
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 3, June 2025, pp. 2429~2437

ISSN: 2302-9285, DOI: 10.11591/eei.v14i3.9099  2429

Journal homepage: http://beei.org

Strategies, characteristics, and research gaps for improving

microservices coupling design

Gintoro1, Sunardi2
1Department of Computer Science, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia

2Department of Information System, BINUS Online Learning, Bina Nusantara University, Jakarta, Indonesia

Article Info ABSTRACT

Article history:

Received Aug 3, 2024

Revised Jun 21, 2025

Accepted Mar 9, 2025

 The popularity of microservices architecture (MSA) has been pushed by the

demand for scalable, maintainable, and efficient applications in the fast-

changing digital ecosystem. The objective of this study is to determine

strategies for improving service coupling in MSA, analyze the circumstances

in which these strategies are successful, and recommend areas of research

that need further development for future enhancements. We employed a

systematic literature review (SLR) and the seven research gap methodology

developed by Müller-Bloch and Kranz to pinpoint 10 essential strategies,

such as API gateway and domain-driven design (DDD). The results of our

study indicate that the effectiveness of each technique is contingent upon

specific design criteria for the microservices, such as the presence of

separate read and write operations for command query responsibility

segregation (CQRS). To further enhance these techniques, it is crucial to

address the research gaps that have been highlighted, particularly the lack of

empirical studies on long-term repercussions. This study offers theoretical

insights and practical assistance on how to improve the connection between

services, thereby enabling the development of more resilient and easily

maintainable applications based on MSA.

Keywords:

Microservices architecture

Research gaps

Service coupling

Strategies and characteristics

Systematic literature review

This is an open-access article under the CC BY-SA license.

Corresponding Author:

Gintoro

Department of Computer Science, School of Computer Science, Bina Nusantara University

KH Syahdan No. 9, Kemanggisan, Palmerah, West Jakarta, Jakarta, Indonesia

Email: gintoro@binus.ac.id

1. INTRODUCTION

The rapid evolution of the digital ecosystem has increased the demand for software systems that are

scalable, maintainable, and capable of adapting to dynamic requirements [1]. Microservices architecture

(MSA) has emerged as a prominent solution to meet these demands by enabling the decomposition of

monolithic applications into smaller, loosely coupled, and independently deployable services [2]. This

modular approach enhances scalability, fault tolerance, and team productivity, making MSA a preferred

choice for complex software systems [3].

One critical challenge in adopting MSA is managing the coupling between services. Service

coupling refers to the extent of dependencies between microservices, which directly impacts maintainability,

scalability, and system resilience [4], [5]. Low coupling enables independent development and deployment of

services, while high coupling introduces complexities that hinder these benefits [6]. Although various

strategies have been proposed to address service coupling, practitioners often face challenges in identifying

and implementing the most suitable strategies for their specific contexts [7].

Existing studies offer valuable insights into strategies for improving service coupling in MSA [8].

For instance, Vural and Koyuncu [9] explored the use of domain-driven design (DDD) for modularity

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2429-2437

2430

enhancement, while Bogner et al. [10] emphasized the role of API gateways in reducing interdependencies

among services. Similarly, Ntentos et al. [11] provided a model-based evaluation of coupling-related

practices. However, a comprehensive synthesis integrating these strategies with specific design

characteristics remains absent, and significant research gaps persist in evaluating their long-term

effectiveness and scalability.

The existence of numerous strategies makes possible some potential research gaps that, if filled,

might be further refined. It is essential to identify these gaps so that the strategies are effective and put into

place with the unique challenges that MSA applications bring. The present research will try to address this

gap by looking at the following research questions:

RQ1: What strategies can be employed to improve the coupling in service design based on MSA?

RQ2: Under what specific conditions or characteristics in microservice design can the strategies identified in

RQ1 be effectively employed?

RQ3: How can the strategies established in RQ1 be improved by examining the existing research gaps in the field?

This study addresses these gaps by systematically analyzing strategies for improving service coupling,

identifying conditions under which these strategies are effective, and highlighting research areas requiring

further exploration. Using a systematic literature review (SLR) guided by Kitchenham’s methodology [12] and

Müller-Bloch and Kranz’s seven research gap framework [8], [13], this research provides theoretical and

practical insights for software architects and researchers. The contributions of this paper are as follows:

a. Identification of ten key strategies for improving service coupling in MSA.

b. Analysis of specific microservice design characteristics that enhance the applicability of these strategies.

c. A comprehensive gap analysis to highlight areas requiring further research, offering directions for future

studies.

The structure of this paper is as follows: section 2 reviews the existing literature and method used in

this study. Section 3 presents the findings, including identified strategies and their associated conditions.

Section 4 discusses the implications of the findings, identifies research gaps, and suggests improvements.

Finally, section 5 concludes the study and outlines potential future research directions.

2. METHOD

This study employs a two-stage methodology designed to systematically analyze strategies for

improving service coupling in MSA and identify areas requiring further research. The methodology

integrates an SLR based on Kitchenham’s framework [12] and the seven research gap methodology

developed by Müller-Bloch and Kranz [8], [13]. These approaches ensure a comprehensive understanding of

existing strategies, their applicability, and research gaps in the field. The methodology in this study is

illustrated in the diagram blocks shown in Figure 1. The following sections will provide a detailed

description of each methodology.

=

Figure 1. Research method block diagram

RQ1: What strategies can be employed to
improve the coupling in service design

based on MSA?

RQ2: Under what specific conditions or
characteristics in microservice design can the

strategies identified in RQ1 be effectively employed?

RQ3: How can the strategies established in RQ1
be improved by examining the existing research

gaps in the field?

1. Systematic Literature Review (SLR)
▪ Specify Research Questions:

Generating search strings based on RQ1
and RQ2.

▪ Develop Review Protocol:
Inclusion and exclusion criteria.

▪ Identify Relevant Research:

• Running the search string in the
academic digital library database.

• Identify the relevant research based on
the inclusion and exclusion criteria.

▪ Extract Required and Synthesize Data:
• Extract the data from the research based

on the data extraction form.

• Synthesize the data to answer RQ1 and
RQ2.

2. Seven Research Gaps
• Identify Evidence Gaps:

Compare findings to identify contradictions and inconsistencies.

• Identify Knowledge Gaps:
Identify areas with limited or no research.

• Identify Practical-Knowledge Conflict Gaps:
Compare academic findings with real-world practices.

• Identify Methodological Gaps:
Evaluate the limitations of current methodologies and suggest alternatives.

• Identify Empirical Gaps:
Check for lack of empirical validation and propose necessary empirical studies.

• Identify Theoretical Gaps:
Identify areas where theoretical development is weak or conflicting.

• Synthesize Findings:
Consolidate all identified gaps into a comprehensive report.

Service coupling strategies that can be improved

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

2431

2.1. Systematic literature review

The SLR method was adopted to synthesize existing knowledge on strategies for improving service

coupling and their associated design characteristics. This process involved the following steps [12]:

2.1.1. Specify research questions

The SLR process will begin by determining the research questions based on the issues presented

above. The research questions used in this stage are aimed at obtaining answers to the issues of identifying

strategies for improving service coupling and the characteristics of service design that can be enhanced with

these strategies. Based on these two factors, the following research questions are formulated:

RQ1: What strategies can be employed to improve the coupling in service design based on MSA?

RQ2: Under what specific conditions or characteristics in microservice design can the strategies identified in

RQ1 be effectively employed?

2.1.2. Develop review protocol

The next step of the SLR will involve compiling a review protocol that will serve as a reference for

selecting articles found in the academic digital library. This protocol is designed to apply inclusion and

exclusion criteria in determining which articles will be further analyzed. These criteria are developed based

on the aim of addressing the two research questions mentioned above. Table 1 presents a comprehensive list

of criteria for inclusion and exclusion that should be applied.

Table 1. Article selection criteria
Inclusion criteria Exclusion criteria

I1. Studies explicitly discuss strategies to enhance service
coupling in microservices.

E1. Studies are not written in English.

I2. Studies related to the characteristics of service design can

be enhanced by using the strategy found above.

E2. Studies are editorials, books, articles, opinions, or

technical reports.
I3. Articles published within the last 5 years to ensure

relevance.

E3. Studies not directly related to microservices or service

coupling improvement strategy.

2.1.3. Identify relevant research

A comprehensive search was conducted across five academic databases: IEEE Xplore, Springer

Link, ScienceDirect, Wiley Online Library, and ACM Digital Library. The search string used was:

(“Improving” OR “Enhancing” OR “Optimizing” OR “Strategy”) AND “Coupling” AND “Microservice*”.

Table 2 displays the results from this third step. The search string yielded 431 articles from five academic digital

libraries. After reviewing the abstracts and selecting articles based on the selection criteria in Table 1, we

identified 32 articles as potential candidates for further evaluation. Upon careful analysis of the specifics of each

article based on their respective results, we have selected 18 articles that discuss strategies and their service

design characteristics for further evaluation. This article will go to the next step, information extraction.

Table 2. Digital library search result
No. Academic digital library Found Candidate Selected

1. IEEE digital library (http://ieeexplore.ieee.org) 106 7 5
2. Springer link (http://link.springer.com) 93 8 5

3. ScienceDirect (http://www.sciencedirect.com) 83 10 4

4. Willey online library (https://onlinelibrary.wiley.com) 44 5 3
5. ACM digital library (http://portal.acm.org) 105 2 1

Total articles 431 32 18

2.1.4. Extract required and synthesize data

The fourth step involves extracting and synthesizing data, which includes collecting data from

selected studies using standardized forms, analyzing and integrating data to identify patterns and trends that

will go a long way in addressing the research questions, and giving a well-rounded understanding of the topic

under review. The information extraction method will utilize the form depicted in Table 3. Each article will

extract information based on the information structure outlined in Table 3.

Table 3. Data extraction form
Data field Notes

F1. Title and author of the document. The author's credibility.

F2. Service coupling improvement strategy. Related with RQ1.
F3. Characteristics from the service design that can be improved with the strategy. Related with RQ2.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2429-2437

2432

Key data was extracted from the selected studies to identify recurring themes and trends, providing

insights into strategies for improving service coupling. This process involves organizing the extracted

information into Tables 4 to 6 to ensure clarity and structure. Table 4 presents an overview of the identified

strategies for service coupling improvement, along with a summary of their characteristics and relevance.

Each strategy is aligned with its respective microservices design characteristic to highlight its contextual

applicability. This information is located in Tables 5 and 6, which summarize the findings on research gaps

and are categorized according to the seven research gap framework. These gaps include evidence gaps,

practical knowledge gaps, and methodological gaps. This categorization helps provide actionable directions

for future research and highlights areas that require further empirical validation.

Table 4. List of strategies to enhance service coupling
No. Strategy Description Impact on coupling Related studies
1. API gateway Centralizes routing, load

balancing, and cross-cutting

concerns such as security and

monitoring.

Provides a single entry point for client
requests, reducing direct client-to-

microservice coupling and centralizing

cross-cutting concerns.

[4], [7], [10],
[14]-[17]

2. Command query

responsibility

segregation (CQRS)

Separates read and write

operations into different

models: commands to update
data and queries to read data.

Simplifies design by decoupling read and

write operations, facilitating independent

evolution, and reducing service coupling.

[18]-[21]

3. DDD Divides the software into

bounded contexts, each
representing a specific part of

the business domain.

Ensures each microservice has a well-

defined scope and responsibility, reducing
dependencies and enhancing modularity.

[9], [21]-[23]

4. Saga pattern Maintains consistency across
distributed services by using

compensating transactions.

Ensures system consistency without tightly
coupling services, allowing for reversible

operations and reducing dependency.

[20], [24], [25]

5. Event sourcing Stores all changes to the
application state as a sequence

of events.

Reduces the need for complex transactions
and database locks, improving service

independence and reliability.

[10], [19], [20]

6. Strangler application
pattern

Incrementally replaces parts of
a legacy system with new

microservices.

Ensures each new microservice can be
developed with loose coupling, reducing

risk and disruption associated with large-

scale refactoring.

[22], [26]

7. Chain pattern Arrange components in a

pipeline layout, with each

service processing data and
passing it to the next.

Establishes clear one-to-one relationships,

minimizes dependencies, and enhances

modularity.

[27]

8. Fan (distributed)

pattern
All clients establish many-to-

one relationships with a central
database server.

Centralizes data management, reduces inter-

service dependencies, and simplifies data
access.

[27]

9. Balanced (shared

data) pattern
Each service maintains its own

database but allows data
sharing among multiple

services.

Reduces the need for direct service

interactions, minimizing tight coupling and
improving system robustness.

[27]

10. Adapter
microservices pattern

Creates adapter services that act
as intermediaries between

microservices and legacy
systems or APIs.

Isolates legacy system dependencies within
adapter services, allowing new

microservices to be developed and deployed
independently.

[22]

2.2. Seven research gaps

The identification of research gaps is a systematic process that consists of steps with the aim of

ensuring all-around and proper detection of areas where further research is needed. The steps described in

Table 7 present a description of the inputs, processes, and outputs derived from the identification of research

gaps based on the developed framework of Müller-Bloch and Kranz [8], [13]. Each strategy identified

through the SLR was analyzed using this framework to uncover gaps and opportunities for further research.

The identified gaps were synthesized into actionable recommendations to guide future studies and improve

the practical applicability of service coupling strategies.

2.3. Method overview

The combined application of SLR and the seven research gap methodology ensures a holistic

approach to understanding service coupling in MSA. The SLR establishes a robust foundation of existing

strategies, while the research gap analysis highlights deficiencies and areas for innovation. The methodology

enables both theoretical insights and practical recommendations, contributing to the advancement of MSA-

based system design.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

2433

Table 5. Condition or characteristics of service design that can be improved with this strategy
No. Strategy Conditions/characteristics Impact

1. API gateway When clients need to interact with multiple
microservices, managing multiple API calls and tokens.

Centralized routing reduces client-to-
microservice coupling and simplifies cross-

cutting concerns like security and logging.

2. CQRS Distinct read and write operations, high concurrency,
need for independent scaling of read/write, complex

business logic.

Simplifies design by decoupling read and write
operations, facilitating independent evolution,

and reducing service coupling.

3. DDD Complex business domains require clear modeling of
subdomains and interactions, as well as migration from

monolithic to MSA.

Ensures well-defined service boundaries,
reduces dependencies, and enhances modularity

by focusing on core business capabilities.

4. Saga pattern Transactions spanning multiple services require a
sequence of operations that are consistent over time and

need reversible operations.

Ensures system consistency without tightly
coupling services, allowing for reversible

operations and reducing dependency.

5. Event
sourcing

Frequent state changes, complex business logic, inter-
service communication overhead, data recovery and

consistency needs, asynchronous processing.

Reduces the need for complex transactions and
database locks, improving service independence

and reliability.

6. Strangler

application

pattern

Incremental replacement of legacy system parts with

microservices, minimizing risk and disruption during

transition.

Ensures new microservices are developed with

loose coupling, reducing risk and allowing for

continuous improvement.

7. Chain pattern Strict order of operations, minimal shared state,
independent processing steps, clear input/output

contracts.

Establishes clear one-to-one relationships,
minimizes dependencies, and enhances

modularity.
8. Fan

(distributed)

pattern

High data consistency requirements, single source of

truth, simplified data access, reduced direct service

interactions, and scalability needs.

Centralizes data management, reduces inter-

service dependencies, and simplifies data access.

9. Balanced

(shared data)

pattern

High read/write operations, data synchronization needs,

scalability requirements, overlapping data

requirements, and avoidance of single points of failure.

Reduces the need for direct service interactions,

minimizing tight coupling and improving system

robustness.
10. Adapter

microservices

pattern

Interaction with legacy systems or external services

using different protocols and incremental migration of

functionalities.

Isolates legacy system dependencies within

adapter services, allowing new microservices to

be developed and deployed independently.

3. RESULT AND DISCUSSION

This section presents the findings of the study, including the strategies identified to improve service

coupling in MSA, the conditions under which these strategies are most effective, and a critical analysis of

research gaps. Each subsection aligns with the research questions outlined in the method.

3.1. Strategies to enhance service coupling (RQ1)

A comprehensive literature analysis was undertaken to investigate ways that might be employed to

improve the service coupling of applications based on MSA, which addresses the first study question. The

review identified several ways that help enhance service coupling in MSA. Table 4 provides a concise

summary of each strategy, including its description, its effect on coupling, and the relevant papers associated

with it. The list in Table 4 is arranged in descending order based on the frequency of studies mentioning each

strategy. Each strategy addresses specific aspects of service coupling, providing software architects with

multiple options to tailor their solutions based on application requirements. The findings indicate that

combining multiple strategies results in optimal outcomes.

3.2. Conditions or characteristics of service design that can be improved by identified strategies (RQ2)

In order to answer the second research question, which focuses on identifying the specific

conditions or characteristics in microservice design that are suitable for the effective implementation of the

strategies mentioned in RQ1, we examine the circumstances in which each strategy can be utilized to

enhance service coupling. The strategies suggested in RQ1 are aligned with specific MSA design

characteristics that augment their efficacy. The list of strategies and their MSA design characteristics can be

seen in Table 5. By aligning strategies with specific characteristics, this study provides actionable guidance

for practitioners, ensuring optimal implementation and results.

3.3. Addressing research gaps in enhancing service coupling strategies (RQ3)

The third research question is how to enhance the strategies identified in RQ1 by analyzing the

current gaps in the area. We will answer this RQ by utilizing the seven research gap framework developed by

Müller-Bloch and Kranz. This framework facilitates the identification and classification of deficiencies in the

existing body of literature, hence creating possibilities for future study and advancements in the methods

used to enhance the interconnection of services in MSA. Müller-Bloch and Kranz have identified seven

different types of research gaps [8], [13]: i) evidence gap; ii) knowledge gap; iii) practical-knowledge gap;

iv) methodological gap; v) empirical gap; vi) theoretical gap; and vii) population gap.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2429-2437

2434

We examine how these gaps relate to each of the ten strategies identified in RQ1, emphasizing areas

that could be improved. The gap analysis for each strategy can be seen in Table 6. Addressing these gaps will

significantly advance the understanding and practical application of these strategies, making MSA-based

systems more resilient and maintainable.

Table 6. Gap analysis from each strategy
No. Strategy Identified research gaps Improvement opportunities
1. API gateway Evidence gap: limited empirical studies on long-

term performance and scalability impacts.

Methodological gap: lack of standardized methods
for evaluating security effectiveness.

Conduct longitudinal studies to assess performance

and scalability over time.

Develop standardized methods for evaluating
security in API gateways.

2. CQRS Practical-knowledge gap: limited guidelines on

integrating cqrs with existing monolithic systems.
Theoretical gap: lack of a unified theory on cqrs's

impact on system complexity.

Develop practical guidelines and best practices for

integrating CQRS into legacy systems.
Formulate a unified theoretical framework for

CQRS.
3. DDD Knowledge gap: insufficient understanding of

ddd's impact on team collaboration and

communication. Population gap: limited studies in

non-enterprise environments.

Conduct studies on DDD's impact on team
dynamics and collaboration.

Explore the application of DDD in small and

medium-sized enterprises (SMEs).
4. Saga pattern Empirical gap: few real-world case studies

demonstrating saga pattern's effectiveness.

Methodological gap: lack of tools for automated
compensating transaction management.

Collect and analyze real-world case studies to

validate the Saga Pattern.

Develop tools for automating compensating
transaction management.

5. Event

sourcing
Evidence gap: limited data on event sourcing's

impact on system latency and throughput.
Theoretical gap: incomplete theories on event

sourcing's role in system evolution.

Perform empirical studies to measure latency and

throughput impacts.
Develop comprehensive theories on event sourcing's

role in system evolution.
6. Strangler

application

pattern

Practical-knowledge gap: limited practical
guidance on managing transition phases

Population gap: Few studies have been done in

industries other than finance and e-commerce.

Create detailed guidelines for managing the
transition from monolithic to microservices.

Investigate the pattern's application in various

industries.
7. Chain pattern Methodological gap: lack of standardized

benchmarking methods.

Theoretical gap: incomplete theoretical models on

the impact of chaining on fault tolerance.

Develop standardized benchmarking methods for

evaluating the Chain Pattern.

Formulate theoretical models on fault tolerance in

chained services.
8. Fan

(distributed)
pattern

Evidence gap: sparse empirical evidence on

scalability limits.
Practical-knowledge gap: insufficient guidelines

on balancing load across distributed services.

Conduct empirical research to determine scalability

limits.
Provide comprehensive guidelines for effective load

balancing in distributed systems.
9. Balanced

(shared data)

pattern

Empirical gap: limited real-world applications
demonstrating the pattern's effectiveness.

Knowledge gap: inadequate understanding of data

synchronization challenges.

Document and analyze real-world applications of
the Balanced Pattern.

Research data synchronization challenges and

propose solutions.
10. Adapter

microservices

pattern

Theoretical gap: lack of theories explaining the

long-term impact of adapters on system evolution.

Population gap: few studies on the pattern's
application in emerging markets.

Develop theories on the long-term impact of

adapters.

Conduct studies on the pattern's application in
emerging and developing markets.

Table 7. Seven research gaps from Müller-Bloch and Kranz
No. Gap Input Process Output

1. Identify evidence gaps Synthesized literature Compare findings to identify

contradictions and
inconsistencies.

List of evidence gaps where findings

are contradictory.

2. Identify knowledge

gaps

Synthesized literature Identify areas with limited or

no research.

List of knowledge gaps highlighting

unexplored areas.
3. Identify practical-

knowledge conflict gaps

Practitioner interviews,

industry reports

Compare academic findings

with real-world practices.

List of practical-knowledge conflict

gaps.

4. Identify methodological
gaps

Research methods used
in existing studies

Evaluate the limitations of
current methodologies and

suggest alternatives.

List of methodological gaps needing
innovative approaches.

5. Identify empirical gaps Theoretical models and
hypotheses

Check for lack of empirical
validation and propose

necessary empirical studies.

List of empirical gaps needing
validation.

6. Identify theoretical gaps Existing theories and
models

Identify areas where
theoretical development is

weak or conflicting.

List of theoretical gaps needing
refinement.

7. Identify population gaps Demographic analysis
of study populations

Identify underrepresented
groups in research.

The list of population gaps needs to
include broader demographics.

8. Synthesize findings Lists of various gaps

identified

Consolidate all identified gaps

into a comprehensive finding.

Comprehensive findings of research

gaps.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

2435

3.4. Discussion

The results of this study demonstrate that service coupling in MSA can be effectively managed

through a combination of well-defined strategies. Each strategy addresses specific aspects of coupling,

offering flexible solutions for varying application needs. For example:

a. API gateway centralizes client interactions, enhancing modularity but introducing challenges like

potential bottlenecks.

b. CQRS simplifies concurrent operations yet increases the complexity of system design.

c. DDD ensures well-defined boundaries but requires substantial initial modeling efforts.

These findings align with and build upon existing studies. For instance:

a. Vural and Koyuncu [9] emphasized DDD's role in modularity, which is corroborated here but expanded

to highlight its impact on team collaboration.

b. Ntentos et al. [11] stressed the importance of reducing interdependencies, which this study integrates into

a broader strategic framework.

The limitations of individual strategies underscore the need for further research:

a. The long-term scalability impacts of API gateway remain underexplored.

b. Tools for automating compensating transactions in the Saga Pattern are lacking.

c. The effectiveness of strategies like event sourcing in different contexts requires empirical validation.

Addressing these gaps is crucial for advancing the field. Future research should prioritize the

development of standardized evaluation methods, empirical studies on scalability and performance, and

practical tools to simplify strategy implementation.

4. CONCLUSION

This study investigated strategies to improve service coupling in MSA, identified the conditions

under which these strategies are most effective, and analyzed research gaps requiring further exploration. The

findings offer theoretical insights and practical recommendations for software architects and researchers,

providing a roadmap for advancing MSA-based system design. The study identified ten critical strategies,

including API Gateway, CQRS, DDD, saga pattern, and event sourcing. These strategies enhance modularity,

scalability, and maintainability by addressing service coupling challenges. Each strategy’s effectiveness

depends on specific design characteristics, such as high concurrency environments for CQRS or complex

transaction scenarios for the Saga Pattern. The seven research gap framework revealed areas requiring further

study, such as the long-term performance impacts of API gateway, the scalability limitations of event

sourcing, and the lack of automated tools for compensating transactions in the Saga Pattern.

The findings hold immediate practical relevance for software architects, who can align strategies

with system design characteristics to optimize coupling in MSA-based systems, enabling more scalable and

maintainable architectures. For researchers, this study provides a structured foundation for exploring

unresolved issues, including conducting empirical studies to validate the scalability and performance of

coupling strategies, developing standardized evaluation metrics and tools for automating complex strategies

and expanding the applicability of strategies to non-enterprise and emerging market contexts. While this

study provides a comprehensive analysis of coupling strategies, its findings are primarily based on existing

literature. Empirical validation of the proposed strategies and their integration into diverse industries remains

limited. Addressing these gaps will confirm the generalizability and practical applicability of the findings.

To further advance the field, future research should prioritize developing automated tools and

frameworks for simplifying the implementation of identified strategies, conducting longitudinal studies to

evaluate the long-term scalability and performance of strategies like API gateway and event sourcing, and

expanding the study of strategies’ impacts on team collaboration and communication, particularly in SMEs

and emerging markets. By addressing these areas, the software engineering community can enhance the

resilience, scalability, and maintainability of MSA-based systems. This study provides a critical foundation

for such advancements, offering both theoretical contributions and practical solutions to pressing challenges

in microservices design.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Bina Nusantara University for providing the

support and resources necessary to carry out this study. We also thank the reviewers for their insightful

comments and suggestions, which have greatly contributed to improving the quality of this paper.

Additionally, we acknowledge previous research efforts in the domain of microservices design and

maintainability, which have provided a valuable foundation for this study. Lastly, we extend our appreciation

to colleagues and collaborators who offered constructive feedback and technical assistance throughout the

research process.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2429-2437

2436

FUNDING INFORMATION

The authors state that no funding was involved in the conduct of this research. This study was

carried out independently without financial support from any funding agency, institution, or organization.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Gintoro ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sunardi ✓ ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

The authors state no conflict of interest. They declare that there are no known competing financial

interests or personal relationships that could have appeared to influence the work reported in this paper.

DATA AVAILABILITY

The dataset used and analyzed in this study is publicly available on Zenodo. It can be accessed at the

following link: https://doi.org/10.5281/zenodo.14462135. Researchers and practitioners can freely use the

dataset under the terms of the applicable license.

REFERENCES
[1] P. P. Tallon, M. Queiroz, and T. Coltman, “Digital-Enabled Strategic Agility: The Next Frontier,” European Journal of

Information Systems, vol. 31, no. 6, pp. 641–652, Nov. 2022, doi: 10.1080/0960085X.2022.2102713.
[2] X. Chen, M. Usman, and D. Badampudi, “Understanding and evaluating software reuse costs and benefits from industrial cases—

A systematic literature review,” Information and Software Technology, vol. 171, pp. 1-22, Jul. 2024, doi:

10.1016/j.infsof.2024.107451.
[3] A. Lercher, “Managing API Evolution in Microservice Architecture,” in Proceedings of the 2024 IEEE/ACM 46th International

Conference on Software Engineering: Companion Proceedings, Lisbon Portugal: ACM, Apr. 2024, pp. 195–197, doi:

10.1145/3639478.3639800.
[4] D. R. F. Apolinário and B. B. N. De França, “A method for monitoring the coupling evolution of microservice-based

architectures,” Journal of the Brazilian Computer Society, vol. 27, no. 1, pp. 1-35, Dec. 2021, doi: 10.1186/s13173-021-00120-y.
[5] S. Panichella, M. Rahman, and D. Taibi, “Structural Coupling for Microservices:,” in Proceedings of the 11th International

Conference on Cloud Computing and Services Science, Science and Technology Publications, 2021, pp. 280–287, doi:

10.5220/0010481902800287.
[6] T. I. Ramdhani and N. N. Faiza, “National archival platform system design using the microservice-based service computing

system engineering framework,” Computer Science and Information Technologies, vol. 4, no. 2, pp. 95–105, Jul. 2023, doi:

10.11591/csit.v4i2.pp95-105.
[7] A. Lercher, J. Glock, C. Macho, and M. Pinzger, “Microservice API Evolution in Practice: A Study on Strategies and

Challenges,” Journal of Systems and Software, vol. 215, pp. 1-19, Sep. 2024, doi: 10.1016/j.jss.2024.112110.

[8] D. A. Miles, “A taxonomy of research gaps: Identifying and defining the seven research gaps,” Journal of Research Methods and
Strategies, pp. 1–15, 2017.

[9] H. Vural and M. Koyuncu, “Does Domain-Driven Design Lead to Finding the Optimal Modularity of a Microservice?,” IEEE

Access, vol. 9, pp. 32721–32733, 2021, doi: 10.1109/ACCESS.2021.3060895.
[10] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Industry practices and challenges for the evolvability assurance of

microservices: An interview study and systematic grey literature review,” Empirical Software Engineering, vol. 26, no. 5, pp. 1-

39, Sep. 2021, doi: 10.1007/s10664-021-09999-9.
[11] E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and S. Geiger, “Assessing architecture conformance to coupling-related patterns

and practices in microservices,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 12292 LNCS, 2020, pp. 3–20, doi: 10.1007/978-3-030-58923-3_1.
[12] B. Kitchenham et al., “Systematic literature reviews in software engineering – A tertiary study,” Information and Software

Technology, vol. 52, no. 8, pp. 792–805, Aug. 2010, doi: 10.1016/j.infsof.2010.03.006.

[13] P. Müller-Bloch and J. Kranz, “A Framework for Rigorously Identifying Research Gaps in Qualitative Literature Reviews,”
International Conference on Information Systems, Dec. 2015.

[14] T. Cerny, A. S. Abdelfattah, A. A. Maruf, A. Janes, and D. Taibi, “Catalog and detection techniques of microservice anti-patterns

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Strategies, characteristics, and research gaps for improving microservices coupling design (Gintoro)

2437

and bad smells: A tertiary study,” Journal of Systems and Software, vol. 206, pp. 1-43, Dec. 2023, doi: 10.1016/j.jss.2023.111829.
[15] H. Michael Ayas, P. Leitner, and R. Hebig, “An empirical study of the systemic and technical migration towards microservices,”

Empirical Software Engineering, vol. 28, no. 4, pp. 1-50, Jul. 2023, doi: 10.1007/s10664-023-10308-9.

[16] D. Monteiro, P. H. M. Maia, L. S. Rocha, and N. C. Mendonça, “Building orchestrated microservice systems using declarative
business processes,” SOCA, vol. 14, no. 4, pp. 243–268, Dec. 2020, doi: 10.1007/s11761-020-00300-2.

[17] J. Soldani, G. Muntoni, D. Neri, and A. Brogi, “The μ TOSCA toolchain: Mining, analyzing, and refactoring microservice‐based

architectures,” Software: Practice and Experience, vol. 51, no. 7, pp. 1591–1621, Jul. 2021, doi: 10.1002/spe.2974.
[18] R. Pinciroli, A. Aleti, and C. Trubiani, “Performance Modeling and Analysis of Design Patterns for Microservice Systems,” in

2023 IEEE 20th International Conference on Software Architecture (ICSA), L’Aquila, Italy: IEEE, Mar. 2023, pp. 35–46, doi:

10.1109/ICSA56044.2023.00012.
[19] Y. Zhong, W. Li, and J. Wang, “Using Event Sourcing and CQRS to Build a High Performance Point Trading System,” in

Proceedings of the 2019 5th International Conference on E-Business and Applications, Bangkok Thailand: ACM, Feb. 2019, pp.

16–19, doi: 10.1145/3317614.3317632.
[20] S. Lima, J. Correia, F. Araujo, and J. Cardoso, “Improving observability in Event Sourcing systems,” Journal of Systems and

Software, vol. 181, Nov. 2021, doi: 10.1016/j.jss.2021.111015.

[21] C. E. Da Silva, Y. D. L. Justino, and E. Adachi, “SPReaD: service-oriented process for reengineering and DevOps: Developing
microservices for a Brazilian state department of taxation,” SOCA, vol. 16, no. 1, pp. 1–16, Mar. 2022, doi: 10.1007/s11761-021-

00329-x.

[22] V. Velepucha and P. Flores, “A Survey on Microservices Architecture: Principles, Patterns and Migration Challenges,” IEEE
Access, vol. 11, pp. 88339–88358, 2023, doi: 10.1109/ACCESS.2023.3305687.

[23] F. H. Vera-Rivera, E. Puerto, H. Astudillo, and C. M. Gaona, “Microservices Backlog–A Genetic Programming Technique for

Identification and Evaluation of Microservices From User Stories,” IEEE Access, vol. 9, pp. 117178–117203, 2021, doi:
10.1109/ACCESS.2021.3106342.

[24] D. R. Matos, M. L. Pardal, A. R. Silva, and M. Correia, “μVerum: Intrusion Recovery for Microservice Applications,” IEEE

Access, vol. 11, pp. 78457–78470, 2023, doi: 10.1109/ACCESS.2023.3298113.
[25] J. M. M. Correia, “Automated Identification of Monolith Functionality Refactorings for Microservices Migrations”. 2021.

[26] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its granularity problem: A systematic mapping study,”

Software: Practice and Experience, vol. 50, no. 9, pp. 1651–1681, Sep. 2020, doi: 10.1002/spe.2869.
[27] S. Chang, “Software Design Pattern Analysis for Micro-Service Architecture using Queuing Networks (S),” in 33rd International

Conference on Software Engineering and Knowledge Engineering, Jul. 2021, pp. 45–50, doi: 10.18293/SEKE2021-180.

BIOGRAPHIES OF AUTHORS

Gintoro is a lecturer from Binus University, Indonesia's School of Computer

Science. He received his Computer Science degree from Bina Nusantara University in 1998.

He also received a Master of Information System degree from Bina Nusantara University,

Jakarta, in 2001. He currently serves as Educational Services Director at BINUS University,

leading two sub-business units: Sokrates Empowering School and BINUS Center. His research

interests include software engineering, software architecture, AI, educational technology, and

implementing technology in teaching and learning. He can be contacted at email:

gintoro@binus.ac.id.

Sunardi works as a lecturer at Binus Online Learning, which is part of Binus

University in Indonesia. He received his Computer Science degree from Bina Nusantara

University in 2004. He also received the Master's degree in Master of Information System

from Bina Nusantara University, Jakarta, in 2012. Currently, he is the CEO of a company

called Sundu.id, a startup company that provides immersive eLearning content and LMS. His

research interests include user experience, usability evaluation, ARVR, immersive learning,

and the metaverse area. He can be contacted at email: sunardi@binus.ac.id.

https://orcid.org/0009-0001-7142-7381
https://scholar.google.com/citations?hl=en&user=j63e9hIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57219572776
https://orcid.org/0000-0001-8628-5454
https://scholar.google.com/citations?hl=id&user=JihORJMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57220094902

