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 The increasing popularity of electric motorbikes in Indonesia, while 

promoting sustainable mobility, also raises concerns regarding traffic safety. 

Given the high incidence of motorcycle-related accidents, there is a critical 

need for systems capable of monitoring and recognizing driver behavior. 

This study proposes a driver activity recognition system for electric 

motorbikes, utilizing an event data recorder (EDR) to capture seven key 

sensor signals: three-axis acceleration, voltage, current, power, and speed. A 

custom dataset was constructed using data collected from 10 subjects, each 

performing five driving activities including forward drive, brake, stop, left 

turn, and right turn for over three-minute intervals per activity. The 

classification model is based on a long short-term memory (LSTM) neural 

network. To optimize training efficiency, a multi-step batch size up (MSBU) 

strategy was introduced, which accelerates training time by 1.84× compared 

to a fixed batch size of 32. The best performance was achieved using a 

segment length of 75 time-steps, yielding an accuracy and macro F1-score of 

0.9873. These results demonstrate the effectiveness of the proposed system 

for real-time driver behavior monitoring and activity recognition in electric 

motorbike applications. 
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1. INTRODUCTION 

The increasing adoption of battery electric vehicles (BEVs), especially motorbikes and cars, in 

Indonesia highlights their growing role as essential modes of transportation. In fact, motorbikes (combustion 

and electric engines) are the dominant choice, used by 81.78% of the population. However, this growing 

dependency also comes with significant risks including motorcycle-related traffic accidents remain 

alarmingly high, contributing to over 150,000 casualties in 2021, with a year-on-year increase of 3.62% [1]. 

Human factors such as reckless driving, fatigue, and lack of skill are the leading causes [2]. In Southeast 

Asia, motorcycles are involved in up to 70% of traffic fatalities, often due to erratic driving behaviors like 

sudden braking or improper lane changes [3]. While electric motorbikes contribute positively to 

environmental sustainability, their quiet operation and the inexperience of new users pose additional safety 

challenges. Therefore, continuous monitoring of driver behavior and real-time recognition of vehicle 

https://creativecommons.org/licenses/by-sa/4.0/
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activities (e.g., braking, turning, and idling) becomes critical to improving road safety and enabling 

intelligent response systems. 

Understanding the state of the vehicle, whether it's accelerating, braking, or turning, is essential for 

ensuring both driver and system-level decision-making accuracy. This awareness supports enhanced safety 

features, such as collision avoidance, motion-based sensor calibration, and improved coordination in 

connected environments (vehicle to vehicle or vehicle to infrastructure). It also helps prevent 

misinterpretations, such as detecting a false collision when stopped at a traffic light. 

Integrating such state awareness with deep learning-based behavior recognition enables more 

proactive and adaptive vehicle systems. To support these capabilities, the integration of an event data 

recorder (EDR) system becomes essential. Initially introduced in Formula 1 racing to analyze crashes based 

on driver input, engine performance, and electronic behavior [4], EDRs are now increasingly relevant for 

civilian use. By recording key data during vehicle operation, EDRs provide a reliable basis for reconstructing 

the driver activities or traffic incidents. Figure 1 illustrates the data collection flow used in EDR systems, 

showing how critical vehicle and driver information is gathered to determine the exact causes of accidents. 

EDRs play a critical role in reconstructing accidents by recording parameters related to driver behavior and 

vehicle dynamics, making them a key component in future intelligent transportation systems. 
 

 

 
 

Figure 1. Data collection flow [3] 
 

 

The application of EDRs in electric vehicles (EVs) has been actively explored in recent years. Prior 

implementations typically employed microcontrollers such as the Atmega2560, interfaced with sensors 

including GPS modules and electrical sensors (e.g., current and voltage detectors). These systems recorded 

operational data to SD cards at temporal intervals ranging from 100 milliseconds to one minute [5]. Building 

on these foundational systems, more advanced frameworks have been proposed to facilitate structured extract–

transform–load (ETL) pipelines for EV trajectory data, enabling improved analytics and visualization [6]. 

As the automotive industry moves toward greater automation, EDRs are evolving to support 

autonomous driving capabilities. These advanced EDRs now enable automated data storage and facilitate access 

to recorded data for key stakeholders, including insurance companies, automotive manufacturers, government 

agencies, and researchers [7]. In parallel, deep learning has emerged as a transformative approach within the 

field of intelligent transportation systems. Applications include driver-in-the-loop modeling for parameter 

tuning [8], road condition monitoring using GPS and camera systems [9], battery degradation prediction [10], 

and clustering-based behavioral modeling in connected and autonomous vehicle (CAV) networks based on 

sensor-derived metrics such as brake pressure, throttle position, steering angle, and velocity [11]. 

Despite the temporal nature of vehicle and driver behavior data, many of these studies have not 

leveraged sequence-based deep learning models such as recurrent neural networks (RNNs), particularly long 

short-term memory (LSTM) networks. LSTMs are especially well-suited for time-series due to their unique 

architecture incorporating memory cells and gating mechanisms [12]. These capabilities have made LSTMs 

widely successful in domains requiring sequential analysis, including visual learning behavior identification 

[13], intrusion detection [14], [15], fraud detection [16], phishing recognition [17], medical diagnostics  

[18]-[21], autonomous navigation [22], and context-aware systems [23]–[25]. 

In the specific domain of human activity recognition (HAR), LSTM networks and their hybrid 

variants (often paired with convolutional neural networks (CNNs)) have enabled real-time classification 

using accelerometer data sampled at 50 ms intervals via mobile devices [26]–[29]. However, most of these 

studies utilize static batch sizes (e.g., batch size of 64 in [28]), overlooking recent findings that show 

dynamic batch sizing can significantly enhance training efficiency and model performance [30]–[32]. 

Furthermore, these HAR models have rarely been adapted to the unique operational characteristics of electric 

motorbikes, which differ notably from four-wheeled vehicles in terms of maneuverability, rider posture, and 

electrical system behavior. 

This paper addresses a pressing challenge in the field of intelligent transportation systems: the need 

for a reliable, low-cost, real-time driver activity recognition system that can operate efficiently on resource-

constrained platforms, particularly electric motorbikes. While existing HAR solutions have made progress 

using LSTM and CNN models on mobile or cloud platforms [26]–[29], they often rely on static batch sizes 

and high-compute resources, making them ill-suited for embedded real-time deployment. Moreover, current 
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HAR models are not tailored to the distinct characteristics of electric motorbikes, which differ from cars in 

terms of maneuverability, rider posture, and electrical system dynamics. 

To address these gaps, we propose the driver activity recognition system for electric motorbikes 

(DARSEM), an embedded, end-to-end solution designed specifically for real-world two-wheeled EV. 

DARSEM leverages an ESP32 microcontroller connected to multiple sensors and applies a lightweight 

LSTM model trained using a novel multi-step batch size up (MSBU) strategy. 

DARSEM introduces the following key innovations: 

- MSBU: a dynamic batch size scheduling strategy that accelerates model convergence by incrementally 

increasing batch size during training, achieving a 1.84× reduction in training time without loss in 

accuracy. 

- Sensor fusion: integration of multidimensional time-series data from a 3D accelerometer (ax, ay, and az), 

speed sensor, voltage, current, and power metrics to comprehensively model motorbike dynamics. 

- Temporal behavior modeling: application of LSTM architecture to capture temporal dependencies across 

five critical driver behavior classes: driving forward, braking, idling, turning left, and turning right. 

- Onboard real-time feasibility: an implementation pipeline using Arduino IDE and ESP32 hardware 

suitable for low-cost, embedded deployment. 

These contributions are substantiated through extensive experimentation, including ablation studies and 

comparative evaluation with recent state-of-the-art approaches, as shown in Table 1. 
 

 

Table 1. Comparative analysis of recent driver activity recognition systems and the proposed DARSEM 

Feature/aspect WISDM (2020) [28] 
Driver activity recognition 

(2024) [33] 
Adaptive eco-driving 

identification (2024) [34] 
Proposed: DARSEM 

Platform Smartphone-based 

sensor logging 

Real vehicle environment 

with onboard cameras 

Simulated driving 

environment using unreal 

engine 4 

ESP32 microcontroller 

(embedded system) 

Sensor inputs Accelerometer and 

gyroscope (3-axis) 

Sequential image inputs Multivariate time-series data: 

speed, throttle, steering, 

acceleration 

3D accelerometer (ax, ay, 

az), speed, voltage, 

current, power (7 features 
total) 

Model 

architecture 

LSTM-based deep 

learning 

TimeDistributed CNN + 

LSTM 

LSTM-based network with 

adaptive modules 

LSTM with MSBU 

technique 

Recognition 

capabilities 

6 activities: 

walking, jogging, 
sitting, standing, 

upstairs, downstairs 

9 activities: driving, 

drinking, texting, smoking, 
and talking. 

Eco-driving behavior 

identification 

5 motorbike activities: 

drive, brake, stop, turn left, 
and turn right 

Dataset Public dataset with 
thousands of 

samples from 

smartphones 

Data from 35 participants 
in real driving scenarios 

30 subjects, controlled 
simulator setting 

10 subjects, each 
performing each activity 

for 3 minutes 

Performance 

metrics 

Accuracy: ~0.96; 

F1-score: ~0.95 

Accuracy: 88.7% 

(daytime), 92.4% 

(nighttime); F1 up to 0.92 

Accuracy and F1-score not 

explicitly stated 

Accuracy and F1-score: 

0.9873 (segment size=75, 

MSBU technique) 

 

 

2. METHOD 

This section outlines the end-to-end methodology used to develop DARSEM. The method 

encompasses the design and integration of embedded hardware, sensor deployment, and data acquisition 

processes tailored for electric motorbike operation. It also includes the strategies employed for data labeling, 

preprocessing, and training a deep learning model. The main goal of this method is to systematically collect 

high-quality time-series data, label it accurately, and use it to train an LSTM neural network to classify 

different driving tasks. Each component in this pipeline as shown in Figure 2 plays a critical role in ensuring 

the reliability and accuracy of the driving activity recognition system. 
 
 

 
 

Figure 2. Overall workflow of the DARSEM methodology, comprising four main components: hardware 

architecture, data acquisition and labeling, data processing and modeling, and performance analysis 
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2.1.  Hardware architecture 

2.1.1. System block diagram 

DARSEM is built upon an ESP32-based embedded system integrated with a suite of sensors, 

storage, and communication peripherals. The sensor suite includes an MPU6050 for capturing tri-axial 

acceleration data, a GY-NEO6V2 GPS module for vehicle speed tracking, and a PZEM017 module for 

measuring battery voltage, current, and power. These sensor inputs represent the core signals needed to 

model driver behavior in electric motorbike scenarios. To facilitate onboard data storage, an SD card module 

is interfaced with the ESP32, allowing all sensor readings to be saved in CSV format. The embedded system 

is fully programmed using the Arduino IDE. The overall configuration and schematic of the system are 

presented in Figure 3, where Figure 3(a) illustrates the system configuration and Figure 3(b) depicts the 

detailed schematic of the embedded EDR subsystem. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Block diagram of the DARSEM; (a) illustrating the embedded EDR and external computer system 

and (b) schematic diagram of the EDR subsystem 
 
 

Sensor data acquisition follows a modular design. The MPU6050 provides accelerometric readings; 

the GY-NEO6V2 reports real-time velocity via GPS; and the PZEM017 transmits power metrics through an 

RS485 serial communication interface to the ESP32. Additionally, joystick switch inputs are employed as 

labels for driver activity classes, offering supervised annotations for training data. The ESP32 

microcontroller orchestrates the entire data acquisition process including synchronizing sensor readings, 

managing the storage protocol, and logging labeled data in real time. 
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The computer system component of DARSEM handles the preprocessing, training, and evaluation 

of the deep learning models. Raw sensor data stored on the SD card is transferred and parsed in CSV format. 

In the preprocessing phase, the continuous sensor streams are segmented into data windows representing 

time-series slices of driver behavior. These data segments are partitioned into training-validation and test 

sets. Multiple LSTM-based neural network architectures are then designed and trained using these segmented 

datasets. The experiments focus particularly on evaluating the influence of two critical hyperparameters: 

- Batch size, which affects the frequency of weight updates during training. 

- Segment (or window) size, which determines the temporal resolution of input sequences. 

Model performance is assessed using standard classification metrics: accuracy, macro-averaged 

precision, recall, and F1-score, as well as training time and inference latency. These metrics enable a 

comprehensive evaluation of both effectiveness and efficiency across architectural and parameter 

configurations. This modular system design, combined with robust temporal modeling using LSTM, enables 

DARSEM to capture and classify subtle variations in electric motorbike driver behavior and offering a 

foundation for intelligent mobility applications, forensic analysis, and safety-critical decision support. 

 

2.1.2. Event data recorder deployment 

The EDR system is physically integrated into the electric motorbike, with all components securely 

housed within the under-seat trunk compartment, except for the PZEM017 module, which is installed adjacent 

to the battery to directly monitor load voltage and current. The hardware configuration is illustrated in Figure 4. 

The electric motorbike operates on a 72 V battery system with a maximum current capacity of 38 A, powering a 

2,000 W electric motor. The PZEM017 sensor module is selected for its capacity to handle DC voltages up to 

300 V and currents up to 100 A, making it suitable for monitoring high-power EV systems. 
 

 

 
 

Figure 4. EDR component placement in the electric motorbike 
 

 

The EDR system is powered via a 12 V line tapped from the vehicle’s ignition key switch, which is 

subsequently stepped down to 5 V using a voltage regulator to supply the ESP32 and peripheral sensors. To 

ensure continuous GPS tracking, the GY-NEO6V2 GPS module is powered independently via a portable power 

bank, allowing it to maintain satellite acquisition even when the motorbike is switched off. This design choice 

addresses the inherent delay in GPS satellite lock-on, which typically requires several minutes upon reactivation. 

 

2.2.  Labeling and data acquisition 

2.2.1. Label generator 

The labeling of activity data is conducted synchronously with sensor data acquisition, enabling the 

system to generate supervised datasets in real time. This process is facilitated through the integration of a 

push button and a joystick module, both of which are mounted on the motorbike’s steering handle, as 

depicted in Figure 5. The push button (non-joystick) is used to signal subject transitions, such as when a new 

driver assumes control of the motorbike, allowing for clear demarcation in the recorded dataset. The joystick 

module itself consists of two analog potentiometers (X and Y axes) and an integrated push button, enabling 

multi-directional input labeling. 

These inputs are used to tag specific driving activities or behaviors (e.g., acceleration, braking, and 

turning), thereby enriching the dataset with precise and interpretable ground truth labels. Sensor data 

collection is carried out simultaneously with the labeling process. This labeling process is assisted with the 

help of a push button component and a joystick module which is installed on the steering wheel of a 

motorbike as shown in Figure 5. The non-joystick push button is used for labeling subject changes just before 
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data collection begins. Meanwhile, the joystick module is a module consisting of a push button and two 

potentiometers X and Y. 
 
 

 
 

Figure 5. Installation of the joystick module and push button on the motorbike steering system 

 

 

2.2.2. Data acquisition 

For driving task data collection in intelligent vehicle systems, acquisition of high-quality sensor data 

is essential for training and evaluating machine learning models such as LSTM networks. In this study, data 

collection was carried out by ten licensed participants, each performing five predefined driving tasks: 

forward driving, braking, turning (left/right), and stopping. Each task was executed over a three-minute 

interval under various terrain conditions—including inclines, descents, and flat roundabouts with a diameter 

of approximately six meters—to capture diverse driving behaviors. The “forward” and “brake” labels were 

obtained on hilly roads, “left” and “right” through continuous circular movement at roundabouts, and the 

“stop” label when the vehicle remained stationary. 

A custom-designed electronic circuit, integrated into the electric motor system, was employed for 

data acquisition. An embedded program running on a microcontroller continuously collected signals from 

multiple sensors, including accelerometers, GPS, voltage, current, power, and speed sensors. During each 

task, participants were required to press a labeling button to mark their activity in real time. All sensor 

readings and their corresponding activity labels were recorded and stored on an SD card for subsequent 

analysis. The following formal pseudocode (Algorithm 1) outlines the systematic procedure for iterating 

through all subjects and tasks, activating sensors, performing each driving maneuver, and logging data for 

downstream use in model development. 
 

Algorithm 1. Sensor-based driving task data collection using electric vehicle 
for subject = 1 to 10 do 

    for each task in {Forward, Braking, Turning (Left/Right), Stopping (Idle) } do 

        (a) Activate sensors: 

            i. Initialize accelerometer, GPS, voltage, current, power, speed, and labeling 

button. 

        (b) Perform driving task: 

            i. if task = Forward: 

                - If road is flat: accelerate to target speed and maintain. 

                - If road is uphill: increase throttle to maintain speed. 

                - If road is downhill: control descent to maintain safe speed. 

                - Continue forward driving actions for 3 minutes. 

            ii. if task = Braking: 

                - If road is flat: accelerate then apply brakes to stop. 

                - If road is uphill: drive forward then apply brakes to stop. 

                - If road is downhill: engage brakes to prevent overspeed, decelerate to 

stop. 

                - Maintain stationary (stopped) state for 3 minutes. 

            iii. if task = Turning (Left/Right): 

                - Position on flat approach at moderate speed. 

                - Execute left or right turn maneuver. 

                - Repeat turning actions for 3 minutes. 

            iv. if task = Stopping (Idle): 

                - Bring vehicle to a complete stop. 

                - Idle (vehicle stationary) for 3 minutes. 

            v. if task = AdditionalTask: 

                - Execute the additional task-specific action. 

                - Repeat action for 3 minutes. 
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        (c) Data logging: 

            i. Start recording sensor data  

(accelerometer, GPS, voltage, current, power, speed, label). 

            ii. Execute the task for the full 3-minute duration while logging. 

            iii. Stop recording sensor data. 

        (d) Save logged data to SD card. 

    end for each task 

end for each subject 

 

2.3.  Data processing and modeling 

2.3.1. Data preprocessing 

Before training the LSTM classification model, sensor data collected from all subjects must be 

preprocessed. The preprocessing step involves aggregating raw data from the SD cards of all participants and 

normalizing the feature values to a common scale using min-max normalization. This ensures that all input 

features contribute proportionately during model training. The features to be normalized include accelerometer 

readings (Ax, Ay, Az), voltage (V), current (I), power (P), and speed (v). The mathematical formulation of this 

normalization process is defined in (1) , which rescales the feature values to the range [0,1]: 
 

𝑋𝑛𝑒𝑤 =
(𝑋−𝑋.𝑚𝑖𝑛)

(𝑋.𝑚𝑎𝑥−𝑋.𝑚𝑖𝑛)
  (1) 

 

where: 𝑋𝑛𝑒𝑤 is the array of data after normalization; 𝑋 is the array of raw data features; 𝑋. 𝑚𝑖𝑛 is the 

minimum value in the data feature array; and 𝑋. 𝑚𝑎𝑥 is the maximum value in the data feature array. 

The complete data preprocessing pipeline, including aggregation, normalization, and output 

formatting, is formalized in Algorithm 2. 
 

Algorithm 2. Data preprocessing using min-max normalization 
Input: Raw data files from SD cards of all subjects 

Output: Normalized feature matrix X_new 

 

1. Initialize empty list All_Data 

2. for subject = 1 to 10 do 

    (a) Load data from SD card into variable Subject_Data 

    (b) Append Subject_Data to All_Data 

3. Concatenate All_Data into a single dataset X_raw 

4. Extract features: Ax, Ay, Az, V, I, P, v from X_raw 

5. for each feature in {Ax, Ay, Az, V, I, P, v} do 

    (a) Compute min_val = min(feature) 

    (b) Compute max_val = max(feature) 

    (c) Normalize feature using: 

        i. feature_norm = (feature - min_val) / (max_val - min_val) 

6. Combine all normalized features into X_new 

7. Return X_new 

 

2.3.2. Model architecture, hyperparameters, and multi-step batch size 

The preprocessed time-series dataset was used to train an LSTM-based classification model 

implemented using the Keras–TensorFlow framework. This architecture was selected due to the sequential 

and temporal nature of the input data, which is well-suited for RNN, particularly LSTM networks. LSTM is 

capable of learning long-term dependencies in time-series data, making it an effective choice for recognizing 

temporal patterns in driver behavior. 

The model comprises several hyperparameters, including the number of LSTM units, dropout rate, 

dense layer configuration, and importantly, batch size, which is explored extensively in this study. As the 

classification task involves five distinct classes of driver activities, the model employs categorical cross-entropy 

as the loss function and Adam as the optimizer. The performance metric tracked during training is accuracy. 

The training pipeline incorporates a novel batch size strategy, namely MSBU, in addition to multi-

step batch size down (MSBD) and fixed batch sizes, to evaluate the impact of dynamic batch size 

adjustments. Each training experiment is conducted for a total of 120 epochs, with 20 epochs per batch size 

configuration in the dynamic strategies. The data split consists of 56% for training, 14% for validation, and 

30% for testing. The training process is outlined in Algorithm 3. 

Batch size, a critical hyperparameter in deep learning, governs how many samples are used to 

compute a single gradient update. Its choice significantly influences training dynamics, convergence 

behavior, and computational efficiency. Common batch size paradigms include: 

- Stochastic gradient descent (SGD): batch size=1 

- Mini-batch: batch size between 1 and the dataset size 

- Full-batch: batch size=total dataset size 
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Algorithm 3. LSTM-based classification model with batch size up evaluation 
Input: 

- X: Feature set with shape (samples, timesteps, features) 

- y: One-hot encoded target labels 

- batch_sizes: List of batch sizes to evaluate = [32, 64, 128, 256, 512, 1024] 

Output: 

- history_list: Training history for each batch size 

 

1. Initialize an empty list history_list 
2. Create a Sequential model 

a. Add LSTM layer with: (Units = 128, Input shape = (number of timesteps, number of 
features in X)) 

b. Add Dropout layer with rate = 0.7 
c. Add Dense layer with: (Units = 64, Activation = ReLU) 
d. Add Output Dense layer with: (Units = number of classes in y, Activation = Softmax) 

3. Compile model with: (Loss = Categorical Crossentropy, Optimizer = Adam, Metric = 
Accuracy) 

4. For each batch_size in batch_sizes, do: 
a. Train the model using: (Epochs = 20, Validation split = 20%, Current batch_size) 
b. Append training history to history_list 

 

SGD offers high flexibility in early training by frequently updating weights, although its loss curve 

is often noisy. Conversely, larger batch sizes produce smoother loss curves but may require longer to escape 

local minima. Mini-batch training strikes a balance, making it a widely adopted approach. In conventional 

practice, static batch sizes, typically powers of two for GPU optimization, are used throughout training. 

However, recent findings [29] highlight that dynamic batch sizing can yield performance gains by allowing 

larger weight updates early in training and stabilizing convergence in later stages. 

Building on this insight, our study introduces and evaluates three batch size strategies: 

- MSBU: progressively increases batch size every 20 epochs across six steps: [32, 64, 128, 256, 512, 1024] 

- MSBD: starts with a large batch and decreases every 20 epochs in reverse: [1024, 512, 256, 128, 64, 32] 

- Static batch size (Bz): keeps batch size constant at z for the full 120 training epochs 

This approach differs from prior work [29], which focused on CNNs in large-scale GPU 

environments. Here, we apply dynamic batch sizing within a time-series classification context using LSTM 

networks, and on a more constrained embedded system dataset. By maintaining a consistent epoch count 

(120) across all experiments, we enable direct comparisons of classification performance and training 

efficiency under varying batch size strategies. 

 

2.4.  Performance analysis 

Following the training, validation, and testing phases of the LSTM-based classification model, 

performance evaluation is conducted to assess the model's effectiveness in recognizing multiple driving 

activities. The classification involves five distinct classes: forward, turn left, turn right, brake, and stop. To 

ensure robust evaluation across all classes, particularly in the presence of class imbalance, standard multi-

class metrics are employed. These include balanced accuracy weighted, macro average precision, macro 

average recall, and macro F1-score, as defined in (2)–(7) [35]: 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  
∑

𝑇𝑃𝑘 ∙𝑤𝑘
𝑇𝑜𝑡𝑎𝑙𝑟𝑜𝑤𝑘

𝐾
𝑘=1

𝐾∙𝑊
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =  
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑃𝐾
 (3) 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘

𝐾
𝑘=1

𝐾
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =  
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑁𝑘
 (5) 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝐾
𝑘=1

𝐾
 (6) 

 

𝑀𝑎𝑐𝑟𝑜 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2∙𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙)
 (7) 
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where: 𝑇𝑃𝑘  is true positive for class k; 𝐹𝑃𝑘 is false positive for class k; 𝐹𝑁𝑘 is false negative for class k; 

𝑤𝑘 is frequency of the samples in the dataset; 𝑊 is total number of samples in the dataset; and 𝐾 is number 

of classes (forward, turn left, turn right, brake, and stop). 

The complete calculation of computing performance metrics, including balanced accuracy weighted, 

macro precision, macro recall, and macro F1-score, is formalized in Algorithm 4. 
 

Algorithm 4. Computing performance metrics 
Input: Confusion matrix CM of shape (K, K), where K = 5 classes 

Output: Balanced Accuracy Weighted, Macro Precision, Macro Recall, Macro F1-Score 

 

1. Initialize: total_weight = 0, weighted_accuracy_sum = 0 

2. Initialize: precision_sum = 0, recall_sum = 0 

3. for k = 1 to K do 

    a. TPk ← CM[k][k] 

    b. FPk ← sum(CM[:,k]) - TPk 

    c. FNk ← sum(CM[k,:]) - TPk 

    d. Total_rowk ← sum(CM[k,:]) 

    e. wk ← Total_rowk 

    f. total_weight ← total_weight + wk 

    g. precisionk ← TPk / (TPk + FPk) 

    h. recallk ← TPk / (TPk + FNk) 

    i. weighted_accuracy_sum ← weighted_accuracy_sum + (TPk * wk / Total_rowk) 

    j. precision_sum ← precision_sum + precisionk 

    k. recall_sum ← recall_sum + recallk 

4. Balanced Accuracy Weighted ← weighted_accuracy_sum / (K * total_weight) 

5. Macro Precision ← precision_sum / K 

6. Macro Recall ← recall_sum / K 

7. Macro F1 ← (2 * Macro Precision * Macro Recall) / (Macro Precision + Macro Recall) 

8. Return Balanced Accuracy Weighted, Macro Precision, Macro Recall, Macro F1 

 

 

3. RESULTS AND DISCUSSION 

This section presents and analyzes the outcomes of the experimental workflow described in  

section 2. The discussion encompasses data acquisition, preprocessing, data segmentation for training and 

testing, and the effects of varying batch sizes and segment lengths. Additionally, performance evaluations are 

carried out using the metrics defined in (2)–(7). 

 

3.1.  Data collection and pre-processing 

Figure 6 illustrates the time-series sensor data recorded from Subject-7, capturing three activity 

classes and eight distinct measurements. Among these, the energy accumulation (E) data is included solely for 

visualization purposes and is not used as a model feature. The stop and forward drive (drove) activities are not 

depicted in this figure. In the stop activity, sensor readings, especially from the accelerometer, exhibit minimal 

fluctuation, indicating the vehicle is stationary. Electrical parameters such as current (I), power (P), and motor 

speed drop to near zero, while the voltage (V) remains constant. These characteristics serve as effective 

indicators for the stop condition. In contrast, the forward driving activity is inferred through changes in 

acceleration followed by braking sequences. An example can be seen when the motor is accelerated prior to 

braking. During such events, increases in current and power values signal the onset of acceleration. 

The left and right turning activities produce similar dynamic patterns across the same set of sensors, 

making visual differentiation challenging. As shown in Figure 6, for instance, the (current, left) and (current, 

right) plots display nearly identical signal shapes—any perceived differences are primarily due to differences 

in axis scaling. On the other hand, the braking activity demonstrates clearer distinguishing features. For 

instance, the braking phase begins after the vehicle accelerates to approximately 60 km/h. Braking reduces 

the speed to around 20 km/h, followed by another acceleration phase. These transitions are clearly observable 

through rising current and power values, indicative of motor activity. 

Figure 7 provides an overview of sample distributions per subject and per activity. Each subject 

performed every activity continuously for approximately three minutes. Given the embedded system's 

effective sampling rate of 3.33 Hz, each activity yields approximately 600 samples per subject, as shown in 

Figure 7(a). Aggregating data from all 10 subjects results in a dataset of approximately 6,000 samples, as 

illustrated in Figure 7(b). 

 

3.2.  Data slicing for training and testing 

The classification task involves five activity classes derived from time-series data. From the 

preprocessing stage, a total of 30568 data points, each consisting of seven features, were transformed into 

overlapping segments using sliding windows. These segments were constructed with time-steps n=25, 51, 75, 
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and a stride of two time-steps. As a result, the respective segment shapes formed were (15272, 7, 25), (15259, 

7, 51), and (15247, 7, 75). The dataset was subsequently split into training (56%), validation (14%), and 

testing (30%) sets for model evaluation. 

 

 
 Brake  Left  Right  

A
cc

el
er

o
m

et
er

 A
X

, 
A

Y
, 
A

Z
 

   

C
u
rr

en
t=

I 

   

V
o
lt

ag
e 

(V
),

 p
o
w

er
 (

P
),

 e
n
er

g
y
 

(E
) 

   

S
p
ee

d
 

   

 

Figure 6. Sensor data for three activities from subject-7 (the x-axis (ID) represents the sampling index, while 

the y-axis shows normalized sensor values) 
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Figure 7. Number of samples and activities; (a) per subject and (b) per activity 
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3.3.  Batch size 

Two dynamic batch size scheduling techniques were evaluated: MSBU and MSBD. Figures 8 and 9 

illustrate the training and validation loss and accuracy trends over 120 epochs for MSBU and MSBD, 

respectively. In the MSBU method (Figure 8), where the batch size increases progressively from 32 to 1024, 

the training loss rapidly decreases, and accuracy rises within the initial 20 epochs. This improvement 

continues steadily as the batch size increases, demonstrating effective optimization. Conversely, the MSBD 

method (Figure 9), which begins with a batch size of 1024 and decreases stepwise, shows limited 

improvement in training performance during the initial epochs. Notable gains in accuracy only emerge once 

the batch size reaches 512 or lower. Overall, MSBU consistently outperforms MSBD in both training and 

validation accuracy across the 120-epoch run. 
 

 

 
 

Figure 8. Training and validation performance for MSBU (batch size: 32 to 1024) 
 
 

 
 

Figure 9. Training and validation performance for MSBD (batch size: 32 to 1024) 
 

 

Additionally, two static batch size configurations 32 and 1024 were tested as baselines. Performance 

comparisons are summarized in Table 2. MSBU achieved the highest macro F1-score of 0.9873, 

outperforming both MSBD and static batch experiments. Specifically, the F1-score improvements of MSBU 

over MSBD and static (32, 1024) are 0.0377, 0.0069, and 0.2123, respectively. 
 
 

Table 2. Performance metrics for various batch size configurations (total epochs=120) 
Experiment 

batch sizes 
Accuracy 

Macro average 

precision 

Macro average 

recall 

Macro average 

F1-score 

Total training 

time (s) 

Inference time 

(ms) 

MSBU 0.9873 0.9873 0.9873 0.9873 970 19 
MSBD 0.9493 0.9502 0.9492 0.9496 988 20 

32120 0.9803 0.9809 0.9805 0.9804 1786 20 
1024120 0.7786 0.8181 0.7796 0.7750 571 20 

3220 is the sizes of batches and epochs during the training are 32 and 20, respectively; MSBU is 3220, 6420, 12820, 25620, 51220, and 

102420; and MSBD is 102420, 51220, 25620, 12820, 6420, and 3220. 
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Training durations for MSBU and MSBD are similar; however, MSBU achieves comparable 

accuracy to the static batch size of 32 while reducing training time by approximately 1.84 times. Notably, 

inference time remains stable at ~20 ms across all configurations, as it depends more on model architecture 

and segment size than on training batch size. Thus, MSBU is a favorable strategy for achieving both high 

accuracy and reduced training overhead. Moreover, the MSBU method surpassed the HAR baseline in [27] 

by a margin of 0.0253 in F1-score, reinforcing its effectiveness. 

 

3.4.  Impact of segment length (N time-steps) 

The segment size, or time-step length N, functions as a critical hyperparameter in LSTM models for 

capturing temporal dependencies. Table 3 presents the classification performance for segment sizes N=25, 

51, and 75, where increasing N leads to consistently higher accuracy and F1-scores. As expected, longer 

segments enhance the LSTM's memory of past events, which improves classification performance. However, 

this also increases training and inference times. The optimal segment length must therefore balance 

performance requirements and computational constraints. 
 
 

Table 3. Performance metrics for varying segment lengths using MSBU 
Experiment N step 

segment size 
Accuracy 

Macro average 

precision 

Macro 

average recall 

Macro average 

F1-score 

Total training 

time(s) 

Inference 

time (ms) 

25 0.9603 0.9612 0.9596 0.9602 382 8 

51 0.9760 0.9760 0.9757 0.9757 654 14 

75 0.9873 0.9873 0.9873 0.9873 970 19 

 

 

Confusion matrices for each segment length are depicted in Figure 10. These matrices highlight 

classification tendencies and reveal that the most frequent misclassifications occur between left and right 

turning activities. This observation aligns with the earlier analysis in Figure 6, where sensor signals for these 

classes appeared highly similar. Error counts for segment lengths of 25, 51, and 75 are 126, 87, and 45 

samples, respectively, indicating that larger segment lengths significantly reduce class confusion.  

Figures 10(a) to (c) show the results of experiments with N of 25, 51, and 75 respectively. 
 

 

  
(a) (b) 

  

 
(c) 

 

Figure 10. Confusion matrix for segment sizes; (a) 25, (b) 51, and (c) 75 with batch size from 32 to 1024 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Driver activity recognition using deep learning based on multi-step batch size up (Darmawan Utomo) 

3753 

The software for data acquisition on the ESP32 microcontroller was developed using the Arduino 

IDE. Model training and evaluation were conducted on a machine equipped with an Intel i7-4720HQ 

processor and 16 GB RAM, with GPU acceleration disabled. The experimental pipeline utilized the 

following software libraries and frameworks: Keras, TensorFlow, Jupyter Notebook, Matplotlib, and Scikit-

learn, along with their supporting APIs. 

 

 

4. CONCLUSION 

This study successfully developed a driver activity recognition system for electric motorbikes using 

a self-constructed dataset comprising data from 10 subjects. The dataset includes seven sensor features: 

three-axis acceleration (ax, ay, and az), motor speed, voltage, current, and electric power, all recorded 

through an embedded EDR system. The classification task targets five distinct driver activities and is 

implemented using an LSTM neural network. 

The impact of batch size scheduling and segment (window) length on model performance was 

systematically investigated. Three batch size strategies including MSBU, MSBD, and fixed batch sizes were 

evaluated. Results demonstrate that MSBU significantly accelerates training, achieving a 1.84× reduction in 

training time compared to a fixed small batch size, while maintaining high classification performance. 

Furthermore, experiments with varying segment lengths show that longer sequences lead to 

improved recognition accuracy and F1-score. Specifically, a segment length of 75 time steps yielded the 

highest performance, with both accuracy and macro F1-score reaching 0.9873. These findings highlight the 

importance of dynamic batch sizing and appropriate temporal windowing in optimizing LSTM-based activity 

recognition systems for electric motorbike applications. 

Despite its effectiveness in enabling real-time data acquisition and activity recognition on embedded 

platforms, DARSEM has several limitations. First, due to the computational constraints of the ESP32 

microcontroller, model training cannot be conducted on-device, limiting the system to offline training and 

pre-deployed inference only. Additionally, the data labeling process depends on manual input via buttons and 

joystick controls, which introduces the possibility of human error and inconsistent timing during annotation. 

The dataset itself, while collected from real driving scenarios, is limited in size and diversity, comprising 

only ten participants and a specific set of terrain conditions, thus potentially affecting the generalizability of 

the trained model. Furthermore, the system has been developed specifically for electric motorbikes, and its 

applicability to other vehicle types may require significant hardware and software adaptation. These 

limitations suggest avenues for future work, including more automated labeling mechanisms, broader data 

collection efforts, and hardware-agnostic system designs to enhance scalability and performance. 

 

 

ACKNOWLEDGMENTS 

The authors extend heartfelt gratitude to the Directorate of Research and Community Service at 

Satya Wacana Christian University for their financial support. 

 

 

FUNDING INFORMATION 

This research received financial support from the Directorate of Research and Community Service 

at Satya Wacana Christian University. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT  

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  
 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Darmawan Utomo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

Natanael Indria 

Prambodo 

 ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓    

Budihardja Murtianta ✓         ✓  ✓  ✓ 

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 3741-3755 

3754 

CONFLICT OF INTEREST STATEMENT 

The authors declare that they have no conflict of interest. 

 

 

DATA AVAILABILITY 

The data that support the findings of this study are available from the corresponding author, [initials: 

DU], upon reasonable request. 

 

 

REFERENCES 
[1] D. o. D. Statistics, Land Transportation Statistics 2021. Jakarta: BPS-Statistics Indonesia: BPS-Statistics Indonesia, 2022. 

[2] J. W. Nazemetz, F. D. Bents, J. G. Perry, C. Thor, and Y. M. Mohamedshah, “Motorcycle Crash Causation Study: Final Report,” 

US Department of Transportation, Old Geogetown Pike, 2019. 
[3] World Health Organization, Global status report on road safety 2023. Geneva, Switzerland: WHO Press, 2023. [Online]. 

Available: https://www.who.int/publications/b/68866. 

[4] P. G. Wright, “The analysis of Accident Data Recorder (ADR) data in Formula 1,” SAE Technical Papers, pp. 2520–2530, 2000, 
doi: 10.4271/2000-01-3551. 

[5] A. Łebkowski, “Electric Vehicle Data Recorder,” Przegląd Elektrotechniczny, vol. 1, no. 2, pp. 286–290, 2017, doi: 

10.15199/48.2017.02.62. 
[6] T. Komamizu, T. Amagasa, and H. Kitagawa, “Visual Spatial-OLAP for Vehicle Recorder Data on Micro-sized Electric 

Vehicles,” in Proceedings of the 20th International Database Engineering & Applications Symposium on - IDEAS ’16, New 
York, NY, USA: ACM Press, 2016, pp. 358–363, doi: 10.1145/2938503.2938532. 

[7] K. Böhm, T. Kubjatko, D. Paula, and H. G. Schweiger, “New developments on EDR (Event Data Recorder) for automated 

vehicles,” Open Engineering, vol. 10, no. 1, pp. 140–146, Mar. 2020, doi: 10.1515/eng-2020-0007. 
[8] I. D. Buzdugan, S. Butnariu, I. A. Roșu, A. C. Pridie, and C. Antonya, “Personalized Driving Styles in Safety-Critical Scenarios 

for Autonomous Vehicles: An Approach Using Driver-in-the-Loop Simulations,” Vehicles, vol. 5, no. 3, pp. 1149–1166, Sep. 

2023, doi: 10.3390/vehicles5030064. 
[9] C. Ruseruka, J. Mwakalonge, G. Comert, S. Siuhi, and J. Perkins, “Road Condition Monitoring Using Vehicle Built-in Cameras 

and GPS Sensors: A Deep Learning Approach,” Vehicles, vol. 5, no. 3, pp. 931–948, Aug. 2023, doi: 10.3390/vehicles5030051. 

[10] J. Zhao, H. Ling, J. Liu, J. Wang, A. F. Burke, and Y. Lian, “Machine learning for predicting battery capacity for electric 
vehicles,” eTransportation, vol. 15, p. 100214, Jan. 2023, doi: 10.1016/j.etran.2022.100214. 

[11] G. Caruso, M. K. Yousefi, and L. Mussone, “From Human to Autonomous Driving: A Method to Identify and Draw Up the 

Driving Behaviour of Connected Autonomous Vehicles,” Vehicles, vol. 4, no. 4, pp. 1430–1449, Dec. 2022, doi: 
10.3390/vehicles4040075. 

[12] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, 

doi: 10.1162/neco.1997.9.8.1735. 
[13] S. Jawed, I. Faye, and A. S. Malik, “Deep Learning-Based Assessment Model for Real-Time Identification of Visual Learners 

Using Raw EEG,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 32, pp. 378–390, 2024, doi: 

10.1109/TNSRE.2024.3351694. 
[14] V. Hnamte, H. Nhung-Nguyen, J. Hussain, and Y. Hwa-Kim, “A Novel Two-Stage Deep Learning Model for Network Intrusion 

Detection: LSTM-AE,” IEEE Access, vol. 11, pp. 37131–37148, 2023, doi: 10.1109/ACCESS.2023.3266979. 

[15] L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep 
Learning,” IEEE Access, vol. 9, pp. 7550–7563, 2021, doi: 10.1109/ACCESS.2020.3048198. 

[16] I. D. Mienye and N. Jere, “Deep Learning for Credit Card Fraud Detection: A Review of Algorithms, Challenges, and Solutions,” 

IEEE Access, vol. 12, pp. 96893–96910, 2024, doi: 10.1109/ACCESS.2024.3426955. 
[17] N. Q. Do, A. Selamat, O. Krejcar, E. Herrera-Viedma, and H. Fujita, “Deep Learning for Phishing Detection: Taxonomy, Current 

Challenges and Future Directions,” IEEE Access, vol. 10, pp. 36429–36463, 2022, doi: 10.1109/ACCESS.2022.3151903. 

[18] T. Rahman, M. K. A. A. Al-Ruweidi, M. S. I. Sumon, R. Y. Kamal, M. E. H. Chowdhury, and H. C. Yalcin, “Deep Learning 
Technique for Congenital Heart Disease Detection Using Stacking-Based CNN-LSTM Models from Fetal Echocardiogram: A 

Pilot Study,” IEEE Access, vol. 11, pp. 110375–110390, 2023, doi: 10.1109/ACCESS.2023.3316719. 

[19] S. Iqbal et al., “Prostate Cancer Detection Using Deep Learning and Traditional Techniques,” IEEE Access, vol. 9, pp. 27085–
27100, 2021, doi: 10.1109/ACCESS.2021.3057654. 

[20] T. Zengeya and J. V. Fonou-Dombeu, “A Review of State of the Art Deep Learning Models for Ontology Construction,” IEEE 

Access, vol. 12, pp. 82354–82383, 2024, doi: 10.1109/ACCESS.2024.3406426. 
[21] S. Abbas, G. A. Sampedro, M. Krichen, M. A. Alamro, A. Mihoub, and R. Kulhanek, “Effective Hypertension Detection Using 

Predictive Feature Engineering and Deep Learning,” IEEE Access, vol. 12, pp. 89055–89068, 2024, doi: 

10.1109/ACCESS.2024.3418553. 
[22] X. Jiawei, Z. Xufang, L. Zhong, and X. Qingtao, “LSTM-DPPO based deep reinforcement learning controller for path following 

optimization of unmanned surface vehicle,” Journal of Systems Engineering and Electronics, vol. 34, no. 5, pp. 1343–1358, Oct. 

2023, doi: 10.23919/JSEE.2023.000113. 
[23] S. Bilotta, L. A. I. Palesi, and P. Nesi, “Predicting Free Parking Slots via Deep Learning in Short-Mid Terms Explaining 

Temporal Impact of Features,” IEEE Access, vol. 11, pp. 101678–101693, 2023, doi: 10.1109/ACCESS.2023.3314660. 

[24] M. Bilal, A. Khan, S. Jan, and S. Musa, “Context-Aware Deep Learning Model for Detection of Roman Urdu Hate Speech on 
Social Media Platform,” IEEE Access, vol. 10, pp. 121133–121151, 2022, doi: 10.1109/ACCESS.2022.3216375. 

[25] K. L. Tan, C. P. Lee, K. M. Lim, and K. S. M. Anbananthen, “Sentiment Analysis With Ensemble Hybrid Deep Learning Model,” 

IEEE Access, vol. 10, pp. 103694–103704, 2022, doi: 10.1109/ACCESS.2022.3210182. 
[26] Z. Yang, M. Qu, Y. Pan, and R. Huan, “Comparing Cross-Subject Performance on Human Activities Recognition Using Learning 

Models,” IEEE Access, vol. 10, pp. 95179–95196, 2022, doi: 10.1109/ACCESS.2022.3204739. 

[27] M. Milenkoski, K. Trivodaliev, S. Kalajdziski, M. Jovanov, and B. R. Stojkoska, “Real time human activity recognition on 
smartphones using LSTM networks,” in 2018 41st International Convention on Information and Communication Technology, 

Electronics and Microelectronics, MIPRO 2018 - Proceedings, Opatija, Croatia, 2018, pp. 1126–1131, doi: 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Driver activity recognition using deep learning based on multi-step batch size up (Darmawan Utomo) 

3755 

10.23919/MIPRO.2018.8400205. 
[28] S. Mekruksavanich and A. Jitpattanakul, “Smartwatch-based Human Activity Recognition Using Hybrid LSTM Network,” in 

Proceedings of IEEE Sensors, IEEE, Oct. 2020, pp. 1–4, doi: 10.1109/SENSORS47125.2020.9278630. 

[29] K. Peppas, A. C. Tsolakis, S. Krinidis, and D. Tzovaras, “Real-time physical activity recognition on smart mobile devices using 
convolutional neural networks,” Applied Sciences, vol. 10, no. 23, pp. 1–25, Nov. 2020, doi: 10.3390/app10238482. 

[30] Z. Hu et al., “A variable batch size strategy for large scale distributed dnn training,” in Proceedings - 2019 IEEE Intl Conf on 

Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and 
Communications, Social Computing and Networking, ISPA/BDCloud/SustainCom/SocialCom 2019, Xiamen, China, 2019, pp. 

476–485, doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00074. 

[31] K. W. Lu, P. Liu, D. Y. Hong, and J. J. Wu, “Efficient Dual Batch Size Deep Learning for Distributed Parameter Server 
Systems,” in Proceedings - 2022 IEEE 46th Annual Computers, Software, and Applications Conference, COMPSAC 2022, Los 

Alamitos, CA, USA, 2022, pp. 630–639, doi: 10.1109/COMPSAC54236.2022.00110. 

[32] C. Yu, Q. Li, F. Feng, and Q. J. Zhang, “Convolutional Neural Network With Adaptive Batch-Size Training Technique for High-
Dimensional Inverse Modeling of Microwave Filters,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 2, pp. 122–

125, Feb. 2023, doi: 10.1109/LMWC.2022.3208355. 

[33] T. Kidu, Y. Song, K. W. Seo, S. Lee, and T. Park, “An Intelligent Real-Time Driver Activity Recognition System Using Spatio-
Temporal Features,” Applied Sciences, vol. 14, no. 17, pp. 1–25, Sep. 2024, doi: 10.3390/app14177985. 

[34] L. Yan, L. Jia, S. Lu, L. Peng, and Y. He, “LSTM-based deep learning framework for adaptive identifying eco-driving on 

intelligent vehicle multivariate time-series data,” IET Intelligent Transport Systems, vol. 18, no. 1, pp. 186–202, Jan. 2024, doi: 
10.1049/itr2.12443. 

[35] M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” arXiv, pp. 1–17, 2020, doi: 

10.48550/arXiv.2008.05756. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Darmawan Utomo     received his B.S. degree from Satya Wacana Christian 

University in electrical engineering, in 1993, the M.Eng. degree from Asian Institute of 

Technology, in 1999, and the Ph.D. degree from National Chung Cheng University, in 2021, 

both in computer science. He is an Associate Professor with the Department of Electronics and 

Computer Engineering, from 1994 until now. His work has been funded by the State Research 

and Development, local companies, and university. He has published over seven articles in 

deep learning and electronic applications. He can be contacted at email: 

darmawan.utomo@uksw.edu. 

  

 

Natanael Indria Prambodo     received the B.S. degree in Computer Engineering 

from Satya Wacana Christian University, Salatiga, Indonesia, in 2024. In 2023, he was an 

intern as a Software Engineer. His research interests include internet of things (IoT), 

development, and deep learning. He can be contacted at email: natanael67176@gmail.com. 

  

 

Budihardja Murtianta     received the B.S. degree from Satya Wacana Christian 

University, in 1985, the M.Eng. degree from Asian Institute of Technology Thailand, in 1986, 

in Telecommunication Engineering. In 1986, he joined Satya Wacana Christian University, 

where he is currently as lecturer with the Department of Electronic and Computer 

Engineering. He also directs the Electronic and Computer Lab. He can be contacted at email: 

budihardja.murtianta@uksw.edu. 

 

https://orcid.org/0000-0002-4579-3468
https://scholar.google.com/citations?user=NECPOUsAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55847301100
https://www.webofscience.com/wos/author/record/2218809
https://orcid.org/0009-0008-0078-7487
https://scholar.google.com/citations?user=_nRqR6IAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/NSV-0871-2025
https://orcid.org/0000-0003-1565-195X
https://scholar.google.com/citations?user=DY8slyYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56596841300
https://www.webofscience.com/wos/author/record/KBC-2784-2024

