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 Efficient resource allocation is crucial in fog computing environments due to 

dynamic conditions and different user requirements; this work addresses the 

scheduling issues of internet of things (IoT) applications in such situations. 

Our proposed method, chaotic crossover tuna swarm optimizer (CCTSO), is 

based on metaheuristics and aims to reduce energy usage, reaction time, and 

SLA breaches; it should help with these problems. Improved system 

responsiveness and dependability are outcomes of the suggested approach's 

use of machine learning models for scheduling decision prediction and 

dynamic workload adaptation. The framework achieves a good balance 

between performance and energy efficiency by adjusting critical parameters 

and application settings. By reducing energy usage, reaction time, and 

operational cost while retaining reduced service level agreement (SLA) 

violation rates, our solution greatly outperforms previous techniques, 

according to experimental assessments. In real-world implementations, our 

results demonstrate that CCTSO is a strong solution for fog-based IoT 

scheduling, providing greater scalability and adaptability. Taken together, 

the results of this study provide a strong algorithmic foundation for better 

resource management in cloud, fog, and edge computing environments. 
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1. INTRODUCTION 

The advancement of the internet of things (IoT) has resulted in the generation of vast amounts of 

data at a rapid pace. Applications need a strong enough computing infrastructure to support user demands to 

exploit this data for analysis and goal-directed action [1]. Many time-sensitive applications, including traffic 

monitoring, emergency response, and healthcare, find it challenging to integrate cloud-centric IoT software 

due to increasing network latency. The IoT has limited consumer resources, such as storage capacity and 

signal resolution. To help it successfully unload its tasks, traditional cloud computing was developed [2], [3]. 

But if a lot of task data must be transmitted, between local PCs and cloud centers outsourcing localized jobs 

to a remote cloud center may cause serious delays. This kind of delay is unacceptable for nearly all scenarios 

and applications that rely on latency. Furthermore, transferring a large amount of data over a network that is 

linked to a central server could cause the network to become extremely congested. New technologies are 

required to address the increasing demands on resources and quality of service (QoS) requirements [4]. The 

edge cloud computing (ECC) paradigm is a promising approach that provides IoT applications with a shorter 

latency response [5]-[7]. ECC has been recommended because network edges have limited processing power 

and respond slowly in times-sensitive applications [8].  

https://creativecommons.org/licenses/by-sa/4.0/
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To improve service quality, a new component called ECC is added between the cloud computing 

environment and the on-premises level [9]. In contrast to cloud computing, which utilizes a core network 

transport for data, edge-to-local (ECC) placement positions server hardware closest to the edge. When 

providing high downstream bandwidth, ECC can reduce system latency by preventing the undesired delay 

brought on the networks [10]. Consequently, there has been an increasing focus on ECC in both academic 

and industry research [11]. In an ECC setting, outsourcing computation has been the subject of a great deal of 

research in the last few years [12]. Planning the Edge program's computational paradigm is difficult, 

nevertheless, for a variety of reasons. Regarding energy usage, response time, speed, and capacity, computer 

servers adapt to the heterogeneity between adjacent edge nodes and distant clouds. Furthermore, there might 

be a variety of computer kinds between the periphery and cloud levelsbetween the periphery and cloud 

levels. Moreover, the edge paradigm's mobility component results in constant bandwidth fluctuations 

between data sources and processing nodes, necessitating constant dynamic adjusting to satisfy application 

needs. The ECC's uncertain task arrival rate, job duration, and resource requirements exacerbate the 

scheduling issue. Dynamic task scheduling is required to lower energy consumption and improve the QoS of 

applications in unpredictable situations by effectively utilizing multi-layer resources. Cloud centers use 

several forms of task scheduling algorithms, including hybrid algorithms, heuristic computations, and meta-

heuristic strategies that use swarm intelligence and biological motivation [13].  

Several performance indicators have been incorporated into the scheduling process, including 

system usage, latency, load balancing, execution time, and cost of a network connection [14]. The heuristic 

work scheduling technique can be used to determine the best solution. But it's prone to incomplete selection 

and can't always be counted on to yield the best results. A heuristic method that mixes random algorithms 

and local search is improved upon by the meta-heuristic approach [15], [16]. It permits the exploration and 

enlargement of the search space and manages a great deal of search space knowledge. It can also learn and 

master new information by applying learning processes, which allows it to find approximations of ideal 

solutions. The dynamic conditions arising from requirements and the growth of the EdgeCloud computing 

paradigm are not taken into account by heuristic models. Furthermore, they struggle to adapt to frequent 

system modifications that occur in EdgeCloud settings. To achieve this, a scheduling strategy based on 

reinforcement learning (RL) may be beneficial for the system's dynamic optimization [17]. 

The models have greater accuracyand capable of identifying intricate relationships between multiple 

interdependent components since they are built using real data. Recently, many value-based RL techniques 

have been used to optimize resource management systems (RMS) in remote systems [18]. These systems 

either use neural networks or use tables to store Q-value functions. The states of ECC settings indicate 

expected cumulative rewards in an RL setup. Moreover, no previous research has improved scheduling 

decisions by utilizing temporal trends in workload, network, or node activity. Additionally, a centrally 

managed scheduling policy is used in these studies, which is undesirable for decentralized or hierarchical 

systems. The scheduling problem in stochastic edge-cloud systems is mapped and resolved using 

asynchronous policy gradient approaches. These methods, which use recurrent neural networks to find 

patterns in behavior, may continuously adjust to the system's dynamics to yield better outcomes. The 

scheduling problem in stochastic edge-cloud systems is mapped and resolved using asynchronous policy 

gradient approaches. These methods, which use recurrent neural networks to find patterns in behavior, may 

continuously adjust to the system's dynamics to yield better outcomes.  

This research presents the chaotic crossover tuna swarm optimizer (CCTSO), which aims to 

minimize indices such as acoustic echo cancellation (AEC), adaptive resonance theory (ART), adaptive 

multimodal transformer (AMT), cost (C), and service level agreement violation (SLAV). Unlike 

conventional deep QNetwork (DQN) systems, the proposed method may quickly adjust the allocation 

strategy based on host behavior, changing workloads, and QoS requirements. Additionally, this study 

demonstrates how to use an R2N2-based strategy that accounts for temporal trends in planning in a hybrid 

edge-cloud situation. Organization of the work section 2 will see the literature review, section 3 followed by 

the system model of this work, section 4 indicates a model for RL, section 5 followed by the proposed work, 

results of this work in section 6, and finally the conclusion of this work in section 7.  

  

 

2. REVIEW OF THE LITERATURE 

In order to improve the reduction of service latency and lower the overall system cost (SC) with 

available resources, Wang et al. [19] offer a QoS-guaranteed edge user data deployment technique. The 

proposed method has to be theoretically tested and its performance analyzed to compare it with three other 

benchmark approaches that use real-world datasets. Trials demonstrate the suggested strategy's effectiveness 

and efficiency in comparison to the current practices. The hybrid edge cloud (HEC) is a unique architectural 

technique for cloud decentralized governance that Zhou et al. [20] designed to alleviate the burden on 

computer resources that are centrally managed, such as server facilities. HEC makes use of smart device 
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resources to lower communication latency and free up network capacity. Utilizing smart devices' 

computational power and creating a decentralized infrastructure that is robust and scalable in the future of 

hyperconnected, The benefits of contemporary network technologies, such as 5G and Wi-Fi6, are combined 

in HEC. To maximize resource utilization and reduce transmitting objections, Zheng et al. [21] improved the 

transfer of work under delay limits in the edge-cloud computing system. While considering optimal decisions 

on task offloading and resource allocation, deep reinforcement learning (DRL) is applied. To formulate this 

optimization issue and identify the best method for burden offloading, a stochastic decision process is 

employed, followed by DQN. The DQN-edge-cloud (DQNEC) computational technique was developed to 

adjust the policy and offload the work as effectively as feasible in a flexible edge-cloud system while taking 

resource utilization into consideration. When it comes to optimizing task offloads with low task rejection 

rates and resource utilization at cheap prices, DQNEC outperforms heuristic approaches, according to 

simulations. The use of an R2N2 with A3C learning was suggested by Kim et al. [22] as a quick way to 

adjust to shifting conditions with little knowledge. A real-time scheduler based on A3C is offered for 

stochastic ECC systems that offer concurrent decentralized learning across several agents. In order to make 

scheduling decisions more efficient, the R2N2 architecture is introduced. In addition to temporal patterns, it 

might gather additional host and task data. The provided framework can be altered to fit the requirements of 

the application and change a number of hyper-parameters. Deep learning was introduced to the frontier 

computing environment by Kim et al. [23] as a tool for the IoT. A novel offloading technique is suggested to 

increase the effectiveness of edge computing-based deep learning IoT applications because of the present 

edge nodes' insufficient processing power. The performance evaluation uses an offloading technique in an 

edge computing environment to finish a number of deep-learning tasks. Evaluation findings show that the 

proposed method outperforms other IoT optimization strategies. Qin et al. [24] introduced a deep learning 

technique dubbed LASER for the random execution and replication of time-sensitive tasks. Machine learning 

has provided a practical solution to a number of classification and prediction problems. The deep neural 

network (DNN) may offer more accurate regression (prediction) than traditional machine learning methods 

since it consists of multiple layers of hidden units positioned between the input and output layers. 

The quantitative analysis, based speculative CV technique is called LASER with SRQuant. By 

reducing the overall (virtual) task duration on the device, they seek to lower the cost of speculative execution 

while raising probability of completion before deadlines (PoCD), or the likelihood that MapReduce jobs will 

be completed on schedule. It is best to evaluate and compare the two strategies using traditional 

experimentation. Daneshfar et al. [25] presented a novel DRLbased resource allocation and task scheduling 

system to lower energy costs for largescale cloud service providers (CSPs). These CSPs handle a tonne of 

user requests every day and have a huge number of servers. When training in changing environments, such as 

consumer demand trends and actual  

The two-stage RP-TS deep Q learning processor aims to automatically make long-term decisions at 

the optimal power cost limit. First, Vaquero and Rodero-Merino [26] use the Gaussian process regression 

approach to forecast resource utilization in the future. The optimal number of real hosts for each monitoring 

window is then ascertained by applying the convex optimization technique. This amount of interest is 

calculated to ensure that only a few systems remain capable of providing a satisfactory service. After that, a 

similar migration directive is sent out to shut down the idle physical servers and pile up virtual machines 

(VMs) to achieve the energy savings goal. 

 

 

3. MODELING THE SYSTEM AND FORMULATING THE PROBLEM 

It is assumed in this work that the underlying architecture consists of all the peripheral and cloud 

nodes. The broad strokes of Figure 1 represent the system model. The network hierarchy includes a variety of 

resources, ranging from edges to several hops. The environment of edge clouds is formed by distant clouds. 

Numerous application operations are hosted on computers. The difference in response times and processing 

power between these servers is substantial. Although edge devices provide significantly faster reaction times 

since they are located closer to the customers, resource limitations limit their computing capacity. On the 

other hand, when cloud resources VMs are located several hops away from users, their reaction time 

increases significantly. On the other hand, cloud nodes can perform multiple jobs simultaneously since they 

have greater processing capacity and more resources. 

Infrastructure is scheduled, migrated, and monitored by the RMS. The RMS receives jobs from IoT 

devices and users together with their SLA and QoS specifications. It regularly decides whether to schedule 

new operations under the optimization goals or transfer ongoing work to new hosts. The development's 

anticipated completion dates or deadlines, CPU, RAM, bandwidth, and storage all affect the RMS choice. 

The stochastic task generator workload generation module (WGM) is used to create tasks to reproduce this 

effect. 
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Figure 1. System model 

 

 

The deep reinforcement learning module (DRLM) provides places for every activity on the server by 

interacting with the scheduling and migration services. Use a variety of different schedulers in DRLM, each 

with different duties and node partitions. One node or several edge cloud nodes can be subject to these 

schedulers. Previous research has shown that the computational load can be distributed over multiple servers, 

allowing multiple agents to learn changes in parameters simultaneously and facilitating faster learning within 

the constraints of different devices. 

It is believed that all cloud and edge nodes will synchronize their schedulers with regional gradients 

so that each host model can be updated independently. Each planner has a unique instance of the global 

neural network thanks to a policy learning model in the DRLM, allowing for asynchronous updates. The 

constraint satisfaction module (CSM), another essential part of RMS, evaluates constraints such as whether a 

job is being relocated or if the destination server has enough capacity. even to judge whether the DRLM 

concept is appropriate. 

The workload for each task varies, and they are all generated at random. A division of the 

performance time into equal-length periodic periods is done in other studies [8]. The intended intervals are 

numbered by the historical order of events, as shown in Figure 2. 

 

 

Scheduling duration i-1 Scheduling duration i

Active tasks Ai    Ai-1   ni\Li

New tasks niLeaving tasks Li

 
 

Figure 2. Work load model for dynamic tasks 

 

 

Let the duration of the ith scheduling interval be denoted as assli
, which starts at time Ti and ends at 

time Ti+1
th . Each interval sli

is associated with a set of active tasks, denoted as Ai. 

At the beginning of interval sli
: 

Li: the set of tasks that were completed (and thus removed from the system). 

ni: the set of newly assigned tasks. 

Ai−1: the set of active tasks carried over from the previous interval. 

Hence, the set of active tasks at the beginning of interval sli
 is: 

 

𝐴𝑖 =  (𝐴𝑖−1 ∩ 𝑛𝑖) 𝐿𝑖⁄  
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where tasks completed in the previous interval (Li) are removed, and newly assigned tasks (ni) are added. 

The performance of the scheduler during each interval is evaluated using a loss function, denoted as 

lossi.. A lower value of lossi. indicates better scheduling performance. Additionally, hirepresents the i-th host 

in the set of available hosts. 

Formulation of the problem: the measurement known as the scheduler's efficacy is gauged by the 

loss given for each scheduling period. Better scheduling has been provided by a lower loss value. State the 

time interval. sli
 aslossi in a variety of hosts, h is recognized as the ith host. The edge cloud environment 

refers to the collection of hosts and its enumeration is [h0, h1, … , hn]. Assume that throughout execution, 

there are n hosts in total. To the host assigned to a task, append the symbol T. A scheduling tool can be 

defined as a mapping from a state of the system to an action, such as selecting a host for new assignments or 

determining whether to move ongoing work. The system's condition at the start of sli
indicated as Si. This 

includes the hosts' parameter settings, the remaining open jobs from the prior interval, and (Ai−1\Li) and new 

assignments (ni). The hosts that schedulers assign or move must be selected, which indicates Ai for sli
 

regarding every task in Ai (=Ai−1 ∪ ni\Li). Allow the migratory duties to be Mi ⊆  Ai−1 ∪ Li. Consequently, 

Actioni = {h ∈ host tasks t | t ∈ Mi ∪ ni}, which is a choice about migration for actions in Mi and 

distribution for tasks in ni. Consequently, the function scheduler assigned A model that implies S-i entails  

A-i. Using the entire number of servers in the edge-cloud data center as input, the model calculates the time-

dependent work allocation among hosts. Hence, the problem for a perfect model can be described as (1). 

 
∑ lossibelongs to ∀i, Ai = model(Si)∀i∀t ∈ Mi ∪ nii , {t} ← Ai(t) (1) 

 

 

4. MODEL FOR REINFORCEMENT LEARNING 

Strengthening since learning models are appropriate for policy gradient learning; they are introduced 

to address the problems outlined in section 3. Specification for input: Si, it is the input for the scheduling 

model and is composed of host characteristics such as CPU, RAM, bandwidth, disk capacity, and usage [16]. 

Features such as the host's million instructions per second (MIPS), response time, cost per unit time, power 

characteristics, cost per hour, cost per minute, and total number of assigned jobs are all encompassed. 

Different hosts would have different input/output (I/O), memory/RAM, and computational (CPU) 

capabilities. Due to the memory, processing, and input/output limitations of tasks in an edge-cloud setting, 

these characteristics are crucial for scheduling choices. Another way to ensure low energy use is to distribute 

several jobs among a small group of active hosts while masking the inactive hosts. Completing I/O-intensive 

operations and preventing SLA violations may be possible with faster disk read/write rates on the host. 

Within the feature vector known as fvi
hosts, every host has a specific set of these settings. The tasks in 𝑎𝑖 are 

separated into ni and ai−1\Li, two different teams. Included in the first set of characteristics are the task's 

CPU, RAM, bandwidth, and storage requirements. 

 

4.1.  Specifications for output 

Assigning hosts for tasks in the proposed model depends on the input Statei, ai at the start of the 

duration SLi
 and outcomes referenced action Ai comprise host assignments for newly created activities. ni 

Migration choices for ongoing tasks from earlier periods belong to ai−1\Li. Every task that is moved needs to 

be transferable to the new server. ASMi which belongs to Ai based on the viability standards. Furthermore, 

anytime a host H tasked with a certain assignment shouldn't accumulate too much after being assigned that is 

H is suitable for T. Consequently,  

 

Ai(T) =  {H ∈ HOSTS∀T ∈ niHnew ∈ HOSTS∀T ∈ Mi if T is to be changed (2) 

 

It is possible to train neural networks to prioritize tasks for hosts. This means that rather than providing a list 

of hosts for each task, the model provides an ordered list of hosts. In addition, actions that are not under 

control will have repercussions. Specifically, this encompasses two aspects of penalization: the host 

allocation penalty is the sum of all hosts assigned a higher priority but ended up failing to finish a job and 

were added to each task, while the migration penalty is the percentage of tasks that the simulation attempted 

to migrate but failed to do so. 

 

 

5. PROPOSED WORK 

AEC, ART, AMT, and SLAV are among the metrics that the CCTSO is intended to lower. Many 

hyper-parameter values have been tuned using the CCTSO algorithm because various users have distinct 
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wants and application configurations. R2N2 forecasts future scheduling decisions based on these 

requirements and the resource monitoring service server's features. While A3C adaptation is known to react 

swiftly to changing conditions with fewer data points, R2N2 updates model parameters quickly. An A3C-

based real-time scheduler is proposed to enable several agents to learn concurrently and decentralized in the 

stochastic edge-cloud scenario. 

AEC: all edge and cloud servers' total power consumption, normalized to the environment's 

maximum carrying capacity for a specific duration, is referred to as "AEC." To be sure, the major power 

source for the cloud and the energy-saving devices for the edge may affect the energy sources used by the 

cloud and periphery nodes. Include a factor αH ∈ [0,1]. Depending on user needs and deployment strategy, it 

is possible to modify the amount of energy needed by a host for peripheral and cloud nodes. Here's how the 

power gets normalized: 

 

𝐴𝐸𝐶 =
∑ αH ∫ PH(t)dt

TT+1
T=T1H∈HOSTS

∑ αHPH
MAX(TI+1−TI)H∈HOSTS

 (3) 

 

Wherein the power function of host H about time is represented by PH(t) whereas the greatest power of H is 

denoted by PH
MAX. 

ART: the maximum response time to date, adjusted for the average reaction time for the entire task. 

LI+1 during SIi
 is the normal reaction time. The task execution time multiplied by the task response time is 

the task response time, the anticipated time of host reaction. ART is explained, 

 

ARTI =
∑ RT(t)T∈Li+1

|Li+1|RT(t)
 (4) 

 

Where RT is the response time 

AMT: during a period, the AMT of all active tasks aiSLi
 each job's average migration time is 

normalized by the longest possible migration time during the preceding period. The meaning of AMT is 

explained. 

 

AMT =
∑ MT(t)T∈ai

|ai|RT(t)
 (5) 

 

Where MT is the migration time. 

SLAV: the average number of SLA violations for leaving a work (li+1) over an interval SIi is 

known as the average SLA violations (SLAV). Task T's SLA (t) is the sum of two measures, such as;  

i) performance degradation due to migrations and ii) time overruns per active host. Consequently, 

 

MT =
∑ SLA(t)T∈Li+1

|Li+1|
 (6) 

 

The scientific term for the tuna, or oceanic predatory fish, is Tunnini. Based on RMS, it has been applied to 

decrease host characteristics. The first strategy is spiral foraging. To reduce host characteristics and migrate 

to shallower waters where they might be more easily targeted by RMS, tuna swim in a spiral pattern while 

feeding. The following strategy is known as parabolic foraging. Each tuna envelops the final host by forming 

a parabolic curve as they follow it. 

Starting over: to start the optimization process, CCTSO uniformly generates initial host populations 

at random in the search space. 

 

XI
INT = Rand. (uB − LB) + LB,I = 1,2, … . , NP (7) 

 

Where NP is a tally of tuna communities according to host attributes, XI
INTis the ith individual baseline, uB 

and LB is the upper and lower search space for boundaries. Furthermore, the vector "Rand" has values 

between 0 and 1, exhibiting a uniform distribution. 

Using a spiral: to facilitate the exchange of host-specific information among nearby tuna, tuna have 

developed a behavior in which they actively pursue earlier individuals. Below is the mathematical formula 

for the spiral foraging technique. 

 

𝑋𝐼
𝑇+1 = {𝛼1. (𝑋𝐵𝐸𝑆𝑇

𝑇 + ꞵ. |𝑋𝐵𝐸𝑆𝑇
𝑇 − 𝑋𝐼

𝑇|) + 𝛼2. 𝑋𝐼
𝑇 , 𝐼 = 1𝛼1. (𝑋𝐵𝐸𝑆𝑇

𝑇 + ꞵ. |𝑋𝐵𝐸𝑆𝑇
𝑇 − 𝑋I

𝑇|) +
𝛼2. 𝑋𝐼−1

𝑇 , 𝐼 = 1,2,3, … . , 𝑁𝑃 (8) 
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𝛼1 = 𝐴 + (1 − 𝐴).
𝑇

𝑇𝑀𝐴𝑋
 (9) 

 

𝛼2 = (1 − 𝐴) − (1 − 𝐴).
𝑇

𝑇𝑀𝐴𝑋
 (10) 

 

ꞵ = 𝑒𝑏𝐿𝑐𝑜𝑠𝑐𝑜𝑠(2∏𝑏) (11) 

 

𝐿 = 𝑒
3𝑐𝑜𝑠𝑐𝑜𝑠(((𝑇𝑀𝐴𝑋+

1

𝑇
)−1) ∏ )

 (12) 

 

Where XI
T+1 is the Ith iteration of the host characteristics, XBEST

T  is the best host characteristic for an 

individual, α1 and α2 is a constant that is used to determine the tuna's adherence to the most beneficial asset 

and the previous resource during the first phase; and T is the iteration number at this stage. Mass coefficients 

are what regulate the host features' propensity to migrate concerning the best resources and the preceding 

resource. 

 

 

6. RESULTS  

In this section, we compare the model with many conventional methods in the business to give you a 

full picture of the outcomes. Further on the experimental setting, evaluation measures, and data collection 

methods are provided. By utilizing cloud sim, one may activate features like power, cost, and reaction time 

for edge nodes. The constraint fulfillment module has its own dedicated software and input/output 

preprocessing. Building the loss function requires the usage of the cloud sim performance monitoring and 

storage service. In the simulation setting, hosts are used to distribute tasks to VMs, which are called 

cloudlets. Jobs are sent from the cloud to the virtualized servers via the VM. When you create a new cloudlet, 

assign it to a VM. When the cloudlet is complete, delete the VM. Take into account the present setup of tasks 

in the edge-cloud context as a shift from cloudlets to VMs. 

The open-source bitbrain real-world data gathering is used to build the cloudlet dynamic workload. 

Datasets maintained by bitbrain reveal metrics regarding the consumption of infrastructure resources by 

critical business activities. In order to generate reliable input feature vectors for machine learning models, 

over 1,000 VM workload records from two different types of machines were selected. These logs accurately 

reflect real-world infrastructure utilization patterns. 

The workload data includes information on cores per CPU, multithreading instruction per second, 

random access memory (RAM), and network and storage bandwidth, with each time stamp in the dataset 

spaced five minutes apart. Dissect the data gathering into two parts, assigning a VM burden of 27.00% and 

77.00%, respectively. The larger portion is utilized for training the R2N2 network, while the smaller portion 

is for testing, sensitivity analysis, and cross-referencing with other relevant programs. Costs associated with 

the cloud layer are based on Microsoft Windows Infrastructure as a service. 

An average job completion time is calculated by adding the most recent scheduling period's average 

scheduling time, task execution time, and server response time. Task completion rate, percentage of tasks 

completed within the targeted MIPS's expected execution time, number of task migrations performed per 

period, and total time transmitted during migration are all metrics that are measured. 

Methods for evaluating results: a number of heuristics have been applied to the problem of dynamic 

planning. In order to address the subproblems of task/VM selection and server overload detection, three of 

the most successful solutions were selected. By utilizing the best fit decreasing (BFD) algorithm, each of 

these variants identifies the target host. Also, compare and contrast the results with two well-known RL 

methods that are commonly used in the literature: 

− LR-MMT: the local regression (LR) and minimum migration time (MMT) techniques are used in this 

dynamic workload scheduling technique to identify workloads and indicate overloading. 

− MAD-MC: loads jobs dynamically using the maximum correlation policy (MC) and median absolute 

deviation (MAD) heuristics for task selection and overload detection, respectively. 

− DDQN: the deep Q-learning method for RL has been used in several academic publications. 

− Reinforce: fully integrated neural network that makes use of the reinforce technology based on policy 

gradients. 

The suggested A3C-CCTSO-R2N2 scheduling strategy, in comparison to the other scheduling 

policies, has the shortest average response time, as shown in Figure 3. The suggested model divides work 

based on RMS (CCTSO) and asks directly if a given node is a cloud or perimeter node, eliminating the need 

for multiple migrations and integrating AMT into the loss function. This shows that the suggested system has 
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a lower ART of 6.92 ms compared to earlier approaches like LR-MMT, MAD-MC, DDQN, REINFORCE, 

and A3C-R2N2, which have increasing ART of 9.40 ms, 8.95 ms, 8.76 ms, 8.24 ms, and 7.48 ms accordingly 

(refer to Table 1). 
 

 

 
 

Figure 3. Average response time with different scheduling methods 

 

 

Table 1. Average response time with diverse scheduling methods 
Methods for scheduling Response time (ms) 

LR-MMT 9.40 

MAD-MC 8.95 
DDQN 8.76 

REINFORCE 8.24 

A3C-R2N2 7.48 
A3C-CCTSO-R2N2 6.94 

 

  

Figure 4 shows that compared to the A3C-R2N2 policy, the A3C-CCTSO-R2N2 model has fewer 

service level agreement (SLA) breaches. Once again, this is because of less migrations and smarter work 

scheduling to prevent the huge value loss that happens when SLAs are violated. See Table 2 for a comparison 

of the proposed system's ART with that of alternative methods; LR-MMT, MAD-MC, DDQN, 

REINFORCE, and A3C-R2N2 all produce higher ART values of 0.095, 0.086, 0.074, 0.066, and 0.054 

respectively. 
 
 

 

  

Figure 4. SLV violation fraction with diverse scheduling methods 
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Table 2. SLA violation fractions with different scheduling methods 
Methods for scheduling SLA violation fractions 

LR-MMT 0.095 
MAD-MC 0.086 

DDQN 0.074 

REINFORCE 0.066 
A3C-R2N2 0.054 

A3C-CCTSO-R2N2 0.042 

 

 

The higher proportion of tasks completed by the A3C-CCTSO-R2N2 model is based on its capacity 

to ensure that work can be distributed to as few cloud VMs as possible in order to minimize expense  

(Figure 5). The proposed system finished 1152 tasks, compared to 792, 824, 897, 980, and 1129 tasks for the 

LR-MMT, MAD-MC, DDQN, REINFORCE, and A3C-R2N2 methods, respectively. Furthermore, the 

quantity of activities finished by each methodology is displayed in Table 3. 
  
  

 
 

Figure 5. SLA violations with scheduling methods tasks completed numbers 
 

 

Table 3. SLA violation fractions with different scheduling methods 
Methods for scheduling SLA violation fractions 

LR-MMT 792 

MAD-MC 824 
DDQN 897 

REINFORCE 980 

A3C-R2N2 1129 
A3C-CCTSO-R2N2 1152 

 

 

7. CONCLUSION 

Improving response times and service quality with edge and cloud resources in unpredictable 

settings with changing workloads is tough. In this paper, we offer real-time, end-to-end task scheduling for 

cloud and hybrid devices. There will be a decrease in metrics such as AEC, ART, AMT, SLAV, and CCTSO. 

The CCTSO algorithm has been used to fine-tune a large number of hyper-parameter values according to 

application variables and user needs. Tuna learn their hosts' characteristics via a combination of spiral and 

parabolic foraging. A3C is an innovative policy-gradient-based RL method for SDS. A scheduling method 

based on A3C-R2N2 that takes critical host and job characteristics into account enhances performance. An 

improved version of the iFogSim Toolkit called CloudSim was used in the experiment. Compared to previous 

approaches such as LR-MMT, MAD-MC, DDQN, REINFORCE, and A3C-R2N2, the proposed system has 

fewer SLA breaches (0.042) and greater ART (0.095, 0.086, 0.074, 0.066, and 0.054 respectively. In contrast 

to previous methods such as LR-MMT, MAD-MC, DDQN, REINFORCE, and A3C-R2N2, which had ART 

increases of 9.40 ms, 8.95 ms, 8.76 ms, 8.24 ms, and 7.48 ms, respectively, this research demonstrates a 

lower ART of 6.92 ms. It is possible that future RL methods will integrate A3C with R2N2 3D reconstruction 

and CCTSO optimization. Autonomous robots and virtual systems might benefit from agents learning in 3D-

interactive virtual environments. 
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