequence, there is a restricted capacity to carry
out modifications [7]-[9]. Research on enhancing the precision of PV system characteristics is gaining
popularity and generating attention. The challenge of determining the fundamental parameters is frequently
attributed to the process of aging and the imperfect nature of the instrument.
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Several endeavors have been undertaken to enhance the efficacy of power conversion from solar cells,
including the utilization of novel materials. Furthermore, it is crucial to simulate and optimize the exact
configuration of the PV cell model [10], [11]. The purpose of this is to enhance the efficiency and durability
of the generation system under various weather and temperature conditions. The single diode model (SDM) is
an often utilized and well-liked model. The precision of the PV cell model is crucial in achieving the
characteristic analysis (I-V curve). The primary concern revolves around the determination of the PV
parameter. Obtaining the value of model parameters that closely match the experimental data has proven to be
challenging. This aspect hinders the PV model from achieving optimal performance. PV parameters serve as a
benchmark for constructing solar cells, enhancing PV conversion efficiency, and optimizing the tracking of
maximum power spots. Conventional methods for identifying PV parameters involve analyzing multiple points
on the I-V and P-V curves using a basic function. This approach offers the benefits of being computationally
efficient and straightforward to implement. However, a significant limitation of this technique is the reliance
on certain assumptions that are made in order to decrease the number of unknown parameters. The Newton-
Raphson and Gauss-Seidel methods are utilized to overcome the constraints of the analytical technique. The
outcome achieved with this method is greatly influenced by the starting conditions of the unknown variables
and effectively identifies the best answer within a specific region. The method is unsuitable for extracting PV
model parameters in any environmental circumstances.

Computational methodologies were employed to enhance the precision and dependability of
optimization. Several techniques have been presented by researchers such as northern goshawk pptimization
algorithm [12], differential evolution [13]-[15], nutcracker optimization algorithm [16], grey wolf optimization
algorithm [17]-[20], tree seed algorithm [21], harris hawks optimization algorithm [22]-[25], and reptile search
algorithm [26], [27]. However, optimization to obtain better PV parameters is still a popular and interesting
field. This article presents a PV parameter optimization approach using a modified puma optimizer (MPO)
[28]. Puma optimizer (PO) imitates the behavior of puma in nature. The puma algorithm has different operators
in both the exploitation and exploration phases. Each of these operators demonstrated excellent abilities in
dealing with problems with different dimensions and levels of difficulty. The contributions of this article are:
— PV parameter optimization approach with the PO improvement method using a combination with Lévy

flight optimization. This method is named MPO.
— The performance of the MPO method is compared with the PO optimization algorithm.

The structure of this paper is the section 2 regarding the PO method, PV model and Lévy flight
optimization. Section 3 is the concept of the proposed method. Section 4 is the results and discussion.
Section 5 is drawing conclusion.

2. METHOD
2.1. Puma optimizer

Puma is one of the most successful and well-adapted predators in the Western Hemisphere, which
allows them to live in a variety of environments and maintain healthy populations in many regions. Pumas
have very strong hind legs, allowing them to jump. For the first time, a novel and useful phase change method
for the PO optimization algorithm is provided, which allows the phases of exploration and exploitation to be
changed [28]. According to the PO method, the region occupied by the male puma represents the whole
optimization space, and it is also thought of as the best answer. Additionally, X;, another option, has been
compared as a female puma.

2.1.1. Inexperienced stage

The mathematical formulas and statements that clarify the optimization processes carried out by PO
are then provided. Pumas are brilliant animals and have a perfect memory. For hunting, they often go to places
where hunting is more likely, which is based on their previous experiences. These targeted hunting trips can
be to areas where it has previously hunted and hidden its prey. It can be modeled in (1) to (10).

1
fl = PF (SequstExplore (l)
Explore 1 Seqrime
Seqé‘ostEx loit
fLExploie = PFy(— =) )
t 1
xpiot Seqrime
SeqéostExplore+seq%ostExplore+Seq(3fostExplore
flExplor = PF,( ) 3)

1 2 3
Seq  TimetS€qa rimetS€a  rime
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1 2 3
2 = PF SeqCOStExploit+SeqC05tExploit+SequstExploit 4
f Exploit — 2( Seql +Seq? +Seq3 ) ( )
€4 " Time*°€q" Time >4  Time
1 — initial 1
SequstExplore - |COStBest - COStExplore' (5)
2 — 2 1
SequstExplore - |COStExplore - COStExplore' (6)
3 — 3 2
SequstExplore - |COStExplore - COStExplore' (7)
1 — initial 1
SequstExploit - |COStBest - COStExploit' (8)
2 — 2 1
SequstExploit - |COStExploit - COStExploit| (9)
3 _ 3 2
SequstExploit - |COStExploit - COStExploit' (10)

In the initialization phase, the cost of the first-rate solution developed is denoted as Costiutie!,
Additionally, there are six variables: Costgpiores COStEypiores COStivpiores COStipioies COStEyyioir, aNd
Cost3pi0ic- Utilize the cost of the optimal solution achieved from each phase. Exploitation and exploration
occur in iterations 1, 2, and 3. After evaluating the functions f; and £, at the conclusion of the 3" iteration,
only one of the exploration and exploitation phases will be chosen going forward. Other pumas had a positive
experience; thus, they can select one of the two phases by calculating the exploitation and exploration points
using (11) and (12).

SCOTeExplore = (PF1 ) flExplore) + (PFZ ) szxplore) (11)
SCOTeExploit = (PFl ) flExploit) + (PFZ 'szxploit) (12)

2.1.2. Advanced stage

Pumas has gained sufficient expertise to make the decision to modify the phase. As the iterations
continue, they chose to select only one phase for the optimization process. During this phase, three distinct
functions f3, f5, and f5, are employed for the purpose of scoring. The primary function places greater focus on
the phase of exploration. The initial function is computed using (1).

i Exploit Exploit
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otherwise, f3; 7" + PF,
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f3Explore _ ’ t (18)
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otherwise, f3,7"°"° + PF,

The variables f15P" and 15717 reflect the quantity of the first function during the exploration
phase or the exploitation phase, respectively. The variable t represents the current iteration number. Costfl’ff“”t

and Cost P'°™ represent the expenses associated with the optimal option prior to any enhancements in the
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current selection. However, CostZ<P'" and CostEXP!o™ represent the expenses of the optimal solution

achieved through enhancing the current selection. T,”***°"* and T,”*"'°"® represent the count of iterations that
were not chosen in the prior selection but are included in the current selection. The PF, parameter is a user-
adjustable variable that must be assigned a value between 0 and 1 prior to the optimization process. The
variables f25P1" and f25*1° denote the second function associated with the exploration stage or the
exploitation step. £35P°"* and £35*P!°™ denote the third function associated with the exploration stage or the
exploitation step, with t representing the current iteration number.

FtExploit — o(ztexploit. (flfxploit)) + ((xtzxploit_ (foxPlOit)) + (Sf;xploit . (lC.f3folDit)) (19)
FtExplore — oc:xplore_ (flfxplore)) + (ocfxplore_ (fzfxplore)) + (Stexplore . (lC.f3folore)) (20)

le = {{(costoig — COStyey)}*PIONAM, {(COSt o1 — COStew)}PIOTHHOM},0 € lc (21)

Explore,Exploit
X =

(22)

lf Fexploit > Fexplore,aexploit — Olog,aexplore — I'aexplore _ 0.01'0.01]
{ otherwise, a®PLre = (.09, q®*Ploit = [q&*Plit — 0,01,0.01]

(Sexplore

¢ =1 _ocixplore (23)

8€xploit _

e 1 _o(texploit (24)

2.1.3. Exploration

At this stage, pumas engage in a stochastic exploration throughout their region to locate food or
approach other pumas in a random manner to exploit their prey. Hence, the puma sporadically leaps into the
search area or forages for sustenance within the vicinity of the puma. Initially, the complete population is
arranged in ascending order. Then, puma enhances its solutions during the exploration phase by employing (24).

if Rand > 0.5,Z; ; = Rpyn X (Ub — Lb) + Lbn
otherwise,Z;y = Xo6 + G - (Xa6 — Xp) + G- (Koo — Xpg) — Xeg — Xag)) +
(Koo = Xag) — Keg — Xr6))) (25)

G=2-Rand —1 (26)

In (25), Ub and Lb represent the minimum and maximum values of the problem. Rp;, refers to
randomly generated integers that fall between 0 and 1 and are in the same dimensions as the problem. Rand is
a randomly generated number that falls within the range of 0 and 1. X, 5, Xp 6, Xc6, Xa6: Xe,6, and Xy are
randomly picked solutions from the entire population. The value of G is determined by applying (26).

N _ {zm ifj = jrana Or rand < U @7
new = Xq Otherwise

NC=1-U (28)
_ NC

P = on (29)
_ NC

P = mon (29)

where z; ; is a solution that is obtained using (25). j,4nq iS an integer that is created randomly within the range
of dimensions of the problem. The parameter U is defined before to the optimization phase and takes on a value
between 0 and 1. With each iteration, the quantity of dimensions that are substituted by new solutions grows.

if costxye, < costx;,U=U+p (30)

Xa,6 = Xnew» if Xinew < Xq,G (31)
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2.1.4. Exploitation
During the exploitation stage, the PO algorithm employs two distinct operators to enhance the
solutions. These operators are derived from the two behaviors exhibited by pumas, namely hunting through
ambush and dashing.
(mean(Solmtal) .x;._(_ 1)5 X%

. N
if rand = 0.5, Xpe, = £

1+(a'rand)
Xnew = \ otherwise, if rand = L, Xpo,, = Pumamqe + (2 - rand) - exp(rand) - x5 —x; (32)
othervise = (2 and) - CEXOO ) i,
x5 =round(1+ (Np — 1) - rand,, (33)
R=2-rand — 1 (34)
2
F, = randn - exp (2 — Iter - (Max]ter)) (35)
F, =w X (v)? - cos ((2 X rand) - w) (36)
w = randn (37)
v = randn (38)

The variable Np represents the total number of populations that will be used in the optimization procedure.
Sol, a1 1S the aggregate of all solutions. Puma,, ;. is the optimal solution for the entire population.

2.2. Lévy flight optimization

A random walk is a probabilistic process in which particles or waves traverse unpredictable
trajectories. The initial utilization of random walks was to elucidate the motion of particles in fluids,
specifically known as Brownian motion. Lévy flight refers to a specific type of random walk where the duration
of each step is determined by a probability distribution that has a large tail [29]. They have the ability to
characterize all stochastic processes that exhibit scale invariance.

LX) ~ x| " (39)
futay) = f;” exp(=yq®) cos (qx) dq (40)
fitsay) =T 4 oo (@)
Levy(a) = 0.05 X IyILl/“ (42)
x = Normal (0,02) (43)
y = Normal (0,02) (44)

r(1+a) sin(%)
(a-1)

(022"

] Y% and 0, =1dana = 1.5 (45)

where X; is the flight length, and 1 < a <2 is the exponential power. The probability density of the Lévy stable
process in integral form is defined as (40). a is the distribution index and controls the scale properties of the
process while y selects the scale units. Integrals in (39) have an analytical solution only in some cases. When
a equals 2, it represents a Gaussian distribution and when a equals 1, it represents a Cauchy distribution. T is
gamma function. Mantegna proposed an accurate and fast algorithm to generate stable Lévy processes for
absolute values of the index distribution («) ranging between 0.3 and 1.99. x and y are two normally distributed
variables with standard deviations o, and a,,.
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2.3. Solar photovoltaic modelling

This is necessary to mathematically simulate the behavior of PV cells. This work employs a PV
modeling approach utilizing a single diode solar PV model system. This device possesses the benefit of
exhibiting high precision while maintaining a straightforward design. The source is supposed to be solar PV.
Figure 1 displays an illustration of an equivalency circuit diagram [30]. This variant is ideal for PV systems
that necessitate cheap production expenses and rapid response. The mathematical equations for the SDM
system are as stated:

I, = Iph —Ig — s (46)
(VL+Rsr;)
I = Isq [exp (%) —1] (47)
I = (48)
Vv, = aKT (49)
q
Irradiance i,
| MWy A
I Id“' v Ish R
Ioh Rsh Vi

Figure 1. PV circuit consisting of a single diode

The symbol a denotes the ideality factor of the diode. The value of q is 1.60217646 x 1071°C,
which represents the charge of an electron. The value of q is also 1.3806503 x 10~23]/K, which represents
the Boltzmann constant. In (46) reveals that accurate estimation of the parameters (I, Isq, Rs, Rsp, and a) is
essential in SDM.

2.3.1. Newton-Raphson technique
The Newton-Raphson (NR) method is a commonly used technique for finding the roots of nonlinear
equations. The NR method is defined as (50)-(52):

I — _ f(IL(m)
Lom+1) ™ "L(my) FrL

,m=0 (50)

ViL+Rg] VL+Rg
f(IL(m) = IL(m) — Lpn +Isq [exp <(TtL)> - 1] + % =0 (51)
’ Isq'Rs Vi+RsI Rs
fllyy =1+ “i/t [exp<( v L))—1]+a=0 (52)

The NR approach offers the benefit of rapid and uncomplicated convergence. Nevertheless, the NR
technique has disadvantages. The NR approach proved unsuitable for estimating a significant number of
unknown variables. Determining the initial value to commence this procedure for a substantial number of
unknown variables poses a significant challenge. Inaccurate beginning values can result in erroneous estimates.

3. METHOD
The suggested approach integrates the PO algorithm with Lévy flight optimization. The Lévy Flight
method can attain a globally optimal solution in a vast and intricate search space. This is attributed to its
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capacity to integrate thorough exploration with the utilization of potential regions. Furthermore, employing the
Lévy Flight algorithm in PO enhances the capacity to address situations that entail intricate parameters.
Consequently, the Lévy flight trajectory is employed to revise the position following the position update.
Figure 2 represents an object-oriented analysis flow diagram. The MPO method is a modified version of the
PO method. It involves altering (11) and including (42) into (11). Therefore, it transforms into the subsequent:

ScoreExplore = (PFl ' flExplore) + (PFZ ' fZExplore) X Levy(a) (53)

Initial Exploration Exploitation
Start population < i: > phase > ph'ilse

Unexperiment
phase by Eq.53

Return The
best solution

e

Score >Score

‘explore’
it

Exploitation phase explo

Newbest X, >
Puma .

=Newbest X, >

Exploration
phase

Newbest X >
Puma

male

Puma__

Y
byeq. 17 |#+— Update 1,f2 and f3

A

‘—  Update Score >Score, Puma

= Newbest X, >

‘explore ‘exploit male

Figure 2. Proposed method MPO

4. RESULTS AND DISCUSSION

MPO performance is measured and validated with the global optima function and applied to obtain
solar PV parameters with the SDM model. The results are compared with the original PO. The simulation was
carried out using MATLAB/Simulink on a laptop with AMD A9-9425 (3.1 Ghz) specifications with 4 GB
memory. By considering and comparing 20 global optimal functions. Each function has its own character.
Functions F1-F7 are unimodal functions. This function has one global optimum and no local optimum. This
function can be seen in Figures 3(a) to (g) (in Appendix). F8-F13 are multimodal functions. This function plays
a role in reducing the local optimal position of the algorithm. This function can be seen in Figures 3(h) to (m)
(in Appendix). F14-F23 are composite functions. This function is a combination of multimodal test functions.
This function can be seen in Figures 3(n) to (w) (in Appendix).

The current experimental parameter values consist of solar cells manufactured by R.T.C France. The
solar cell has a diameter of 57 mm and the data is simulated at a temperature of 33 °C. Table 1 provides the
specific numerical information about SDM. Figure 4 will display the characteristic curves of solar PV,
specifically the P-V and I-V curves. Figure 4(a) displays the empirical current and predicted current data with
voltage observations. Figure 4(b) displays the observed power trend and the calculated power as the voltage
increases. Figures 4(a) and (b) displays the characteristic curves of solar PV, specifically the P-V and I-V
curves.

Table 1. Parameter range for SDM
Parameter LB UB

L.n 0 1
| 0 1
a 1 2
Ry 0 100
R, 0 05

Table 2 presents the related parameter sets calculated by several algorithms. To obtain accurate
parameter estimates in a PV model, the initial step involves identifying an error function that is able to capture
the differences between the measured and experimental current data. The parameter values of the proposed and
benchmark methods have little difference. Table 3 is the result of SDM using MPO. The proposed method has
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a small power error value. The primary objective of this essay is to get a collection of PV parameters with the
least amount of inaccuracy. The root mean square error (RMSE) was utilized to quantify the entire error,
employing the following mathematical model:

1
RMSE = \/; YN LX) (54)
where N is the number of experimental data.

0.8 o T T T T T T T | 0.4 r

0.7F 0.35

061 0.3}
0.5} 0.25F
. 04t 0.2
= -
g 0.3k Ugc-: 015F
o o
0.2} 041
0.1F 0.05F
D . . - D-
measured
017 | » estimated | 005
02k L L L L L L L NRL L L L " L L "
0.2 01 0 0.1 0.2 03 0.4 0.5 06 0.2 01 0 0.1 0.2 0.3 0.4 0.5 06
Voltage Voltage
(@) (b)
Figure 4. Comparison of curves with; (a) simulation model 1-V of MPO and (b) simulation model P-V of

MPO

Table 2. Performance comparison between MPO and its competitors with SDM
Algorithm Lon | a Ry, Ry RMSE
PO 0.76079 0.3108 1.47732 52.8871 0.0365 7.7298e-04
MPO 0.76079 03107 14773 52.8899 0.0365 7.7296e-04

Table 3. Individual absolute error (IAE) from MPO with SDM
Simulation current (A) Simulation power (W)
Igm(A) IAE — 1 P(W) Pin(W) TAE—-P
0.76415 0.00015  -0.15715 -0.15719  0.00003
0.76270 0.00070  -0.09837 -0.09846  0.00009
0.76137 0.00087  -0.04472  -0.04477  0.00005
0.76015 0.00035  0.004335 0.00433  0.00000
0.75904 0.00096  0.049096  0.04903  0.00006
0.75801 0.00099  0.089942  0.08982  0.00012
0.75705 0.00005  0.127025 0.12703  0.00001
0.75608 0.00092  0.161392  0.16120  0.00020
0.75502 0.00048  0.192275 0.19215  0.00012
0.75360 0.00040 0.22047  0.22035  0.00012
0.75133 0.00083  0.245338  0.24561  0.00027
0.74731 0.00081 0.26762  0.26791  0.00029
0.74008 0.00158  0.286021  0.28663  0.00061
0.72743 0.00057  0.301174  0.30094  0.00024
0.70703 0.00053  0.308952  0.30918  0.00023
0.67540 0.00010  0.310055 0.31001  0.00005
0.63100 0.00100  0.302349  0.30187  0.00048
0.57217 0.00083  0.284208  0.28380  0.00041
0.49954 0.00054  0.255438  0.25571  0.00028
0.41348 0.00048  0.217445 0.21770  0.00026
0.31716 0.00066  0.170847  0.17120  0.00036
0.21202 0.00002  0.117045 0.11705  0.00001
0.10264 0.00086  0.058302 0.05782  0.00049
-0.00930 0.00070  -0.00574  -0.00533  0.00040
-0.12436 0.00136  -0.07175 -0.07254  0.00079
-0.20910 0.00090 -0.1239  -0.12337  0.00053
Sum IAE 0.00068 Sum IAE __ 0.00025
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5. CONCLUSION

This paper discusses the enhancement of PO through the utilization of Lévy flight optimization. PO
is introduced as a new optimization algorithm inspired by the intelligence and behavior of puma in nature.
Lévy flight refers to a particular type of random walk where the distance traveled during each step is determined
by a probability distribution that has a strong tail. This method is referred to as MPO. This article uses MPO
to optimize the parameters of PV solar panels using a SDM, relying on an experimental data set. To verify the
effectiveness of the MPO technique. This article uses the original puma as a reference point for comparison.
The benchmark function used is the root mean square error. Simulation results show that the MPO approach
outperforms the original PO method, with an accuracy of 0.0026%. The MPO technique has the most optimal
RMSE value. This research needs to be further developed by conducting experimental tests and using more
complex models to obtain validation of the MPO method.
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