Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 3, June 2025, pp. 2429~2437
ISSN: 2302-9285, DOI: 10.11591/eei.v14i3.9099 O 2429

Strategies, characteristics, and research gaps for improving
microservices coupling design

Gintoro?, Sunardi?
!Department of Computer Science, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
2Department of Information System, BINUS Online Learning, Bina Nusantara University, Jakarta, Indonesia

Article Info ABSTRACT

Article history: The popularity of microservices architecture (MSA) has been pushed by the
. demand for scalable, maintainable, and efficient applications in the fast-

Received Aug 3, 2024 changing digital ecosystem. The objective of this study is to determine

Revised Jun 21, 2025 strategies for improving service coupling in MSA, analyze the circumstances

Accepted Mar 9, 2025 in which these strategies are successful, and recommend areas of research

that need further development for future enhancements. We employed a

systematic literature review (SLR) and the seven research gap methodology
Keywords: developed by Miller-Bloch and Kranz to pinpoint 10 essential strategies,
such as APl gateway and domain-driven design (DDD). The results of our
study indicate that the effectiveness of each technique is contingent upon
specific design criteria for the microservices, such as the presence of

Microservices architecture
Research gaps

Servicg coupling o separate read and write operations for command query responsibility
Strategies and characteristics segregation (CQRS). To further enhance these techniques, it is crucial to
Systematic literature review address the research gaps that have been highlighted, particularly the lack of

empirical studies on long-term repercussions. This study offers theoretical
insights and practical assistance on how to improve the connection between
services, thereby enabling the development of more resilient and easily
maintainable applications based on MSA.

This is an open-access article under the CC BY-SA license.

Corresponding Author:

0

Department of Computer Science, School of Computer Science, Bina Nusantara University
KH Syahdan No. 9, Kemanggisan, Palmerah, West Jakarta, Jakarta, Indonesia
Email: gintoro@binus.ac.id

1. INTRODUCTION

The rapid evolution of the digital ecosystem has increased the demand for software systems that are
scalable, maintainable, and capable of adapting to dynamic requirements [1]. Microservices architecture
(MSA) has emerged as a prominent solution to meet these demands by enabling the decomposition of
monolithic applications into smaller, loosely coupled, and independently deployable services [2]. This
modular approach enhances scalability, fault tolerance, and team productivity, making MSA a preferred
choice for complex software systems [3].

One critical challenge in adopting MSA is managing the coupling between services. Service
coupling refers to the extent of dependencies between microservices, which directly impacts maintainability,
scalability, and system resilience [4], [5]. Low coupling enables independent development and deployment of
services, while high coupling introduces complexities that hinder these benefits [6]. Although various
strategies have been proposed to address service coupling, practitioners often face challenges in identifying
and implementing the most suitable strategies for their specific contexts [7].

Existing studies offer valuable insights into strategies for improving service coupling in MSA [8].
For instance, Vural and Koyuncu [9] explored the use of domain-driven design (DDD) for modularity

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

2430 O3 ISSN: 2302-9285

enhancement, while Bogner et al. [10] emphasized the role of API gateways in reducing interdependencies
among services. Similarly, Ntentos et al. [11] provided a model-based evaluation of coupling-related
practices. However, a comprehensive synthesis integrating these strategies with specific design
characteristics remains absent, and significant research gaps persist in evaluating their long-term
effectiveness and scalability.

The existence of numerous strategies makes possible some potential research gaps that, if filled,
might be further refined. It is essential to identify these gaps so that the strategies are effective and put into
place with the unique challenges that MSA applications bring. The present research will try to address this
gap by looking at the following research questions:

RQ1: What strategies can be employed to improve the coupling in service design based on MSA?

RQ2: Under what specific conditions or characteristics in microservice design can the strategies identified in
RQ1 be effectively employed?

RQ3: How can the strategies established in RQ1 be improved by examining the existing research gaps in the field?

This study addresses these gaps by systematically analyzing strategies for improving service coupling,
identifying conditions under which these strategies are effective, and highlighting research areas requiring
further exploration. Using a systematic literature review (SLR) guided by Kitchenham’s methodology [12] and
Miller-Bloch and Kranz’s seven research gap framework [8], [13], this research provides theoretical and
practical insights for software architects and researchers. The contributions of this paper are as follows:

a. ldentification of ten key strategies for improving service coupling in MSA.

b. Analysis of specific microservice design characteristics that enhance the applicability of these strategies.

c. A comprehensive gap analysis to highlight areas requiring further research, offering directions for future
studies.

The structure of this paper is as follows: section 2 reviews the existing literature and method used in
this study. Section 3 presents the findings, including identified strategies and their associated conditions.
Section 4 discusses the implications of the findings, identifies research gaps, and suggests improvements.
Finally, section 5 concludes the study and outlines potential future research directions.

2. METHOD

This study employs a two-stage methodology designed to systematically analyze strategies for
improving service coupling in MSA and identify areas requiring further research. The methodology
integrates an SLR based on Kitchenham’s framework [12] and the seven research gap methodology
developed by Miller-Bloch and Kranz [8], [13]. These approaches ensure a comprehensive understanding of
existing strategies, their applicability, and research gaps in the field. The methodology in this study is
illustrated in the diagram blocks shown in Figure 1. The following sections will provide a detailed
description of each methodology.

RQ1: What strategies can be employed to RQ2: Under what specific conditions or RQ3: How can the strategies established in RQ1
improve the coupling in service design characteristics in microservice design can the be improved by examining the existing research

based on MSA? strategies identified in RQ1 be effectively employed? gaps in the field?

1. Systematic Literature Review (SLR) 2. Seven Research Gaps

= Specify Research Questions: * Identify Evidence Gaps:
Generating search strings based on RQ1 Compare findings to identify contradictions and inconsistencies.
and RQ2. * Identify Knowledge Gaps:

= Develop Review Protocol: Identify areas with limited or no research.
Inclusion and exclusion criteria. « Identify Practical-Knowledge Conflict Gaps:

= |dentify Relevant Research: Compare academic findings with real-world practices.

o Running the search string in the Identify Methodological Gaps:
academic digital library database. Evaluate the limitations of current methodologies and suggest alternatives.

Identify Empirical Gaps:

Check for lack of empirical validation and propose necessary empirical studies.
Identify Theoretical Gaps:

Identify areas where theoretical development is weak or conflicting.

o Identify the relevant research based on
the inclusion and exclusion criteria.
Extract Required and Synthesize Data:
e Extract the data from the research based 3 L
Synthesize Findings:

on the data extraction form. c lidate all identified int hensi N
. Synthesize the data to answer qu and onsolidate all identitied gaps Into a comprenhensive report.

RQ2.
Service coupling strategies that can be improved

Figure 1. Research method block diagram

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025; 2429-2437

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 2431

2.1. Systematic literature review
The SLR method was adopted to synthesize existing knowledge on strategies for improving service
coupling and their associated design characteristics. This process involved the following steps [12]:

2.1.1. Specify research questions

The SLR process will begin by determining the research questions based on the issues presented
above. The research questions used in this stage are aimed at obtaining answers to the issues of identifying
strategies for improving service coupling and the characteristics of service design that can be enhanced with
these strategies. Based on these two factors, the following research questions are formulated:
RQ1: What strategies can be employed to improve the coupling in service design based on MSA?
RQ2: Under what specific conditions or characteristics in microservice design can the strategies identified in
RQ1 be effectively employed?

2.1.2. Develop review protocol

The next step of the SLR will involve compiling a review protocol that will serve as a reference for
selecting articles found in the academic digital library. This protocol is designed to apply inclusion and
exclusion criteria in determining which articles will be further analyzed. These criteria are developed based
on the aim of addressing the two research questions mentioned above. Table 1 presents a comprehensive list
of criteria for inclusion and exclusion that should be applied.

Table 1. Article selection criteria
Inclusion criteria Exclusion criteria
11. Studies explicitly discuss strategies to enhance service E1. Studies are not written in English.
coupling in microservices.
12. Studies related to the characteristics of service design can E2. Studies are editorials, books, articles, opinions, or

be enhanced by using the strategy found above. technical reports.
13. Articles published within the last 5 years to ensure E3. Studies not directly related to microservices or service
relevance. coupling improvement strategy.

2.1.3. Identify relevant research

A comprehensive search was conducted across five academic databases: IEEE Xplore, Springer
Link, ScienceDirect, Wiley Online Library, and ACM Digital Library. The search string used was:
(“Improving” OR “Enhancing” OR “Optimizing” OR “Strategy”) AND “Coupling” AND “Microservice*”.
Table 2 displays the results from this third step. The search string yielded 431 articles from five academic digital
libraries. After reviewing the abstracts and selecting articles based on the selection criteria in Table 1, we
identified 32 articles as potential candidates for further evaluation. Upon careful analysis of the specifics of each
article based on their respective results, we have selected 18 articles that discuss strategies and their service
design characteristics for further evaluation. This article will go to the next step, information extraction.

Table 2. Digital library search result

No. Academic digital library Found Candidate Selected
1. |EEE digital library (http://ieeexplore.ieee.org) 106 7 5
2. Springer link (http:/link.springer.com) 93 8 5
3. ScienceDirect (http://www.sciencedirect.com) 83 10 4
4. Willey online library (https://onlinelibrary.wiley.com) 44 5 3
5. ACM digital library (http://portal.acm.org) 105 2 1
Total articles 431 32 18

2.1.4. Extract required and synthesize data

The fourth step involves extracting and synthesizing data, which includes collecting data from
selected studies using standardized forms, analyzing and integrating data to identify patterns and trends that
will go a long way in addressing the research questions, and giving a well-rounded understanding of the topic
under review. The information extraction method will utilize the form depicted in Table 3. Each article will
extract information based on the information structure outlined in Table 3.

Table 3. Data extraction form

Data field Notes
F1. Title and author of the document. The author's credibility.
F2. Service coupling improvement strategy. Related with RQL1.

F3. Characteristics from the service design that can be improved with the strategy. Related with RQ2.

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

2432 O3 ISSN: 2302-9285

Key data was extracted from the selected studies to identify recurring themes and trends, providing
insights into strategies for improving service coupling. This process involves organizing the extracted
information into Tables 4 to 6 to ensure clarity and structure. Table 4 presents an overview of the identified
strategies for service coupling improvement, along with a summary of their characteristics and relevance.
Each strategy is aligned with its respective microservices design characteristic to highlight its contextual
applicability. This information is located in Tables 5 and 6, which summarize the findings on research gaps
and are categorized according to the seven research gap framework. These gaps include evidence gaps,
practical knowledge gaps, and methodological gaps. This categorization helps provide actionable directions
for future research and highlights areas that require further empirical validation.

Table 4. List of strategies to enhance service coupling

No. Strategy

Description

Impact on coupling

Related studies

1. API gateway

2. Command query
responsibility
segregation (CQRS)

3. DDD

4. Saga pattern

5. Eventsourcing

6. Strangler application
pattern

7. Chain pattern

8. Fan (distributed)
pattern

9. Balanced (shared
data) pattern

10. Adapter
microservices pattern

Centralizes routing, load
balancing, and cross-cutting
concerns such as security and
monitoring.

Separates read and write
operations into different
models: commands to update
data and queries to read data.
Divides the software into
bounded contexts, each
representing a specific part of
the business domain.
Maintains consistency across
distributed services by using
compensating transactions.
Stores all changes to the
application state as a sequence
of events.

Incrementally replaces parts of
a legacy system with new
microservices.

Arrange components in a
pipeline layout, with each
service processing data and
passing it to the next.

All clients establish many-to-
one relationships with a central
database server.

Each service maintains its own
database but allows data
sharing among multiple
services.

Creates adapter services that act
as intermediaries between
microservices and legacy
systems or APIs.

Provides a single entry point for client
requests, reducing direct client-to-
microservice coupling and centralizing
cross-cutting concerns.

Simplifies design by decoupling read and
write operations, facilitating independent
evolution, and reducing service coupling.

Ensures each microservice has a well-
defined scope and responsibility, reducing
dependencies and enhancing modularity.

Ensures system consistency without tightly
coupling services, allowing for reversible
operations and reducing dependency.
Reduces the need for complex transactions
and database locks, improving service
independence and reliability.

Ensures each new microservice can be
developed with loose coupling, reducing
risk and disruption associated with large-
scale refactoring.

Establishes clear one-to-one relationships,
minimizes dependencies, and enhances
modularity.

Centralizes data management, reduces inter-
service dependencies, and simplifies data
access.

Reduces the need for direct service
interactions, minimizing tight coupling and
improving system robustness.

Isolates legacy system dependencies within
adapter services, allowing new
microservices to be developed and deployed
independently.

[4], [7], [10],

[14]-[17]

[18]-[21]

[9], [21]-[23]

[20], [24], [25]

[10], [19], [20]

[22], [26]

[27]

[27]

[27]

[22]

2.2. Seven research gaps

The identification of research gaps is a systematic process that consists of steps with the aim of
ensuring all-around and proper detection of areas where further research is needed. The steps described in
Table 7 present a description of the inputs, processes, and outputs derived from the identification of research
gaps based on the developed framework of Miuller-Bloch and Kranz [8], [13]. Each strategy identified
through the SLR was analyzed using this framework to uncover gaps and opportunities for further research.
The identified gaps were synthesized into actionable recommendations to guide future studies and improve
the practical applicability of service coupling strategies.

2.3. Method overview

The combined application of SLR and the seven research gap methodology ensures a holistic
approach to understanding service coupling in MSA. The SLR establishes a robust foundation of existing
strategies, while the research gap analysis highlights deficiencies and areas for innovation. The methodology
enables both theoretical insights and practical recommendations, contributing to the advancement of MSA-
based system design.

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025; 2429-2437

Bulletin of Electr Eng & Inf

ISSN: 2302-9285

O 2433

Table 5. Condition or characteristics of service design that can be improved with this strategy

No. Strategy Conditions/characteristics Impact

1. APlgateway When clients need to interact with multiple Centralized routing reduces client-to-
microservices, managing multiple API calls and tokens. microservice coupling and simplifies cross-

cutting concerns like security and logging.

2. CQRS Distinct read and write operations, high concurrency, Simplifies design by decoupling read and write
need for independent scaling of read/write, complex operations, facilitating independent evolution,
business logic. and reducing service coupling.

3. DDD Complex business domains require clear modeling of Ensures well-defined service boundaries,
subdomains and interactions, as well as migration from reduces dependencies, and enhances modularity
monolithic to MSA. by focusing on core business capabilities.

4. Saga pattern Transactions spanning multiple services require a Ensures system consistency without tightly
sequence of operations that are consistent over time and coupling services, allowing for reversible
need reversible operations. operations and reducing dependency.

5. Event Frequent state changes, complex business logic, inter- Reduces the need for complex transactions and

sourcing service communication overhead, data recovery and database locks, improving service independence
consistency needs, asynchronous processing. and reliability.

6. Strangler Incremental replacement of legacy system parts with Ensures new microservices are developed with
application microservices, minimizing risk and disruption during loose coupling, reducing risk and allowing for
pattern transition. continuous improvement.

7. Chain pattern ~ Strict order of operations, minimal shared state, Establishes clear one-to-one relationships,
independent processing steps, clear input/output minimizes dependencies, and enhances
contracts. modularity.

8. Fan High data consistency requirements, single source of Centralizes data management, reduces inter-
(distributed) truth, simplified data access, reduced direct service service dependencies, and simplifies data access.
pattern interactions, and scalability needs.

9. Balanced High read/write operations, data synchronization needs, Reduces the need for direct service interactions,
(shared data) scalability requirements, overlapping data minimizing tight coupling and improving system
pattern requirements, and avoidance of single points of failure. robustness.

10. Adapter Interaction with legacy systems or external services Isolates legacy system dependencies within

microservices
pattern

using different protocols and incremental migration of
functionalities.

adapter services, allowing new microservices to
be developed and deployed independently.

3. RESULT AND DISCUSSION

This section presents the findings of the study, including the strategies identified to improve service
coupling in MSA, the conditions under which these strategies are most effective, and a critical analysis of
research gaps. Each subsection aligns with the research questions outlined in the method.

3.1. Strategies to enhance service coupling (RQ1)

A comprehensive literature analysis was undertaken to investigate ways that might be employed to
improve the service coupling of applications based on MSA, which addresses the first study question. The
review identified several ways that help enhance service coupling in MSA. Table 4 provides a concise
summary of each strategy, including its description, its effect on coupling, and the relevant papers associated
with it. The list in Table 4 is arranged in descending order based on the frequency of studies mentioning each
strategy. Each strategy addresses specific aspects of service coupling, providing software architects with
multiple options to tailor their solutions based on application requirements. The findings indicate that
combining multiple strategies results in optimal outcomes.

3.2. Conditions or characteristics of service design that can be improved by identified strategies (RQ2)

In order to answer the second research question, which focuses on identifying the specific
conditions or characteristics in microservice design that are suitable for the effective implementation of the
strategies mentioned in RQ1, we examine the circumstances in which each strategy can be utilized to
enhance service coupling. The strategies suggested in RQ1 are aligned with specific MSA design
characteristics that augment their efficacy. The list of strategies and their MSA design characteristics can be
seen in Table 5. By aligning strategies with specific characteristics, this study provides actionable guidance
for practitioners, ensuring optimal implementation and results.

3.3. Addressing research gaps in enhancing service coupling strategies (RQ3)

The third research question is how to enhance the strategies identified in RQ1 by analyzing the
current gaps in the area. We will answer this RQ by utilizing the seven research gap framework developed by
Muller-Bloch and Kranz. This framework facilitates the identification and classification of deficiencies in the
existing body of literature, hence creating possibilities for future study and advancements in the methods
used to enhance the interconnection of services in MSA. Miller-Bloch and Kranz have identified seven
different types of research gaps [8], [13]: i) evidence gap; ii) knowledge gap; iii) practical-knowledge gap;
iv) methodological gap; v) empirical gap; vi) theoretical gap; and vii) population gap.

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

2434 O3 ISSN: 2302-9285

We examine how these gaps relate to each of the ten strategies identified in RQ1, emphasizing areas
that could be improved. The gap analysis for each strategy can be seen in Table 6. Addressing these gaps will
significantly advance the understanding and practical application of these strategies, making MSA-based
systems more resilient and maintainable.

Table 6. Gap analysis from each strategy

No. Strategy Identified research gaps Improvement opportunities
1. APlgateway Evidence gap: limited empirical studies on long- Conduct longitudinal studies to assess performance
term performance and scalability impacts. and scalability over time.
Methodological gap: lack of standardized methods Develop standardized methods for evaluating
for evaluating security effectiveness. security in API gateways.
2. CQRS Practical-knowledge gap: limited guidelines on Develop practical guidelines and best practices for
integrating cqrs with existing monolithic systems. integrating CQRS into legacy systems.
Theoretical gap: lack of a unified theory on cqrs's Formulate a unified theoretical framework for
impact on system complexity. CQRS.
3. DDD Knowledge gap: insufficient understanding of Conduct studies on DDD's impact on team
ddd's impact on team collaboration and dynamics and collaboration.
communication. Population gap: limited studies in ~ Explore the application of DDD in small and
non-enterprise environments. medium-sized enterprises (SMES).
4. Saga pattern Empirical gap: few real-world case studies Collect and analyze real-world case studies to
demonstrating saga pattern's effectiveness. validate the Saga Pattern.
Methodological gap: lack of tools for automated Develop tools for automating compensating
compensating transaction management. transaction management.
5. Event Evidence gap: limited data on event sourcing's Perform empirical studies to measure latency and
sourcing impact on system latency and throughput. throughput impacts.
Theoretical gap: incomplete theories on event Develop comprehensive theories on event sourcing's
sourcing's role in system evolution. role in system evolution.
6. Strangler Practical-knowledge gap: limited practical Create detailed guidelines for managing the
application guidance on managing transition phases transition from monolithic to microservices.
pattern Population gap: Few studies have been done in Investigate the pattern's application in various
industries other than finance and e-commerce. industries.
7. Chainpattern ~ Methodological gap: lack of standardized Develop standardized benchmarking methods for
benchmarking methods. evaluating the Chain Pattern.
Theoretical gap: incomplete theoretical models on Formulate theoretical models on fault tolerance in
the impact of chaining on fault tolerance. chained services.
8. Fan Evidence gap: sparse empirical evidence on Conduct empirical research to determine scalability
(distributed) scalability limits. limits.
pattern Practical-knowledge gap: insufficient guidelines Provide comprehensive guidelines for effective load
on balancing load across distributed services. balancing in distributed systems.
9. Balanced Empirical gap: limited real-world applications Document and analyze real-world applications of
(shared data) demonstrating the pattern's effectiveness. the Balanced Pattern.
pattern Knowledge gap: inadequate understanding of data Research data synchronization challenges and
synchronization challenges. propose solutions.
10. Adapter Theoretical gap: lack of theories explaining the Develop theories on the long-term impact of
microservices long-term impact of adapters on system evolution. adapters.
pattern Population gap: few studies on the pattern's Conduct studies on the pattern's application in
application in emerging markets. emerging and developing markets.
Table 7. Seven research gaps from Miller-Bloch and Kranz
No. Gap Input Process Output

List of evidence gaps where findings
are contradictory.

1. Identify evidence gaps Synthesized literature Compare findings to identify
contradictions and
inconsistencies.

Identify areas with limited or
no research.

Compare academic findings
with real-world practices.
Evaluate the limitations of
current methodologies and
suggest alternatives.

Check for lack of empirical

2. Identify knowledge
gaps

3. Identify practical-
knowledge conflict gaps

4. Identify methodological
gaps

Synthesized literature List of knowledge gaps highlighting
unexplored areas.

List of practical-knowledge conflict
gaps.

List of methodological gaps needing
innovative approaches.

Practitioner interviews,
industry reports
Research methods used
in existing studies

5. Identify empirical gaps Theoretical models and

List of empirical gaps needing

hypotheses validation and propose validation.
necessary empirical studies.
6. Identify theoretical gaps Existing theories and Identify areas where List of theoretical gaps needing
models theoretical development is refinement.
weak or conflicting.
7. ldentify population gaps Demographic analysis ldentify underrepresented The list of population gaps needs to

of study populations
Lists of various gaps
identified

groups in research.
Consolidate all identified gaps
into a comprehensive finding.

include broader demographics.
Comprehensive findings of research

gaps.

8. Synthesize findings

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025; 2429-2437

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 2435

3.4. Discussion
The results of this study demonstrate that service coupling in MSA can be effectively managed
through a combination of well-defined strategies. Each strategy addresses specific aspects of coupling,
offering flexible solutions for varying application needs. For example:
a. APl gateway centralizes client interactions, enhancing modularity but introducing challenges like
potential bottlenecks.
b. CQRS simplifies concurrent operations yet increases the complexity of system design.
c. DDD ensures well-defined boundaries but requires substantial initial modeling efforts.
These findings align with and build upon existing studies. For instance:
a. Vural and Koyuncu [9] emphasized DDD's role in modularity, which is corroborated here but expanded
to highlight its impact on team collaboration.
b. Ntentos et al. [11] stressed the importance of reducing interdependencies, which this study integrates into
a broader strategic framework.
The limitations of individual strategies underscore the need for further research:
a. The long-term scalability impacts of API gateway remain underexplored.
b. Tools for automating compensating transactions in the Saga Pattern are lacking.
c. The effectiveness of strategies like event sourcing in different contexts requires empirical validation.
Addressing these gaps is crucial for advancing the field. Future research should prioritize the
development of standardized evaluation methods, empirical studies on scalability and performance, and
practical tools to simplify strategy implementation.

4. CONCLUSION

This study investigated strategies to improve service coupling in MSA, identified the conditions
under which these strategies are most effective, and analyzed research gaps requiring further exploration. The
findings offer theoretical insights and practical recommendations for software architects and researchers,
providing a roadmap for advancing MSA-based system design. The study identified ten critical strategies,
including API Gateway, CQRS, DDD, saga pattern, and event sourcing. These strategies enhance modularity,
scalability, and maintainability by addressing service coupling challenges. Each strategy’s effectiveness
depends on specific design characteristics, such as high concurrency environments for CQRS or complex
transaction scenarios for the Saga Pattern. The seven research gap framework revealed areas requiring further
study, such as the long-term performance impacts of APl gateway, the scalability limitations of event
sourcing, and the lack of automated tools for compensating transactions in the Saga Pattern.

The findings hold immediate practical relevance for software architects, who can align strategies
with system design characteristics to optimize coupling in MSA-based systems, enabling more scalable and
maintainable architectures. For researchers, this study provides a structured foundation for exploring
unresolved issues, including conducting empirical studies to validate the scalability and performance of
coupling strategies, developing standardized evaluation metrics and tools for automating complex strategies
and expanding the applicability of strategies to non-enterprise and emerging market contexts. While this
study provides a comprehensive analysis of coupling strategies, its findings are primarily based on existing
literature. Empirical validation of the proposed strategies and their integration into diverse industries remains
limited. Addressing these gaps will confirm the generalizability and practical applicability of the findings.

To further advance the field, future research should prioritize developing automated tools and
frameworks for simplifying the implementation of identified strategies, conducting longitudinal studies to
evaluate the long-term scalability and performance of strategies like API gateway and event sourcing, and
expanding the study of strategies’ impacts on team collaboration and communication, particularly in SMEs
and emerging markets. By addressing these areas, the software engineering community can enhance the
resilience, scalability, and maintainability of MSA-based systems. This study provides a critical foundation
for such advancements, offering both theoretical contributions and practical solutions to pressing challenges
in microservices design.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Bina Nusantara University for providing the
support and resources necessary to carry out this study. We also thank the reviewers for their insightful
comments and suggestions, which have greatly contributed to improving the quality of this paper.
Additionally, we acknowledge previous research efforts in the domain of microservices design and
maintainability, which have provided a valuable foundation for this study. Lastly, we extend our appreciation
to colleagues and collaborators who offered constructive feedback and technical assistance throughout the
research process.

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

2436 O ISSN: 2302-9285

FUNDING INFORMATION
The authors state that no funding was involved in the conduct of this research. This study was
carried out independently without financial support from any funding agency, institution, or organization.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Gintoro v v v v v v v v v v v
Sunardi v v v v v v v
C : Conceptualization I : Investigation Vi : Visualization
M : Methodology R : Resources Su : Supervision
S0 : Software D : Data Curation P : Project administration
Va : Validation O : Writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
The authors state no conflict of interest. They declare that there are no known competing financial
interests or personal relationships that could have appeared to influence the work reported in this paper.

DATA AVAILABILITY

The dataset used and analyzed in this study is publicly available on Zenodo. It can be accessed at the
following link: https://doi.org/10.5281/zenodo.14462135. Researchers and practitioners can freely use the
dataset under the terms of the applicable license.

REFERENCES

[1] P. P. Tallon, M. Queiroz, and T. Coltman, “Digital-Enabled Strategic Agility: The Next Frontier,” European Journal of
Information Systems, vol. 31, no. 6, pp. 641-652, Nov. 2022, doi: 10.1080/0960085X.2022.2102713.

[2] X. Chen, M. Usman, and D. Badampudi, “Understanding and evaluating software reuse costs and benefits from industrial cases—
A systematic literature review,” Information and Software Technology, vol. 171, pp. 1-22, Jul. 2024, doi:
10.1016/j.infsof.2024.107451.

[3] A. Lercher, “Managing API Evolution in Microservice Architecture,” in Proceedings of the 2024 IEEE/ACM 46th International
Conference on Software Engineering: Companion Proceedings, Lisbon Portugal: ACM, Apr. 2024, pp. 195-197, doi:
10.1145/3639478.3639800.

[4] D. R. F. Apolinario and B. B. N. De Franga, “A method for monitoring the coupling evolution of microservice-based
architectures,” Journal of the Brazilian Computer Society, vol. 27, no. 1, pp. 1-35, Dec. 2021, doi: 10.1186/513173-021-00120-y.

[5] S. Panichella, M. Rahman, and D. Taibi, “Structural Coupling for Microservices:,” in Proceedings of the 11th International
Conference on Cloud Computing and Services Science, Science and Technology Publications, 2021, pp. 280-287, doi:
10.5220/0010481902800287.

[6] T. 1. Ramdhani and N. N. Faiza, “National archival platform system design using the microservice-based service computing
system engineering framework,” Computer Science and Information Technologies, vol. 4, no. 2, pp. 95-105, Jul. 2023, doi:
10.11591/csit.v4i2.pp95-105.

[71 A. Lercher, J. Glock, C. Macho, and M. Pinzger, “Microservice APl Evolution in Practice: A Study on Strategies and
Challenges,” Journal of Systems and Software, vol. 215, pp. 1-19, Sep. 2024, doi: 10.1016/j.jss.2024.112110.

[8] D. A. Miles, “A taxonomy of research gaps: Identifying and defining the seven research gaps,” Journal of Research Methods and
Strategies, pp. 1-15, 2017.

[91 H. Vural and M. Koyuncu, “Does Domain-Driven Design Lead to Finding the Optimal Modularity of a Microservice?,” |IEEE
Access, vol. 9, pp. 32721-32733, 2021, doi: 10.1109/ACCESS.2021.3060895.

[10] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Industry practices and challenges for the evolvability assurance of
microservices: An interview study and systematic grey literature review,” Empirical Software Engineering, vol. 26, no. 5, pp. 1-
39, Sep. 2021, doi: 10.1007/s10664-021-09999-9.

[11] E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and S. Geiger, “Assessing architecture conformance to coupling-related patterns
and practices in microservices,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 12292 LNCS, 2020, pp. 3-20, doi: 10.1007/978-3-030-58923-3_1.

[12] B. Kitchenham et al., “Systematic literature reviews in software engineering — A tertiary study,” Information and Software
Technology, vol. 52, no. 8, pp. 792-805, Aug. 2010, doi: 10.1016/j.infsof.2010.03.006.

[13] P. Muller-Bloch and J. Kranz, “A Framework for Rigorously Identifying Research Gaps in Qualitative Literature Reviews,”
International Conference on Information Systems, Dec. 2015.

[14] T. Cerny, A. S. Abdelfattah, A. A. Maruf, A. Janes, and D. Taibi, “Catalog and detection techniques of microservice anti-patterns

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025; 2429-2437

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 2437

and bad smells: A tertiary study,” Journal of Systems and Software, vol. 206, pp. 1-43, Dec. 2023, doi: 10.1016/j.jss.2023.111829.

[15] H. Michael Ayas, P. Leitner, and R. Hebig, “An empirical study of the systemic and technical migration towards microservices,”
Empirical Software Engineering, vol. 28, no. 4, pp. 1-50, Jul. 2023, doi: 10.1007/s10664-023-10308-9.

[16] D. Monteiro, P. H. M. Maia, L. S. Rocha, and N. C. Mendonga, “Building orchestrated microservice systems using declarative
business processes,” SOCA, vol. 14, no. 4, pp. 243-268, Dec. 2020, doi: 10.1007/s11761-020-00300-2.

[17] . Soldani, G. Muntoni, D. Neri, and A. Brogi, “The p TOSCA toolchain: Mining, analyzing, and refactoring microservice-based
architectures,” Software: Practice and Experience, vol. 51, no. 7, pp. 1591-1621, Jul. 2021, doi: 10.1002/spe.2974.

[18] R. Pinciroli, A. Aleti, and C. Trubiani, “Performance Modeling and Analysis of Design Patterns for Microservice Systems,” in
2023 IEEE 20th International Conference on Software Architecture (ICSA), L’Aquila, Italy: IEEE, Mar. 2023, pp. 3546, doi:
10.1109/ICSA56044.2023.00012.

[19] Y. Zhong, W. Li, and J. Wang, “Using Event Sourcing and CQRS to Build a High Performance Point Trading System,” in
Proceedings of the 2019 5th International Conference on E-Business and Applications, Bangkok Thailand: ACM, Feb. 2019, pp.
16-19, doi: 10.1145/3317614.3317632.

[20] S. Lima, J. Correia, F. Araujo, and J. Cardoso, “Improving observability in Event Sourcing systems,” Journal of Systems and
Software, vol. 181, Nov. 2021, doi: 10.1016/j.jss.2021.111015.

[21] C.E. Da Silva, Y. D. L. Justino, and E. Adachi, “SPReaD: service-oriented process for reengineering and DevOps: Developing
microservices for a Brazilian state department of taxation,” SOCA, vol. 16, no. 1, pp. 1-16, Mar. 2022, doi: 10.1007/s11761-021-
00329-x.

[22] V. Velepucha and P. Flores, “A Survey on Microservices Architecture: Principles, Patterns and Migration Challenges,” |IEEE
Access, vol. 11, pp. 88339-88358, 2023, doi: 10.1109/ACCESS.2023.3305687.

[23] F. H. Vera-Rivera, E. Puerto, H. Astudillo, and C. M. Gaona, “Microservices Backlog—A Genetic Programming Technique for
Identification and Evaluation of Microservices From User Stories,” IEEE Access, vol. 9, pp. 117178-117203, 2021, doi:
10.1109/ACCESS.2021.3106342.

[24] D. R. Matos, M. L. Pardal, A. R. Silva, and M. Correia, “uVerum: Intrusion Recovery for Microservice Applications,” |IEEE
Access, vol. 11, pp. 78457-78470, 2023, doi: 10.1109/ACCESS.2023.3298113.

[25] J. M. M. Correia, “Automated Identification of Monolith Functionality Refactorings for Microservices Migrations”. 2021.

[26] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its granularity problem: A systematic mapping study,”
Software: Practice and Experience, vol. 50, no. 9, pp. 1651-1681, Sep. 2020, doi: 10.1002/spe.2869.

[27] S. Chang, “Software Design Pattern Analysis for Micro-Service Architecture using Queuing Networks (S),” in 33rd International
Conference on Software Engineering and Knowledge Engineering, Jul. 2021, pp. 45-50, doi: 10.18293/SEKE2021-180.

BIOGRAPHIES OF AUTHORS

Gintoro @ k4 s a lecturer from Binus University, Indonesia's School of Computer
Science. He received his Computer Science degree from Bina Nusantara University in 1998.
He also received a Master of Information System degree from Bina Nusantara University,
Jakarta, in 2001. He currently serves as Educational Services Director at BINUS University,
leading two sub-business units: Sokrates Empowering School and BINUS Center. His research
interests include software engineering, software architecture, Al, educational technology, and
implementing technology in teaching and learning. He can be contacted at email:
gintoro@binus.ac.id.

Sunardi © B4 2 works as a lecturer at Binus Online Learning, which is part of Binus
University in Indonesia. He received his Computer Science degree from Bina Nusantara
University in 2004. He also received the Master's degree in Master of Information System
from Bina Nusantara University, Jakarta, in 2012. Currently, he is the CEO of a company
called Sundu.id, a startup company that provides immersive eLearning content and LMS. His
research interests include user experience, usability evaluation, ARVR, immersive learning,
and the metaverse area. He can be contacted at email: sunardi@binus.ac.id.

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

https://orcid.org/0009-0001-7142-7381
https://scholar.google.com/citations?hl=en&user=j63e9hIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57219572776
https://orcid.org/0000-0001-8628-5454
https://scholar.google.com/citations?hl=id&user=JihORJMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57220094902

