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ABSTRACT

Finite Associative Noncommutative Algebras (FANAs) have gained consider-
able attention as a key foundational element for post-quantum (PQ) public-key
(PK) cryptosystems, particularly those with a hidden group. These systems
exploit the complexity of the hidden discrete logarithm problem (HDLP) and
the challenge of solving large system of power equations. The structure of
6-dimensional FANAs over the finite field GF (p), which can include global
single-sided units in different configurations (p2, p3, and p4), plays an essential
role in assessing the security of these cryptosystems. A novel PQ signature al-
gorithm has been proposed based on FANAs with p2 global single-sided units,
while the others have been deemed less suitable for supporting the proposed al-
gorithm. The decomposition of these algebras into isomorphic subalgebras, each
with a global two-sided unit, significantly contributes to understanding the de-
sign of PQ cryptosystems that use FANAs with a large number of global single-
sided units as their algebraic framework.
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1. INTRODUCTION
Currently, the advancement of practical post-quantum (PQ) public-key (PK) cryptosystems has gar-

nered significant attention from the cryptographic community [1]-[9]. Recently, the hidden discrete logarithm
problem (HDLP) [10]-[17] has been proposed as a novel basic primitive for practical PQ signature schemes.
The HDLP is set in Finite Associative Noncommutative Algebras (FANAs) of dimensions m ≥ 4. Different
forms of the HDLP are connected with using different types of FANAs and different types of unit elements
in the algebras. Several different 6-dimensional FANAs are proposed as algebraic supports of the PQ PK
cryptoschemes. The structure of the FANAs has significant importance when estimating the security of the
HDLP-based cryptoschemes [18].

The present paper considers for the first time the structure of 6-dimensional FANAs (defined over the
finite ground field GF (p) of three different types containing different numbers of single-sided units: i) p2 [19],
ii) p3 [20], and iii) p4 [10]. It is shown the connection between the structure of algebras and the security of the
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PK cryptographic algorithms on 6-dimensional FANAs of the said types. Using the FANA with p2 global right-
sided (GRS) units as algebraic support, a novel algebraic signature algorithm with a hidden group is introduced
as a candidate for practical PQ cryptoschemes.

The paper makes the following research contribution: the practical significance of the results of the
paper is that, for the first time, the structure of a series of 6-dimensional finite noncommutative associative
algebras with a set of global single-sided units, defined over a ground field, is studied from the point of view
of decomposition into a set of isomorphic subalgebras, each of which contains a global two-sided unit. The
theoretical significance of the results of the paper is the possibility of using them for security estimations of
the PK cryptographic algorithms using 6-dimensional FANAs as an algebraic support. In particular, it has been
established that only algebras with a number of global single-sided units equal to p2 can provide a high level
of security for PQ digital signature algorithms. An algorithm of such type is introduced.

2. PRELIMINARIES
An m-dimensional finite algebra represents an m-dimensional vector space over a finite field where

the multiplication operation on vectors is defined as distributive on both sides. If this multiplication is asso-
ciative and noncommutative, we get a FANA. Similar to the case of four-dimensional algebras [21]–[24], the
multiplication operation (denoted as ◦) in the given FANA is expressed using the following formula, which
defines the product of two 6-dimensional vectors A =

∑5
i=0 aiei and B =

∑5
j=0 bjej , whith e0, . . . , e5 are

formal being the basis vectors:

A ◦B =

(
5∑

i=0

aiei

)
◦

 5∑
j=0

bjej

 =

5∑
j=0

5∑
i=0

aibj (ei ◦ ej) ,

where a0, a1, . . . , a5 are the coordinates of vector A and b0, b1, . . . , b5 are those of vector B, are elements of
the field GF (p). The product of each pair of basis vectors ei◦ej is replaced by a single-component vector λek,
derived from the table for multiplying basis vectors (TMBVs) located at the intersection of the i-th row and the
j-th column. In this paper, TMBVs from Tables 1–3 are used to define three different types of 6-dimensional
FANAs.

Table 1. Defining 6-dimensional algebra with p2 GRS units (λ ≥ 2) [19]
◦ e0 e1 e2 e3 e4 e5
e0 e0 e3 e0 e3 e0 e3
e1 λe2 e1 e2 λe1 e2 e1
e2 e2 e1 e2 e1 e2 e1
e3 λe0 e3 e0 λe3 e0 e3
e4 e4 e5 e4 e5 e4 e5
e5 λe4 e5 e4 λe5 e4 e5

Table 2. Defining FANA with p3 GRS units (λ ≥ 2) [20]
◦ e0 e1 e2 e3 e4 e5
e0 e2 λe0 e4 λe2 e0 λe4
e1 e3 λe1 e5 λe3 e1 λe5
e2 e4 λe2 e0 λe4 e2 λe0
e3 e5 λe3 e1 λe5 e3 λe1
e4 e0 λe4 e2 λe0 e4 λe2
e5 e1 λe5 e3 λe1 e5 λe3

Consider the FANA set by Table 1 representing a case of algebra containing p2 GRS units. The
right-sided units satisfy (1):

A ◦X = A (1)

which, using Table 1, for some vector A = (a0, a1, a2, a3, a4, a5) can be reformulated as the following system
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of six linear equations, where the unknowns are the coordinates of the vector X = (x0, x1, x2, x3, x4, x5):

x0a0 + x2a0 + x4a0 + λx0a3 + x2a3 + x4a3 = a0;

x1a1 + λx3a1 + x5a1 + x1a2 + x3a2 + x5a2 = a1;

λx0a1 + x2a1 + x4a1 + x0a2 + x2a2 + x4a2 = a2;

x1a0 + x3a0 + x5a0 + x1a3 + λx3a3 + x5a3 = a3;

x0a4 + x2a4 + x4a4 + λx0a5 + x2a5 + x4a5 = a4;

x1a4 + x3a4 + x5a4 + x1a5 + λx3a5 + x5a5 = a5.

(2)

Table 3. Defining FANA with p4 GRS units (λ ≥ 2) [10]
◦ e0 e1 e2 e3 e4 e5
e0 e0 λe3 e0 e3 λe0 e3
e1 e1 λe4 e1 e4 λe1 e4
e2 e2 λe5 e2 e5 λe2 e5
e3 e3 λe0 e3 e0 λe3 e0
e4 e4 λe1 e4 e1 λe4 e1
e5 e5 λe2 e5 e2 λe5 e2

System (2) can be represented as (3):

(x0 + x2 + x4)a0 + (λx0 + x2 + x4)a3 = a0;

(x1 + λx3 + x5)a1 + (x1 + x3 + x5)a2 = a1;

(λx0 + x2 + x4)a1 + (x0 + x2 + x4)a2 = a2;

(x1 + x3 + x5)a0 + (x1 + λx3 + x5)a3 = a3;

(x0 + x2 + x4)a4 + (λx0 + x2 + x4)a5 = a4;

(x1 + x3 + x5)a4 + (x1 + λx3 + x5)a5 = a5.

(3)

The solutions of the system of (3) can be obtained by performing the variable substitution defined by the
formulas z1 = x0 + x2 + x4, z2 = λx0 + x2 + x4, z3 = x1 + x3 + x5 and z4 = x1 + λx3 + x5. After such
substitution, the system (3) has the next form:

z1a0 + z2a3 = a0;

z4a1 + z3a2 = a1;

z1a2 + z2a1 = a2;

z3a0 + z4a3 = a3;

z1a4 + z2a5 = a4;

z3a4 + z4a5 = a5.

(4)

System (4) has the solution z1 = z4 = 1 and z2 = z3 = 0, applicable for any chosen value of the vector A.
Reversing the variable substitution results in a set of GRS units R = (r0, r1, r2, r3, r4, r5), coordinates fulfill
the following two independent systems of (5), (6):{

x0 + x2 = 1− x4;

λx0 + x2 = −x4.
(5)

{
x1 + x3 = −x5;

x1 + λx3 = 1− x5.
(6)

System (5) includes unknowns x0, x2, and x4 and has solutions defined by (7):

x0 =
1

1− λ
; x2 =

x4(λ− 1)− λ

1− λ
; x4 = 0, 1, 2, . . . , p− 1. (7)
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System (6) includes unknowns x1, x3, and x5 and has solutions defined by (8):

x1 =
x5(1− λ) + 1

1− λ
; x3 =

−1

1− λ
; x5 = 0, 1, 2, . . . , p− 1. (8)

Formulas (7) and (8) describe a set of GRS units R = (r0, r1, r2, r3, r4, r5) with (9):

r0 =
1

1− λ
; r1 =

k(λ− 1) + 1

1− λ
; r2 =

d(λ− 1)− λ

1− λ
; r3 =

−1

1− λ
; r4 = d; r5 = k (9)

where the integers d and k take on all possible pairs of values from the set {0, 1, . . . , p− 1}.
Thus, the FANA specified by Table 1 includes ρ = p2 distinct GRS units R defined by (10):

R =

(
1

1− λ
,
k(λ− 1) + 1

1− λ
,
d(λ− 1)− λ

1− λ
,

−1

1− λ
, d, k

)
, (10)

where d, k = 0, 1, . . . , p− 1.
The left-sided units L corresponding to vector A satisfy (11):

X ◦A = A (11)

which simplifies into three independent systems of two equations each:{
(a0 + a2 + a4)x0 + (λa0 + a2 + a4)x3 = a0;

(a1 + a3 + a5)x0 + (a1 + λa3 + a5)x3 = a3;
(12)

{
(a1 + λa3 + a5)x1 + (a1 + a3 + a5)x2 = a1;

(λa0 + a2 + a4)x1 + (a0 + a2 + a4)x2 = a2;
(13)

{
(a0 + a2 + a4)x4 + (λa0 + a2 + a4)x5 = a4;

(a1 + a3 + a5)x4 + (a1 + λa3 + a5)x5 = a5.
(14)

Every one of the latter three systems has the same main determinant depending on the coordinates of
the vector A:

∆A = (a0 + a2 + a4)(a1 + λa3 + a5)− (a1 + a3 + a5)(λa0 + a2 + a4)

= a0a1(1− λ) + a2a3(λ− 1) + a3a4(λ− 1) + a0a5(1− λ)

= (a2a3 + a3a4 − a0a1 − a0a5)(λ− 1)

(15)

if ∆A ̸= 0, a unique local left-sided unit exists for vector A, which is referred to as a locally reversible vector.
From (15) provides the local reversibility condition for the vector A = (a0, a1, a2, a3, a4, a5):

∆A = (a2a3 + a3a4 − a0a1 − a0a5)(λ− 1) ̸= 0. (16)

It can be shown that each vector LA representing the left-sided unit of a locally reversible vector A
is part of the set (10). This unit LA also serves as the unique local two-sided unit EA for vector A and for Ai

where i ≥ 2.
The FANA defined by Table 2 contains ρ = p3 different GRS units R described by (17) [20]:

R = (r0, r1, r2, r3, r4, r5) = (−λk, d,−λt, k, 1− λd, t). (17)

where d, k, t = 0, 1, . . . , p− 1. The vectors A satisfying the condition:

∆A = (a0 + λa3)
3 + (λa1 + a4)

3 + (a2 + λa5)
3 − 3(a0 + λa3)(λa1 + a4)(a2 + λa5) ̸= 0 (18)

are locally reversible. For each such vector, the local left-sided unit LA corresponds, and all vectors LA are
contained in the set (17). Each LA is also the unique local two-sided unit EA for vectors Ai where i ≥ 1.
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The FANA defined by Table 3 contains ρ = p4 different GRS units R given by (19) [10]:

Rr =

(
d, k, t, u,

1− d− t

λ
,−λt− u

)
(19)

where d, k, t, u = 0, 1, . . . , p− 1. The vectors A satisfying the condition:

∆A = (a0 + a2 + λa3)
2 − (λa1 + a3 + a5)

2, (20)

are locally reversible. Each such vector has a corresponding local left-sided unit LA and all these vectors
are part of set (19), making LA is simultaneously the single local two-sided unit LA simultaneously the local
two-sided unit Ai where i ≥ 1.

3. COMMON PROPERTIES OF THE CONSIDERED ALGEBRA
One can easily show that the condition ∆A ̸= 0 defines the existence of a unique solution of the vector

equation:

X ◦A = V

for arbitrary vector V . For every one of the said three FANAs, the following propositions hold:
Proposition 1. Assume vector A satisfies the condition ∆A ̸= 0. In this case, there exists an integer

ω such that Aω = EA, where EA is the local two-sided unit, which also serves as the unit of the cyclic group
generated by vector A.

Proof: the vector LA functions as a local two-sided unit for each vector in the sequence A,A2, . . . ,
, Ai, . . .. Given that ∆A ̸= 0, a unique value for LA exists for the fixed vector A, and the sequence follows
a periodic cycle with a length of ω. Suppose Aj = Ai, where j > i. Then, we have Aj−i ◦ Ai = Ai ⇒
Aj−i ◦A = A. Since ∆A ̸= 0, the equation X ◦A = A has a single solution X = LA; meaning, Aj−i = LA.
The collection of vectors within one full cycle forms a finite cyclic group generated by A, with the unit element
EA = LA. Therefore, EA can be expressed as EA = Aω . For any integer i (0 < i < ω), the vector Aω−i acts
as the inverse of Ai with respect to the local two-sided unit EA; therefore, making vector A locally reversible.
Proposition 1 is established.

Proposition 2. Assume that vector R is a GRS unit. Then, the map of the FANA, defined by the
formula φR(X) = R ◦X , where X takes on all values in the FANA, is a homomorphism.

Proof: for any two vectors X1 and X2, we have:

φR(X1 ◦X2) = R ◦ (X1 ◦X2) = (R ◦X1) ◦ (R ◦X2) = φR(X1) ◦ φR(X2),

φR(X1 +X2) = R ◦ (X1 +X2) = (R ◦X1) + (R ◦X2) = φR(X1) + φR(X2).

Proposition 3. In every one of the considered 6-dimensional FANAs, the set of the locally reversible
vectors composes ρ different groups with ρ different units that compose the set of GRS units.

Proof: suppose the set {A1, A2, . . . , Ai, . . . , AΩ} includes all vectors associated with a fixed local
two-sided unit E (including E itself) and only such vectors. This set forms a group ΓE with unit E. Each GRS
unit R′ corresponds to the unit E′ of a group Γ′

E consisting of locally reversible vectors {A′
1, A

′
2, . . . , A

′
Ω}.

According to Proposition 2, for i = 1, 2, . . . ,Ω, we have φR(Ai) = R′ ◦ Ai = A′
i, R′ ◦ E = E′, and

R′ ◦ E = R′, therefore R′ = E′. Thus, the set {A′
1, A

′
2, . . . , A

′
Ω} is a group with the unit R′. We have ρ

different GRS units R, evidently, each defining a unique group of order Ω. Proposition 3 is proven.

4. STRUCTURE OF THE ALGEBRAS
Consider the order Ω of each of the isomorphic groups (see Proposition 3). Clearly, Ω = Ω′p−2,

where Ω′ represents the total number of locally reversible vectors in the algebra. This value can be computed
as Ω′ = p6−Ω′′, with Ω′′ being the number of all irreversible vectors, i.e., vectors that meet certain conditions.

∆A = 0 (21)

Structure of 6-dimensional finite non-commutative algebras with many single-sided units (May Thu Duong)
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4.1. FANA with p2 global right-sided units
Using (15), condition (21) reduces to the:

a2a3 + a4a3 − a0a1 − a0a5 = 0

if a3 ̸= 0, then for arbitrary values of a0, a1, a3, and a4, there is a unique value of a2 that satisfies the equation,
giving p4(p − 1) distinct irreversible vectors. For a3 = 0, the equation holds true for any a2 and a4 when
a1a0 + a0a5 = 0. This leads to two subcases: i) a0 ̸= 0 resulting in p3(p − 1) irreversible vectors and ii)
a0 = 0 which gives p4 irreversible vectors. Thus, the total number of irreversible vectors is Ω′′ = p4(p− 1) +
p3(p− 1) + p4 = p5 + p4 − p3.

Proposition 4. Each of the p2 isomorphic groups, associated with a fixed GRS unit R and containing
all corresponding reversible vectors, has an order of Ω = p(p− 1)2(p− 1).

Proof: the number of locally reversible vectors is Ω′ = p6 − Ω′′ = p6 − (p5 + p4 − p3) = p3(p −
1)(p2 − 1) and therefore Ω = Ω′p−2 = p(p− 1)(p2 − 1).

It is evident that all 6-dimensional vectors of the form A′ = (a0, a1, a2, a3, 0, 0) make up a 4-
dimensional noncommutative subalgebra, with multiplication defined by the TMBV shown in Table 4. This
subalgebra contains one global two-sided unit E00, which is part of the set (10) and corresponds to d = 0 and
k = 0.

E00 =

(
1

1− λ
,

1

1− λ
,

−λ

1− λ
,

−1

1− λ
, 0, 0

)
This subalgebra is similar to the 4-dimensional FANA described in [16], which is used as the algebraic

foundation for HDLP-based signature schemes. The multiplicative group Γ00, which belongs to the subalgebra,
is one of the p2 isomorphic groups within 6-dimensional FANA.

Table 4. The TMBV for the 4-dimensional subalgebra with a global two-sided unit
◦ e0 e1 e2 e3 e4 e5
e0 e0 e3 e0 e3 - -
e1 λe2 e1 e2 λe1 - -
e2 e2 e1 e2 e1 - -
e3 λe0 e3 e0 λe3 - -
e4 - - - - - -
e5 - - - - - -

4.2. FANA with p3 global right-sided units
Taking into account (18), condition (21) reduces to (22):

β3
1 + β3

2 + β3
3 − 3β1β2β3 = 0 (22)

where β1 = a0 + λa3, β2 = a1 + a4, and β3 = a2 + λa5. Suppose we have nβ different triples (β1, β2, β3)
satisfying the last equality. Then, we have Ω′′ = p3nβ irreversible vectors in the considered FANA. For some
fixed values β2 and β3, one can compute the values β1 satisfying (22) as solutions of the following cubic
equation in GF (p):

β3
1 − (3β2β3)β1 + (β3

2 + β3
3) = 0. (23)

The number of solutions of the cubic (23) is considered in [21]. The discriminant Dt of the cubic
equation represents the value:

Dt =
(β3

2 + β3
3)

2

4
+

−3(β2β3)
3

27
=

(β3
2 − β3

3)
2

4

that is, the quadratic residue in GF (p). One should consider the following two cases: i) number 3 divides the
value p− 1 and ii) number 3 does not divide the value p− 1.

Case 1. Consider subcases 1a), Dt = 0, and 1b), Dt ̸= 0.
Subcase 1a. If β2β3 ̸= (0, 0), then we have 3(p − 1) different pairs (β2β3) for which the condition

Dt = 0 holds true (coefficient 3 is due to the existence of 3 different cubic roots from β3
3 ). For every one
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of the said pairs (β2β3), there exist 2 different solutions of (23); therefore, we have 6(p − 1) different triples
(β1, β2, β3) satisfying (23). If β2β3 ̸= (0, 0), then only the value β1 = 0 satisfies (23). Thus, in subcase 1a,
we have 6(p− 1) + 1 different triples (β1, β2, β3) satisfying (23).

Subcase 1b. We have 3(p−1)+1 different pairs (β2β3) such that Dt = 0 (see subcase 1a). Therefore,
p2 − 3(p − 1) − 1 = p2 − 3p + 2 different pairs (β2β3) correspond to the values Dt ̸= 0. If Dt ̸= 0, then
the cubic (23) has three different solutions [21]; therefore, in subcase 1b, we have nβ = 3(p2 − 3(p− 1) + 2)
different triples (β1, β2, β3) satisfying (23).

Totally, in case 1 we have 6(p−1)+1+3
(
p2 − 3p+ 2

)
= 3p2−3p+1 different triples (β2, β2, β3)

satisfying (23) and relating to Ω′′ = p3
(
3p2 − 3p+ 1

)
irreversible vectors. The number of locally reversible

vectors is equal to Ω′ = p6−Ω′′ = p3 (p− 1)
3. Correspondingly, the order of every of p3 different isomorphic

groups is equal to Ω = (p− 1)
3
.

Case 2. Consider subcases 2a, Dt = 0, and 2b), Dt ̸= 0.
Subcase 2a. If (β2β3) ̸= (0, 0), then we have (p − 1) different pairs (β2β3) for which the condition

Dt = 0 holds true (we have only one cubic root from β3
3 ). For every one of the said pairs (β2β3), there

exist 2 different solutions of (23); therefore, we have 2(p − 1) different triples (β1, β2, β3) satisfying (23). If
(β2β3) ̸= (0, 0), then only the value β1 = 0 satisfies (23). Thus, in subcase 2a, we have 2(p− 1)+ 1 = 2p− 1
different triples (β1, β2, β3) satisfying (23).

Subcase 2b. We have (p − 1) + 1 = p different pairs (β2β3) such that Dt = 0 (see subcase 1a).
Therefore, p2 − p different pairs (β2β3) correspond to the values Dt ̸= 0. If Dt ̸= 0, then the cubic (23) has
one root in GF (p) [21]; therefore, in subcase 2b, we have nβ = p2−p different triples (β2, β3) satisfying (23).

In case 2, we have 2p − 1 + p2 − p = p2 + p − 1 different triples (β1, β2, β3) satisfying (23) and
relating to Ω′′ = p3(3p2 − 3p + 1) irreversible vectors. The number of locally reversible vectors is equal to
Ω′ = p6 − Ω′′ = p3(p − 1)(p2 − 1). Correspondingly, the order of every p3 different isomorphic groups
contained in the considered FANA is equal to Ω = (p− 1)(p2 − 1).

It is clear that the set of all 6-dimensional vectors in the form A′ = (0, a1, 0, a3, 0, a5) forms a 3-
dimensional commutative subalgebra, with the multiplication defined by the TMBV shown in Table 5. This
subalgebra includes a global two-sided unit E000 = (0, λ−1, 0, 0, 0, 0), all elements of which are contained in
the set (17), where the E000 vector corresponds to the integer values d = λ−1, k = 0, and t = 0. Actually,
this subalgebra represents a 3-dimensional finite commutative associative algebra isomorphic to that described
in [16]. The multiplicative group Γ000 of this subalgebra is one of the p3 isomorphic groups within the 6-
dimensional FANA under consideration.

Table 5. The TMBV setting the 3-dimensional subalgebra
◦ e0 e1 e2 e3 e4 e5
e0 0 0 0 0 0 0
e1 0 λe1 0 λe3 0 λe5
e2 0 0 0 0 0 0
e3 0 λe3 0 λe5 0 λe1
e4 0 0 0 0 0 0
e5 0 λe5 0 λe1 0 λe3

4.3. FANA with p4 global right-sided units
Taking into account (20) condition (21) reduces to the following equation:

(a0 + a2 + λa4)
2 = (λa1 + a3 + a5)

2

consider the following two cases.
Case 1. If λa1 + a3 + a5 = 0 (p2 different variants), then the value a0 + a2 + λa4 is also equal to

zero (p2 different variants), and in this case, we have p4 different irreversible vectors.
Case 2. If λa1 + a3 + a5 = s ̸= 0 (p3 − p2 different variants), then a0 + a2 + λa4 = s (p2 different

variants) or a0 + a2 + λa4 = −s (p2 different variants). Thus, in case 2 , we have 2p2(p3 − p2) = 2p4(p− 1)
different irreversible vectors.

Thus, we have p4 + 2p4(p − 1) = 2p5 − p4 irreversible vectors. In total, the algebra contains
Ω′′ = p4 + 2p4(p− 1) = 2p5 − p4 irreversible vectors.

Proposition 5. Each one of the p4 isomorphic groups, associated with a fixed GRS unit R and con-
taining all reversible vectors related to R, has an order Ω = (p− 1)2.
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Proof: the number of locally reversible vectors is given by Ω′ = p6 − Ω′′ = p6 − (2p5 − p4) =
p4(p− 1)2 and hence Ω = Ω′p−4 = (p− 1)2.

It is evident that the set of all 6-dimensional vectors in the form A′ = (a0, 0, a3, 0, 0, 0) constitutes
a 2-dimensional commutative subalgebra, with the multiplication defined by the TMBV presented in Table
6. This subalgebra includes a global two-sided unit E0000 = (1, 0, 0, 0, 0, 0), which belongs to the set (19)
and corresponds to d = 1, k = 0, t = 0, and u = 0. This 2-dimensional subalgebra is isomorphic to the
corresponding commutative algebras discussed in [16].

Table 6. The TMBV of the 2-dimensional commutative subalgebra
◦ e0 e1 e2 e3 e4 e5
e0 e0 0 0 e3 0 0
e1 0 0 0 0 0 0
e2 0 0 0 0 0 0
e3 e3 0 0 e0 0 0
e4 0 0 0 0 0 0
e5 0 0 0 0 0 0

5. A CASE OF THE 6-DIMENSIONAL ALGEBRA CONTAINING A SET OF GLOBAL LEFT-
SIDED UNITS

Consider the 6-dimensional FANA containing p3 GLS units, which is set by Table 7.

Table 7. TMBV defining the FANA with p3 GLS units (λ ≥ 2)
◦ e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 λe4 λe3 λe0 λe5 λe2 λe1
e2 e2 e5 e4 e1 e0 e3
e3 λe2 λe5 λe4 λe1 λe0 λe3
e4 e4 e3 e0 e5 e2 e1
e5 λe0 λe1 λe2 λe3 λe4 λe5

The left-sided units satisfy:

X ◦A = A

which for some vector A = (a0, a1, a2, a3, a4, a5) can be reduced to the next system of linear equations with
unknown coordinates of the vector X = (x0, x1, x2, x3, x4, x5):

x0a0 + λx1a2 + x2a4 + λx3a4 + x4a2 + λx5a0 = a0;

x0a1 + λx1a5 + x2a3 + λx3a3 + x4a5 + x5a1 = a1;

x0a2 + λx1a4 + x2a0 + λx3a0 + x4a4 + λx5a2 = a2;

x0a3 + λx1a1 + x2a5 + λx3a5 + x4a1 + λx5a3 = a3;

x0a4 + λx1a0 + x2a2 + λx3a2 + x4a0 + λx5a4 = a4;

x0a5 + λx1a3 + x2a1 + λx3a1 + x4a3 + λx5a5 = a5.

(24)

System (24) can be rewritten as two independent systems, each consisting of three unknown variables:
(x0 + λx5)a0 + (λx1 + x4)a2 + (x2 + λx3)a4 = a0;

(x2 + λx3)a0 + (x0 + λx5)a2 + (λx1 + x4)a4 = a2;

(λx1 + x4)a0 + (x2 + λx3)a2 + (x0 + λx5)a4 = a4;

(25)


(x0 + λx5)a1 + (x2 + λx3)a3 + (x4 + λx1)a5 = a1;

(λx1 + x4)a1 + (x0 + λx5)a3 + (x2 + λx3)a5 = a3;

(x2 + λx3)a1 + (λx1 + x4)a3 + (x0 + λx5)a5 = a5.

(26)
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The solutions of (25) and (26) can be obtained by performing the variable substitution defined by the
formulas z1 = x0 + λx5, z2 = λx1 + x4, and z3 = x2 + λx3. After such substitution, the systems (25) and
(26) have (27), (28):

z1a0 + z2a2 + z3a4 = a0;

z3a0 + z1a2 + z2a4 = a2;

z2a0 + z3a2 + z1a4 = a4;

(27)


z1a1 + z3a3 + z2a5 = a1;

z2a1 + z1a3 + z3a5 = a3;

z2a1 + z2a3 + z1a5 = a5.

(28)

The latter two systems have the same solution, that is z1 = 1, z2 = z3 = 0. Note that this solution is
valid for an arbitrary value of the vector A, i.e., the inverse variable substitution x0+λx5 = z1, λx1+x4 = z2;
x2 + λx3 = z3 gives a set of GLS units L = (l0, l1, l2, l3, l4, l5) coordinates of which satisfy the system,
including the x0 + λx5 = 1; λx1 + x4 = 0; and x2 + λx3 = 0. The latter system defines the set of GLS units
described by (29):

L = (1− λk, d,−λh, h,−λd, k), (29)

where the integers d, h, and k take on all possible triples of values from the set {0, 1, . . . , p− 1}.
The right-sided unit associated with vector A satisfies (30)-(32):

A ◦X = A (30)
(a0 + λa5)x0 + (λa1 + a4)x2 + (a2 + λa3)x4 = a0;

(a2 + λa3)x0 + (a0 + λa5)x2 + (λa1 + a4)x4 = a2;

(λa1 + a4)x0 + (a2 + λa3)x2 + (a0 + λa5)x4 = a4;

(31)


(a0 + λa5)x1 + (a2 + λa3)x3 + (a4 + λa1)x5 = a1;

(λa1 + a4)x1 + (a0 + λa5)x3 + (a2 + λa3)x5 = a3;

(a2 + λa3)x1 + (λa1 + a4)x3 + (a0 + λa5)x5 = a5.

(32)

Each of the latter two systems has the same main determinant that can be represented in the form:

∆A = β3
1 + β3

2 + β3
3 − 3β1β2β3 = 0. (33)

where β1 = a0 + λa5; β2 = λa1 + a4 and β3 = a2 + λa3. If ∆A ̸= 0, then a unique right-sided unit RA

relates to the vector A. You can easily show that the vector RA is contained in the set of GLS units (29).
Thus, the vector RA is simultaneously a unique local two-sided unit EA corresponding to some fixed vector A.
Relatively, the unit EA to the vector A is locally reversible. Consideration of the number of locally reversible
vectors in the FANA set by Table 7 leads to an analysis of to (22) and (23), which is presented in subsection
4.2. Therefore, the results similar to those obtained in subsection 4.2 are also true for the case of the algebra
set by Table 7.

For instance, the set of all 6-dimensional vectors in the form A′ = (a0, 0, a2, 0, a4, 0) forms a 3-
dimensional commutative subalgebra, where the multiplication is governed by Table 8. This subalgebra in-
cludes a global two-sided unit E000 = (1, 0, 0, 0, 0, 0), which belongs to the set (16) and corresponds to the
values d = 0, h = 0 and k = 0. In fact, this subalgebra is a 3-dimensional finite commutative associative
algebra, isomorphic to the one described in [16]. The multiplicative group Γ000 of the subalgebra is one of the
p3 isomorphic groups within the 6-dimensional FANA defined by Table 7.

Table 8. The TMBV setting the 3-dimensional subalgebra
◦ e0 e1 e2 e3 e4 e5
e0 e0 0 e2 0 e4 0
e1 0 0 0 0 0 0
e2 e2 0 e4 0 e0 0
e3 0 0 0 0 0 0
e4 e4 0 e0 0 e2 0
e5 0 0 0 0 0 0
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6. DISCUSSION
For the construction of algebraic PK public key-cryptographic schemes, the noncommutativity prop-

erty of the multiplication operation is essential. For example, in the HDLP-base public key agreement schemes
the public key is computed as vector Y = AwQkA−w, where A and Q are non-commutative vectors; x and
k represent the private key (in section 6 the notation ◦ for the multiplication operation is omitted). Since for
the case of the 6-dimensional FANAs with p3 and p4 global single-sided units analyzed there exists homomor-
phism into a commutative subalgebra of dimension m = 3 and m = 2, respectively, you can make a general
conclusion that these types of 6-dimensional FANAs do not provide PQ security.

Construction of PQ cryptoschemes is possible using the considered 6-dimensional FANA with p2

global single-sided units, since for this algebra there is a homomorphic mapping into a four-dimensional non-
commutative subalgebra with a global two-sided unit. Obviously, the 6-dimensional algebras with a global
two-sided unit are also of interest for construction of PQ cryptoschemes, but this case is beyond the scope of
the algebras under consideration. For example, construction of a PQ digital signature scheme on 6-dimensional
FANAs with p2 global single-sided units can be performed as follows.

Suppose you use the 6-dimensional FANA set by Table 1 over the field GF (p), where p = 2q+1 with a
128-bit prime q. Due to the fact that the used 6-dimensional FANA represents the set of p2 different isomorphic
4-dimensional subalgebras with unique global two-sided unit, you can conclude that a fixed vector acts as an
element of the 6-dimensional FANA and as an element of a 4-dimensional non-commutative subalgebra that
has the same order. The 4-dimensional FANAs (of all known types [16], [22]-[25]) with a global two-sided
unit include vectors having orders equal to different divisors of the values p2 − 1 and p(p− 1). For calculating
a public key, two uniformly random non-scalar vectors P and H (such that PH ̸= HP and φ(P )φ(H) ̸=
φ(H)φ(P ) for every of p2 existing homomorphisms in the considered 6-dimensional FANA) of the order q
are generated. These vectors are used as generators of two different commutative hidden groups for computing
the PK elements. The required non-equality φ(P )φ(H) ̸= φ(H)φ(P ) provides resistance to quantum attacks,
but is not fulfilled in the 6-dimensional FANAs with p3 and with p4 global single-sided units (since these two
algebras are mapped by φ into a commutative subalgebras), therefore, the latter two algebras do not suit for
using them as algebraic support in the following practical PQ signature algorithm.

6.1. Generation of the public key
In order to be able to sign electronic documents, you should generate a secret key and calculate the

corresponding public key. To do this, the following computational steps are performed:
- Generate at random three integers x (x < q), u (u < q), and w (w < q) and three locally reversible vectors
A, D, and F (used as private-key elements) such that you have the private key in the form of three integers
x, u, w and five vectors A,D,F, P,H that are pair-wise non-commutative.

- Calculate six vectors Y,Z, U, T,N,K (composing the public key) by (24):

Y = AHA−1; Z = DPD−1; U = F−1HxF ; T = AHuPwD−1;

N = F−1HwP xD−1; K = F−1Hw+xPuD.
(34)

6.2. Signature generation algorithm
Calculation of a digital signature to the document M is performed using the signer’s private key

(x, u, w,A,D, F, P,H) as follows:
- Randomly generate two natural numbers k (k < q) and t (t < q). Then, calculate the vector:

R = AHkP tD−1. (35)

- Use a 256-bit collision-resistant hash function Φ to compute the signature’s randomization element e as
the hash value from the document M concatenated with the vector R: e = e1||e2 = Φ(M,R), where the
hash-value e is represented as concatenation of two 128-bit integers e1 and e2.

- Calculate the integer b : b = −w − e2 mod q.
- Calculate the integer n : n = k − xe1e2 − w − e1 − u mod q.
- Calculate the vector S representing the fitting signature element:

S = DP bHnF. (36)
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- Calculate the auxiliary 256-bit randomization parameter ρ in the form of the hash value calculated from the
vector S: ρ = ρ1||ρ2 = Φ(S), where ρ is also a concatenation of two 128-bit integers ρ1 and ρ2.

- Calculate the first auxiliary fitting signature element s : s = −x−1(w + x+ n) mod q.
- Calculate the second auxiliary fitting signature element σ : σ = (t− x− ρ1)(b+ u+ ρ2)

−1 mod q.
- Output the 128-byte signature (e, s, σ, S).

The computational complexity of this algorithm mainly involves 4 exponentiations (see (35) and (36)
to the 128-bit degrees in the used 6-dimensional FANA (≈ 27,700 multiplications in GF (p)).

6.3. Signature verification algorithm
Authentication of the signature (e, s, σ, S) to document M is performed using the signer’s public key

(Y, Z, U, T,N,K) according to the following computational procedure:
- Compute the hash value ρ from the vector S: ρ = ρ1||ρ2 = Φ(S).
- Calculate the vector R′ using the signature elements s as (37):

R′ = Y e1TZe2SUe1e2NZρ1(SUsKZρ2)σ. (37)

- Calculate the 256-bit hash value e′ from the document to which the vector R′ is concatenated: e′ =
Φ(M,R′).

- If e′ = e, the signature is valid; otherwise, it is rejected.
The computational complexity for the verification process is primarily determined by 7 exponentia-

tions to 128-bit degrees in the used 6-dimensional FANA (≈ 48,400 multiplications in GF (p)). Substituting in
(37) the public key elements expressed by (34), you can easily prove correctness of the introduced PQ signature
algorithm.

The resistance of the latter to quantum attacks, including those using quantum computers, is based on
the computational complexity of solving large systems of power equations over the field GF (p). The system is
set by (34), written for the unknown coordinates of 12 vectors: A,D,F, P, Pu, Pw, P x, H,Hu, Hw, Hw+x,
when considering these vectors raised to unknown powers, the system becomes one of power exponential
equations, for which no efficient solution methods are known in current literature. The inability of quantum
computers to solve large systems of power equations is exploited in multivariate PK cryptography (MPKC),
a well-established area of PQ cryptography [26]–[29]. The introduced signature algorithm represents a new
implementation of algebraic MPKC, featuring signature algorithms that use hidden commutative groups. A
key novelty of the introduced MPKC algorithm is the use of two distinct commutative hidden groups, where
elements of one group do not commute with those of the other.

The primary factor contributing to the security of MPKC algorithms is the number of equations in
the power equation system that must be solved to break the algorithms [29]. In the case of algebraic MPKC
signature algorithms, this number is proportional to the dimension of the FANAs. For the development of
signature algorithms using a hidden group, the decomposition of FANAs into commutative subalgebras is
crucial. However, such decomposition is effectively applied only in the case of 4-dimensional FANAs (of
different types) with a global two-sided unit [13], [25]. When utilizing 6-dimensional FANAs with p2 global
single-sided units as the algebraic support for cryptographic algorithms, the results from [13], [25] can still be
applied, thanks to the existing homomorphisms into 4-dimensional subalgebras.

7. CONCLUSION
In the 6-dimensional FANAs analyzed, we discovered that the presence of a substantial set of single-

sided units correlates strongly with a large array of isomorphic subalgebras within each algebra. This obser-
vation suggests that our findings might be extendable to other FANAs (including other 6-dimensional FANAs)
that also feature global single-sided (GRS or GLS) units. A new algebraic MPKC signature algorithm on the
6-dimensional FANA with p2 global right-sided units is introduced as a candidate for a practical PQ signature
algorithm as well as an illustration of the applying the obtained results on the structure of FANAs for esti-
mating the resistance to quantum attacks and security level. In particular, it has been shown that the studied
6-dimensional FANAs with p3 and p4 global right-sided units do not suit for using them as algebraic support
of the introduced PQ signature algorithm.
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