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 This paper presents a robust and sustainable energy management system 

driven by regional demographic patterns developed using fuzzy logic and 

mixed integer linear programming (MILP). This method detects and 

integrates variations in the energy use patterns of urban and rural 

communities attaining improved efficiency in the management of regional 

power demand. The detection and integration of the urban and rural energy 

use patterns were done by combining period partitioning based regional time 

of use tariff and fuzzy based appliance level renewable resource allocation to 

develop a function to be optimized using an improved MILP which provides 

users with the optimum schedule of appliance usage based on their 

demographic classification. The effectiveness of the proposed method was 

tested by running MATLAB simulations of different scenarios emulating 

continuous regional renewable integration planning with urban and rural 

power consumption profiles generated using LoadProGen. The proposed 

method’s effectiveness is confirmed by the achievement of a reduction upto 

31% in the community energy cost as well as significant reduction in the 

energy costs of each participant over different scenarios compared to the 

unoptimized base case. The proposed method can be effectively utilized in 

energy management applications catering to multiregional and mixed 

demographic communities. 
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1. INTRODUCTION 

A critical aspect of modern energy management systems is grid integration of renewable energy 

sources in order to utilize the full capacity of prosumers. The main objective is to maximize renewable 

energy utilization and ensure a reliable and stable electric supply. The major obstacles towards achieving this 

aim are posed by the intermittent nature of renewable sources and the uncertainty of load demand 

characteristics at the consumer end. The solution proposed by a work has been to identify the various factors 

that influence automatic demand response, the effect of real time energy use incentive measures and the 

utilization of the fast response time of interruptible loads [1]. However, the proposed solutions target a 

predetermined consumer base. The implementation of a wide area energy management system will have to 

deal with interruptible loads over different regions that can be demographically divided into urban, semi-

urban and rural regions, each consisting of a wide variety of consumers having different energy use priorities. 

As such, a common incentive may not be appealing to the majority of consumers and thus may result in 

limited participation in the energy management program. Artificial intelligence (AI) is now seeing a lot of 

https://creativecommons.org/licenses/by-sa/4.0/
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application in the development of energy management systems. The most popular techniques that have seen 

extensive application in demand side management are the different variations of swarm optimization, fuzzy 

logic and K-means [2], [3]. Though these methods have been successful in achieving their objectives as 

described through their validation by better peak to average ratio and user comfort however they fail to 

address the variation of the load consumption pattern on a regional scale. Regional approaches to demand 

side management were proposed using the flexibility indices and K-means technique which was further used 

to determine a discrete user comfort window for appliance scheduling but it did not consider the regional 

diversity in energy use priority and the availability of renewable sources [4], [5].  

The opportunity for developing multi energy hub models and integrated energy management 

systems have also been sufficiently explored. The proposed solutions seek to provide an optimal solution for 

the demand supply complexity and increasing energy management efficiency through capturing renewable 

integrated grid behaviour for different degrees of renewable energy penetration [6]-[11]. The complexity of 

power system planning is rapidly increasing with the development of smart homes, micro grids and smart 

distribution systems. Several researchers have proposed different methodologies of energy management to 

address the uncertain stochastic behaviour of renewable energy sources integrated in these smart power 

environments and the subsequent stochastic dynamic reconfiguration of smart distribution grids [12], [13]. 

The increasing applications of smart home technologies has necessitated the development of automatic home 

energy management systems capable of handling user constraints and develop new strategies for the power 

flow management of smart building microgrids [14], [15].  

The implementation of smart metering has led to the development of non-intrusive load monitoring 

techniques for better energy management systems to reduce costs and develop better coordination among 

smart home units [16]. A two-level energy management system has been developed for residential consumers 

which combine appliance level energy management and global energy management to reduce individual 

house consumption along with global cost and peak to average ratio [17]. Along with demand side 

management, development generation side management strategies to address the variations of renewable 

generation also merits attention to achieve utmost success in proposing a solution [18], [19].  

The development of smart microgrids has increased the opportunity of peer to peer energy trading 

across different microgrids for better load and generation management. The proposed solutions use AI 

techniques such as fuzzy logic, and incorporates multi agent distribution systems taking into consideration 

the network and user constraints [20]-[22]. A novel solution for energy scheduling incorporating peer to peer 

electricity and heat exchange structure, has been proposed by Shi et al. [23]. The formation of energy hubs 

and multi microgrid has increased the intractability of power systems which has prompted researchers to 

propose novel solutions to solve the computational intractable nature of stochastic energy management of 

power systems [9], [24]. The advent of smart energy communities has made the development of energy 

management systems to align the consumer energy demand with the available renewable energy very 

important. With the increased penetration of different renewable energy sources, energy storage systems, and 

electric vehicles the complexity of the systems required to manage the scheduling of the load demand and 

energy storage charging has increased. Several constraints are needed to be considered to ensure optimal 

operation of these energy communities.  

Several research work has been done to incorporate energy storage systems, electric vehicles and 

different sources of distributed energy in the development of energy management systems [25], [26]. 

However, even with the multitude of promising research works being conducted, there are still some gaps 

which can be addressed for increasing the efficiency of the energy management systems further.  

The development of an energy management system incorporating demand side and resource 

allocation management based on per capita energy consumption is yet to be explored. The per capita energy 

consumption varies with the demography of the region under consideration namely urban, semi urban and 

rural. The total number of power consumers supplied by any utility can be categorized as urban, semi urban 

and rural consumers. With the advent of microgrids and energy communities, the demographical aspect of 

energy management becomes even more important as mixed demographical regions are required to be 

effectively catered to. The influence of demography on the users’ appliance ownership, usage patterns and 

subsequently on the per capita energy consumption makes it an important aspect to be considered for 

developing an efficient energy management system. The present solutions also do not consider the effect of 

preallocation of the available renewable resources towards self and community consumption. The 

preallocation of resources can play a crucial role in increasing the efficiency of energy management systems 

as it allows for pre-informed demand response management which can reduce power wastage and supply 

uncertainty. This can result in a more inclusive energy sharing community which is critical in ensuring 

affordable, reliable and modern supply to urban, rural and semi urban regions being catered to by the energy 

management system. Another aspect that is yet to be addressed is the continuous integration planning of 

renewable resources in both urban and rural regions. With increasing penetration of renewable energy in the 
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primary mix of energy supply it is critical to develop an energy management system which can adjust its 

parameters with the increasing renewable resource integration to present a long-term sustainable solution to 

regional energy management.  

The proposed method caters to the above problems by developing a mixed integer linear 

programming (MILP) based regional energy management system which takes into consideration the 

demographics of a region through a time of use tariff system which can differentiate between urban and rural 

consumers with an integrated fuzzy module to preallocate the available resources between self and 

community consumption by considering appliance level usage statistics. The proposed model also caters to 

the continuous integration planning of renewable resources based on demography which has been verified by 

exploring multiple scenarios with various combinations of renewable availability and storage capacity. The 

organization of the rest of the paper is as follows. Section 2 describes the methodology of the proposed 

energy management system by explaining the formation of the ToU tariff, fuzzy module to determine the 

resource preallocation and the core MILP model. The results and discussions are present in section 3. The 

major findings of the paper, implementation areas and future work is summarized in section 4. 

 

 

2. METHOD 

The development of an energy management system to cater to urban and rural areas keeping in mind 

the demographical influence on the energy use priorities requires the implementation of a tariff system which 

can be used to differentiate between the peak, valley, and flat periods of urban and rural areas. The 

implementation of this tariff system in the optimization algorithm is critical in effective resource allocation 

and demand management on a regional basis. A time of day tariff system was developed using the time of 

use tariff plan provided by the state utility board and the peak, flat, and valley period of power demand 

partitioning method explained in [27]. The process of the tariff determination using the said method has been 

shown in Figure 1(a) and is mathematically expressed (1) and (2). 
 

𝑚𝑖𝑛 {𝐹(𝑃𝑓𝑣 , 𝑃𝑝𝑓) =
1

24
∑ (𝑃𝑖 − 𝑃𝑚

̅̅̅̅ )2
𝑚∈(𝑝,𝑓,𝑣)

𝑖∈24

} (1) 

 

𝑃𝑚
̅̅̅̅ =

1

𝑁
∑ 𝑃𝑖𝑖∈𝑚  (2) 

 

Another important aspect of effective demand response management in a renewable integrated 

mixed demographic region having both urban and rural components is renewable resource allocation. With 

efficient management the consumer can be incentivized to fulfill their power requirement at a time instant by 

drawing power from both grid and the available renewable resource. This consumer may become a prosumer 

by selling the unused renewable power to the community. However, it is important to determine the 

maximum share of each participant of the community to ensure maxmum efficiency. A fuzzy logic-based 

technique was developed end to determine the percentage of hourly demand of all urban and rural consumers 

which can be supplied from grid or the available renewable energy at an appliance level. This technique 

benefits not only the consumers having renewable generation but also those who are unable to install any 

renewable source. The fuzzy rulebase developed to tag the urban and renewable hourly loads as grid or 

renewable compatible is shown in Table 1. 

The process of determining the maximum renewable resource allocation through fuzzy application is 

explained (3) to (6), where 𝑅𝑡
𝑇  is the total renewable energy available at time t, 𝑅𝑘,𝑡

𝐶  denotes community 

renewable energy available from the kth house at time t, 𝑅𝑡
𝑠 denotes the renewable energy available from self 

at time t, 𝑆𝑗,𝑘,𝑟  is the selection coefficient of each appliance of the jth appliance of the kth house of the rth 

region whose value determines whether the appliance will draw from grid or renewable. A value of 1 denotes 

renewable source whereas a value of 2 denotes grid source. 𝑟𝑡𝑗,𝑘,𝑟 , 𝑃𝑗,𝑘,𝑟 , 𝐿𝑡,𝑘,𝑟
𝑈 , and TD are the runtime and 

power consumption of the jth appliance of the kth house of the rth region, upper limit of renewable resource 

allocation to the kth house of the rth region at the tth time. 
 

𝑅𝑡
𝑇 = ∑ 𝑅𝑘,𝑡

𝐶 + 𝑅𝑡
𝑠𝑁

𝑖=1  (3) 
 

𝑆𝑗,𝑘,𝑟 = 𝑓(𝑅𝑡
𝑇 , 𝑃𝑗,𝑘,𝑟 , 𝑟𝑡𝑗,𝑘,𝑟), ∀𝑆𝑗,𝑘,𝑟 ∈ [1,2] (4) 

 

𝑟𝑡, 𝑃 ∈ 𝑓(𝑈𝑟𝑏, 𝑅𝑢𝑟) (5) 
 

𝐿𝑡,𝑘,𝑟
𝑈 =

𝑆𝑗,𝑘,𝑟×𝑃𝑗,𝑘,𝑟

𝑇𝐷
, ∀𝑆𝑗,𝑘,𝑟 ∈ [1] (6) 
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The proposed MILP based predictive control integrates the fuzzy logic module explained above with 

an intelligent optimizer. The concept underlying the intelligent optimizer for the regional community energy 

management system (RCEMS) is presented in the Figure 1(b). The intelligent optimizer comprises of a fuzzy 

logic system and a MILP module. The fuzzy logic module combines the weather parameters and consumer 

appliance preferences to determine the maximum hourly percentage of loads that can be allocated to each 

consumer to maximize the benefits of the region catered to by the RCEMS. The output of the fuzzy module is 

provided as an input to the MILP optimizer along with the following information: 

− Information related to electrical consumption and appliance use priority of urban and rural residential 

units i.e., 𝑃𝑡,𝑘,𝑟
  is consumption of active power in Watts, 𝑅𝑡,𝑘,𝑟

  is consumption of reactive power in Var, 

and 𝑃𝑡,𝑘,𝑟
𝑃𝑉  is available photovoltaic (PV) power. 

− Energy storage availability and storage capacity details, 𝑆𝑜𝐶𝑡,𝑘,𝑟
  is state of charge of the battery bank. 

− The appliance switching pattern, regional appliance usage priority, and the fixed or flexible nature of the 

appliances of house 𝑘 in region 𝑟. 
 

 

 
(a) 

 

 
(b) 

 

Figure 1. Flowchart of: (a) TOD tariff development algorithm for urban and rural region power demand and 

(b) general structure of the work proposed 
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Table 1. Fuzzy rule base for load source mapping with renewable availability 
Appliance power consumption 

Renewable availability Appliance runtime Very high High Medium Low Very low 

High Very high Not likely Not likely Not likely Likely Likely 

High Not likely Not likely Likely Likely Very likely 

Medium Not likely Likely Likely Very likely Very likely 
Low Likely Likely Very Likely Very likely Very likely 

Very low Likely Likely Very Likely Very likely Very likely 

Low Very high Not likely Not likely Not likely Not likely Likely 
High Not likely Not likely Not likely Likely Likely 

Medium Not likely Not likely Likely Likely Likely 

Low Not likely Likely Likely Likely Very likely 
Very low Likely Likely Likely Very likely Very likely 

 

 

The above information was obtained from each house by the aggregator per hour. In case of 

schedulable appliances that can be automatically controlled, the number of working hours and the time gap 

between two consecutive working hours of each schedulable appliance for house k of the 𝑟𝑡ℎ region was 

provided to the aggregator. The active power consumption is composed of the elements shown in (7). 

 

𝑃𝑘,𝑡,𝑟 = ∑ 𝜐𝑘,𝑟,𝑗,𝑡𝑃𝑘,𝑟,𝑗
𝐴𝑀𝐶
𝑗=1 + ∑ 𝜈𝑘,𝑟,𝑗,𝑡𝑃𝑘,𝑟,𝑗

𝑀𝐶̄
𝑗=1 + ∑ 𝜏𝑘,𝑟,𝑗,𝑡𝑃𝑘,𝑟,𝑗

𝑀̄𝐶̄
𝑗=1  (7) 

 

− Appliances whose operation is user defined at a pre-fixed time interval. They are neither monitored nor 

controlled by the energy management system (𝑀̄𝐶̄). 

− Appliances with flexible runtime and both controlled and monitored by the energy management system 

(AMC). 

− Appliances monitored by the energy management system but controlled by the user (𝑀𝐶̄). 

where 𝑡 ∈ [1,2…,24], 𝑘 ∈ [UH1, UH2, RH1, RH2], 𝑟 ∈ [Urb, Rur] and 𝑗 ∈ [1, 2, ..., total_appliances]. 

𝜐, 𝜈, 𝜏 ∈ [0,1] denote the switching states of 𝑀̄𝐶̄, AMC, and 𝑀𝐶̄ appliances. 

The complexity of forming the problem of community energy management is very high. The 

proposed RCEMS was able to manage the power consumption of the entire region-based community in order 

to obtain a solution with the cost of operation minimized to the maximum extent. The complexity of the 

RCEMS arises from the fact that there are multiple factors to ensure such as the energy balance of each 

residential unit considered, the energy balance of the demographic regions considered, the balance between 

the cost reduction and comfort of the users of each region and the energy community as a whole, the state of 

charge of available energy storage devices, obtaining an economic balance between charging the devices 

with available renewable or grid energy and the energy balance between the grid and the community under 

study. The objective function detailed in (8) is solved for each sampling time interval by the proposed 

appliance specific MILP based optimizer model. 

 

𝑚𝑖𝑛𝐶𝑐𝑜𝑚𝑚 = 𝑚𝑖𝑛 ∑ ∑ ∑ {
𝑃𝑡,𝑘,𝑟

𝑔𝑟𝑖𝑑+
× 𝐶𝐺𝑡,𝑟

+ + 𝑃𝑡,𝑘,𝑟
𝑟𝑒𝑛+ × 𝐶𝑅𝑡,𝑟

+ + 𝑃𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚+ × 𝐶𝐶𝑡,𝑟

+

−𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑−

× 𝐶𝐺𝑡,𝑟
− − 𝑃𝑡,𝑘,𝑟

𝑐𝑜𝑚𝑚− × 𝐶𝐶𝑡,𝑟
−

} 𝛥𝑡𝑁𝐻
𝑘=1

𝑁𝑡
𝑡=1

𝑁𝑅
𝑟=1  (8) 

 

In (8), the prediction period of 24 hours is denoted by𝑁𝑡, the total number of participating houses 

from the urban and rural communities are given by 𝑁𝐻, 𝑁𝑅 denotes the total number of regional variations 

considered and the sampling rate of one hour is represented by ∆𝑡. 𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑+

/𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑−

 denotes grid active power 

(kW) projected to be bought and sold, 𝑃𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚+/𝑃𝑡,𝑘,𝑟

𝑐𝑜𝑚𝑚− is the community active power (kW) projected to be 

bought and sold, 𝐶𝐺𝑡,𝑟
+ /𝐶𝐺𝑡,𝑟

−  being the hourly cost of grid active power projected to be bought and sold, 

𝐶𝐶𝑡,𝑟
+ /𝐶𝐶𝑡,𝑟

−  being the hourly cost of regional community active power bought and sold, 𝑃𝑡,𝑘,𝑟
𝑟𝑒𝑛+ is the total 

renewable energy used, 𝐶𝑅𝑡,𝑟
+  being the cost of self-generated renewable energy used by a residential unit, 

𝑡 ∈ [1,2, . . , 𝑁𝑡], 𝑘 ∈ [UH1,UH2,RH1,RH2], and 𝑟 ∈ [Urb, Rur]. 

 

0 ≤ 𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑+

≤ 𝑐𝑜𝑛𝑛_𝑙𝑜𝑎𝑑𝑘,𝑟 × 𝑆𝑡,𝑘,𝑟
𝐺𝐵  (9) 

 

0 ≤ 𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑+

≤ 𝑐𝑜𝑛𝑛_𝑙𝑜𝑎𝑑𝑘,𝑟 × 𝑆𝑡,𝑘,𝑟
𝐺𝑆  (10) 

 

The constraints that have been considered are listed from (9) to (21). The grid power bought and 

sold by a residential unit has to be non-negative and less than the unit’s contracted power as ensured by (9) 
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and (10). The variables used to distinguish between the selling or buying mode of a participant from the grid 

are 
𝑆𝑡,𝑘,𝑟

𝐺𝐵

𝑆𝑡,𝑘,𝑟
𝐺𝑆 ∈ [0,1], where 0 means power is being sold and 1 means power is being bought. 

 

, , , , ,0 _comm CS

t k r k r t k rP conn load S−  
 (11) 

 

0 ≤ 𝑃𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚+ ≤ 𝑐𝑜𝑛𝑛_𝑙𝑜𝑎𝑑𝑘,𝑟 × 𝑆𝑡,𝑘,𝑟

𝐶𝐵  (12) 

 

The limits of community power bought and sold by any residential unit is given by (11) and (12) 

where 
𝑆𝑡,𝑘,𝑟

𝐶𝐵

𝑆𝑡,𝑘,𝑟
𝐶𝑆 ∈ [0,1]. For these constraints the contracted power is considered to be the connected load 

𝑐𝑜𝑛𝑛_𝑙𝑜𝑎𝑑𝑘,𝑟. 

 

∑ ∑ 𝑃𝑘,𝑟
𝑐𝑜𝑚𝑚+ = ∑ ∑ (1 − 𝐿𝑘,𝑟

𝑈 )𝑅𝑘,𝑟
𝑠𝑁𝐻

𝑘=1
𝑁𝑅
𝑟=1

𝑁𝐻
𝑘=1

𝑁𝑅
𝑟=1  (13) 

 

𝑎𝑝𝑝
𝑆𝑖

𝑃𝑉+ + 𝑎𝑝𝑝
𝐹𝑖

𝑃𝑉+ + 𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑−

+ 𝑃𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚− + 𝑃𝑡,𝑘,𝑟

𝑅𝐵+ = 𝐿𝑡,𝑘,𝑟
𝑈  (14) 

 

𝑃𝑡,𝑘,𝑟
𝐺𝐵+ + 𝑃_𝑎𝑝𝑝𝑡,𝑘,𝑟

𝑔𝑟𝑖𝑑+
= 𝑃𝑡,𝑘,𝑟

𝑔𝑟𝑖𝑑+
+ 𝑃𝑡,𝑘,𝑟

𝑐𝑜𝑚𝑚+ + 𝑃𝑡,𝑘,𝑟
𝐵−  (15) 

 

𝑆𝑡,𝑘,𝑟
𝐺𝐵 + 𝑆𝑡,𝑘,𝑟

𝐶𝑆 ≤ 1 (16) 

 

𝑆𝑡,𝑘,𝑟
𝐶𝐵 + 𝑆𝑡,𝑘,𝑟

𝐶𝑆 ≤ 1 (17) 

 

𝑆_𝑎𝑝𝑝𝑡,𝑘,𝑟
𝐺 + 𝑆_𝑎𝑝𝑝𝑡,𝑘,𝑟

𝑅 + 𝑆_𝑎𝑝𝑝𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚 ≤ 1 (18) 

 

∑ ∑ (𝑆_𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟
𝐺 + 𝑆_𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟

𝑅 + 𝑆_𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚) × 𝑎𝑝𝑝_𝑃𝑖,𝑘,𝑟 = 𝑃𝑡,𝑘,𝑟

𝑛_𝑎𝑝𝑝
𝑖=1

𝑁𝑡
𝑡=1  (19) 

 

∑ ∑ 𝑆_𝑎𝑝𝑝𝑖,𝑡
𝑅 × 𝑎𝑝𝑝_𝑃𝑖,𝑡 ≤ 𝑃𝑡

𝑃𝑉𝑛_𝑎𝑝𝑝
𝑖=1

𝑁𝑡
𝑡=1  (20) 

 

∑ ∑ ∑ ∑ 𝑆_𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟
𝐺 + 𝑆_𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟

𝑅 + 𝑆_𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚 = 𝑎𝑝𝑝_𝑟𝑢𝑛𝑖,𝑡,𝑘,𝑟

𝑛_𝑎𝑝𝑝
𝑖=1

𝑁𝑡
𝑡=1

𝑁ℎ
𝑘=1

𝑁𝑅
𝑟=1  (21) 

 

The community power balance is given (13) and the balance of individual unit’s allocated renewable 

energy consumption is implemented (14) where 𝑎𝑝𝑝𝑆𝑖
𝑃𝑉+ is the PV power utilized by the ith schedulable 

appliance, 𝑎𝑝𝑝𝐹 𝑖
𝑃𝑉+ being the PV power utilized by the ith fixed use appliance. At any time instant, the 

recharging power drawn by the battery from the PV source or the grid is given by 𝑃𝑡,𝑘,𝑟
𝑅𝐵+ and 𝑃𝑡,𝑘,𝑟

𝐺𝐵+ 

respectively. 𝑃𝑡,𝑘,𝑟
𝐵−  denotes discharging power drawn from the battery by the residential units and 𝑃𝑎𝑝𝑝𝑡,𝑘,𝑟

𝑔𝑟𝑖𝑑+ is 

the total grid power drawn by the combination of fixed and schedulable appliances. The power balance of the 

appliance power consumptions over the scheduling horizon is given (15). Constraints (16) and (17) restrict 

the participants from selling the grid or community power bought by them to the community again. Any 

appliance switched on at a particular time interval is at the liberty to draw power from community, grid or 

self PV source if available but cannot utilize exploit than one source as implemented (18). The consumer’s 

choice for switching of fixed appliances is adhered to (19). 𝑆𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟

𝐺 , 𝑆𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟

𝑅 , 𝑆𝑎𝑝𝑝𝑖,𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚 ∈ [0,1] denotes 

the source selection variables for grid, self-renewable and community respectively. 𝑎𝑝𝑝𝑃𝑖,𝑘,𝑟
  denotes the 

rated power of the appliance under consideration. The limit of power drawn by the appliances at any instant 

has to be less than or equal to the available PV power as ensured (20). The daily runtime requirement 

fulfillment for any appliance is ensured (21). The balance between energy generation and consumption for 

grid and renewable is delinked and ensured separately (22) and (23). For all these constraints 𝑡 ∈
[1, 2, … , 24], 𝑘 ∈ [UH1, UH2, RH1, RH2], 𝑟 ∈ [Urb, Rur], and 𝑖 ∈ [1, 2, ..., total_appliances]. 

 

∑ 𝑎𝑝𝑝_𝑆𝑖,𝑡,𝑘,𝑟
𝑃𝑉+ + ∑ 𝑎𝑝𝑝_𝐹𝑖

𝑃𝑉+ + 𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑−

+ 𝑃𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚− + 𝑃𝑡,𝑘,𝑟

𝑅𝐵+ = 𝑃𝑡,𝑘,𝑟
𝑃𝑉𝑛_𝑎𝑝𝑝𝐹

𝑖=1
𝑛_𝑎𝑝𝑝𝑆
𝑖=1  (22) 

 

if battery is not available then 𝑃𝑡,𝑘,𝑟
𝑅𝐵+ = 0. 
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∑ 𝑎𝑝𝑝
𝑆𝑖,𝑡,𝑘,𝑟

𝑔𝑟𝑖𝑑+ +
𝑛𝑎𝑝𝑝𝑆

𝑖=1
∑ 𝑎𝑝𝑝

𝐹𝑖
𝑔𝑟𝑖𝑑+

𝑛𝑎𝑝𝑝𝐹

𝑖=1
+ ∑ 𝑎𝑝𝑝𝑆𝑖,𝑡,𝑘,𝑟

𝑐𝑜𝑚𝑚+ +
𝑛𝑎𝑝𝑝𝑆

𝑖=1
∑ 𝑎𝑝𝑝𝐹𝑖

𝑐𝑜𝑚𝑚+
𝑛𝑎𝑝𝑝𝐹

𝑖=1
+ 𝑃𝑡,𝑘,𝑟

𝐺𝐵+ =

𝑃𝑡,𝑘,𝑟
𝑔𝑟𝑖𝑑+

+ 𝑃𝑡,𝑘,𝑟
𝑐𝑜𝑚𝑚+ + 𝑃𝑡,𝑘,𝑟

𝐵−  (23) 

 

The battery, if available, is allowed to be charged from all three sources as this allows the battery to 

take advantage of the off-peak grid tariff and also the renewable availability period to get charged allowing 

the use of the battery during the peak hours. 

 

min _𝑆𝑂𝐶𝑘
𝐵 ≤ 𝑆𝑜𝐶𝑘

𝐵 ≤ max _𝑆𝑜𝐶𝑘
𝐵 (24) 

 

𝑆𝑜𝐶𝑖𝑛𝑖𝑡,𝑘
𝐵 = 𝑆𝑜𝐶𝑓𝑖𝑛𝑎𝑙,𝑘

𝐵  (25) 

 

𝑆𝑜𝐶𝑘,𝑡
𝐵 = 𝑆𝑜𝐶𝑘,𝑡−1

𝐵 + 𝜂𝑐
𝑏 × 𝑐ℎ𝑡 + 𝜂𝑑𝑐

𝑏 × 𝑑𝑖𝑠𝑐ℎ𝑡 (26) 

 

𝑃𝑘,𝑡
𝐵+ − 𝑃𝑘,𝑡−1

𝐵+ ≤ 𝑅𝑢 (27) 

 

𝑃𝑘,𝑡−1
𝐵− − 𝑃𝑘,𝑡

𝐵− ≤ 𝑅𝑑 (28) 

 

𝑆𝑐
𝐵𝐺 + 𝑆𝑐

𝐵𝐶 + 𝑆𝑐
𝐵𝑅 ≤ 1 (29) 

 

In (24) specifies that the state of charge 𝑆𝑜𝐶𝑘
𝐵 of the storage system of the 𝑘𝑡ℎ house should lie 

between the maximum and minimum values given by 𝑚𝑎𝑥_ 𝑆𝑜𝐶𝑘
𝐵 and min _𝑆𝑜𝐶𝑘

𝐵 respectively. 𝑆𝑜𝐶𝑖𝑛𝑖𝑡,𝑘
𝐵  and 

𝑆𝑜𝐶𝑓𝑖𝑛𝑎𝑙,𝑘
𝐵  are the initial and final charging state of the battery banks. 𝑆𝑜𝐶𝑘,𝑡

𝐵  is the state of charge of the 

battery bank 𝐵 of the 𝑘𝑡ℎ house at time 𝑡. 
b

c  and 
b

dc  are the charging and discharging efficiency of the battery 

bank. The charging and discharging power being drawn by the battery bank at time 𝑡 is given by the variables 

𝑐ℎ𝑡 and 𝑑𝑖𝑠𝑐ℎ𝑡 respectively 𝑃𝑘,𝑡
𝐵+ and 𝑃𝑘,𝑡

𝐵− and are the charging and discharging power being drawn by the 

battery of the 𝑘𝑡ℎ house at time period 𝑡. The ramp up and ramp down values for charging and discharging 

values of the battery are are 𝑅𝑢 and 𝑅𝑑. 𝑆𝑐
𝐵𝐺, 𝑆𝑐

𝐵𝐶, 𝑆𝑐
𝐵𝑅 are the switching variables of the battery bank for 

charging from grid, community and renewable sources respectively. In (25) ensures the level of battery bank 

that needs to be maintained at the end of the period of prediction. The state of charge of the battery at any 

instant is given (26). The charging and discharging rate cannot be more than the ramp up or ramp down 

values respectively as ensured (27) and (28). In (29) restricts the battery bank to being charged from only one 

source at a particular time period. 

 

0 ≤ 𝑃𝑘,𝑡
𝐵+ ≤ 𝑃𝑘_𝑚𝑎𝑥

𝐵 × 𝑆𝑐ℎ (30) 

 

0 ≤ 𝑃𝑘,𝑡
𝐵+ ≤ 𝑃𝑘_𝑚𝑎𝑥

𝐵 × (1 − 𝑆𝑐ℎ) (31) 

 

𝑆𝑐ℎ = 𝑆𝑐
𝐵𝐺 + 𝑆𝑐

𝐵𝐶 + 𝑆𝑐
𝐵𝑅 (32) 

 

From (30) to (32) ensures that charging or discharging power of the battery banks is non-negative at 

a particular time. In any household, some appliances have flexible usage times. The operation of this 

appliances can be shifted to any time period of the day. However, their daily operational quota needs to be 

maintained. As such, it is practical to include the provision of such flexible and shiftable appliances in the 

proposed algorithm. The schedulable loads have to follow the following restrictions: 

− The appliance must operate for the duration specified by the user denoted by 𝑊𝑀𝑟,𝑘,𝑖 

− It has to remain switched on for a minimum pre-specified period of time 𝑊𝑀𝑟,𝑘,𝑖
𝑆𝐷   

− The power demand of the appliance is considered to be constant at its rated power 𝑃
𝑎𝑝𝑝𝑟,𝑘,𝑖

𝑆𝐷  

The constraints imposed are expressed in (33) to (36) for ∀𝑟 ∈ [Urb,Rur],  

𝑘 ∈ [UH1,UH2,RH1,RH2], 𝑡 ∈ [1,2,….,24], 𝑖 ∈ [1,2…., NS] where UH1=urban house 1, UH2=urban house 

2, RH1=rural house 1, RH2=rural house 2, and NS=total number of schedulable appliances. 

 

𝑊𝑀𝑟,𝑘,𝑖,𝑡
𝑜𝑛 − 𝑊𝑀𝑟,𝑘,𝑖,𝑡+𝑥

𝑜𝑛 ≥ 𝑇𝐷𝑟,𝑘,𝑖
𝑊𝑀 (33) 

 

𝑊𝑀𝑟,𝑘,𝑖,𝑡
𝑆𝐷 = 𝑃𝑊𝑀

𝑆𝐷 × 𝑊𝑀𝑟,𝑘,𝑖,𝑡
𝑂𝑁  (34) 
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∑ (𝑣𝑡,𝑖
𝐺 + 𝑣𝑡,𝑖

𝑅 ) ≤ 1
𝑁𝑆

𝑖=1
 (35) 

 

𝜈𝑡,𝑖
𝑜𝑛 + 𝜈𝑡,𝑖

𝑜𝑓𝑓
≤ 1 (36) 

 

∑ 𝑊𝑀𝑟,𝑘,𝑖,𝑡
𝑂𝑁 = 𝑟𝑡𝑖,𝑘,𝑟

𝑁𝑇
𝑡=1  (37) 

 

𝑣𝑡,𝑖
𝑜𝑛 and 𝑣𝑡,𝑖

𝑜𝑓𝑓
 are the switch on and switch off status of the appliance. 𝑇𝐷𝑟,𝑘,𝑖

𝑊𝑀 is the time delay between 

successive switching on time of the appliance. The condition of the appliance remaining switched on for the 

prespecified number of consecutive hours is ensured by the constraint in (33). In (34) ensures that the power 

consumption 𝑃𝑊𝑀
𝑆𝐷  of the appliance is constant and equal to its rating during the periods of switched on time 

of the appliance 𝑊𝑀𝑟,𝑘,𝑖,𝑡
𝑂𝑁 . The shift able appliance switched on at a particular time can draw power either 

from the grid or renewable source as ensured (35). The startup and shut down time of a schedulable appliance 

cannot be at the same time instant as ensured (36) whereas the adherence to total daily runtime of the 

appliance is met (37). 

 

 

3. RESULTS AND DISCUSSION 

The simulations are performed on energy profiles of two urban and two rural houses together 

forming an energy community. These load profiles were simulated using LoadProGen simulator [28] in 

MATLAB 2021a®. The parameters of urban and rural power consumption preferences, appliance ownership 

and appliance usage time for simulating these load profiles were obtained from surveys conducted on 

residential houses of rural and urban areas [29], [30] and are shown in Table 2 where R denotes rural house 

and U denotes urban house. The unoptimised power consumption of the two urban and two rural houses 

forming the energy community simulated for the prediction horizon of 24 hours are shown in Figure 2(a). 

Figure 2(b) shows the peak, flat, and valley hours obtained by applying the period partitioning model to the 

community energy consumption formed by adding the consumption of the four houses together. It shows a 

few peak hours in the morning while the valley hours are seen near the evening. The concentration of peak 

and flat hours during the daytime can be explained by the running of the space cooling appliances during the 

daytime. As these appliances consume a large amount of power they increase the community energy 

consumption values by a significant amount. The time horizon for performing the simulations is considered 

as 24 hours. The simulations are performed using MILP based community optimization. The upper and lower 

limits of the renewable power made available toeach house of the community per hour is obtained by using 

the fuzzy inference method explained in section. 

 

 

Table 2. Appliance ownership and usage details for urban and rural consumers 

Appliance name 
Rated 

power (W) 

Number 
Functioning 
cycle (hours) 

Functioning 
duration (hours) 

Functioning 
window 

R U R U R U R U 

TV 127 1 2 1 1 5 6 11-22 18-24 

Music system 100 - 2 - 1 - 6 - 24 
Refrigerator 150 1 1 1 1 11 24 24 24 

Computer 250 - 2 - 1 - 3 - 10-12 

18-22 
Geyser 2000 - 2 - 1 - 1 - 6-9 

Washing machine 400 1 1 1 1 1 2 8-16 10-15 

Water pump 750 1 1 1 1 2 2 24 24 
Iron 1100 - 1 - 1 - 1 - 24 

Ceiling fan 40 1 3 1 1 5 8 24 24 

AC 1800 1 2 1 1 5 8 1-7 
12-15 

18-24 

1-6 
12-16 

22-24 

Table fan 70 - 1 - 1 - 4 - 24 
Incandescent lamp/CFL/LED 97/12/8 2 3 1 1 9 8 5-8 

18-24 

24 

LED tubes 20 - 3 - 1 - 4 5-8 
18-24 

18-24 

OTG/microwave 1000 1 1 1 1 1 2 5-11 

16-18 

8-10 

21-24 
Cooler 224 1 - 1 - 3 - 24 - 
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(a) 

 
(b) 

 

Figure 2. The simulated outputs of: (a) power consumption of the urban and rural houses and (b) the peak, 

flat, and valley periods of the community obtained using the period partitioning model 

 

 

Time of day prices of energy has been used for optimization and the day ahead forecasted values of 

the renewable power availability of each house is obtained by using artificial neural network (ANN). The 

control signals for battery banks and flexible loads for both the urban and rural residential units are generated 

based on the optimized cost function. The simulations are presented for a single season i.e., summer, but with 

two distinct regional power consumption characteristics and a community TOD tariff system to capture the 

effect of the regional power usage variation on the operation of AI controlled energy community. This study 

is crucial for developing a smart energy management system for application to areas encompassing regions 

having different demographic patterns. The residential units use a time of use tariff for purchasing energy 

from the grid. The purchasing and selling prices for the interactions with grid are shown in Table 3 and that 

of the community is shown in Table 4. This helps in observing the performance of the system under an 

organized dynamic tariff system. The fuzzy module output 𝐿𝑡,𝑘,𝑟
𝑈  has been considered as the upper boundary 

value of total PV power available to a participant household for self utilization for each time period. The 

rated capacity of the battery considered for one urban household has been fixed at 10 kW which is sufficient 

to supply the entire connected load of the household. The limit of charging and discharging power is 

considered to be 5 kW whereas the ramping power is considered to be 2 kW for both charging and 

discharging. The efficiency of charging and discharging is considered to be 95%. The number of schedulable 

appliances considered are 𝑎𝑝𝑝𝑆𝑈
∈ [washing machine, electric iron, and water pump] and 𝑎𝑝𝑝𝑆𝑅

∈ [washing 

machine and water pump] where 𝑎𝑝𝑝𝑆𝑈
 denotes the urban schedulable appliances and 𝑎𝑝𝑝𝑆𝑅

 denotes the 

rural schedulable appliances. The restrictions imposed on these appliances are as given in (33) to (37). The 

total runtime value that needs to satisfied for each appliance and their rated power is as given in the columns 

functioning duration and rated power respectively in Table 2. 
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Table 3. Purchase and sale price of the interaction between home and grid 
Price in INR/KWh 

Period of demand Medium High Low 
Purchase from grid utility 7.97 9.51 6.81 
Sell to grid by prosumer 2.4 2.85 2.04 

 

 

Table 4. Purchase and sale price of the interaction between home and community 
Price in INR/KWh 

Period of demand Medium High Low 
Self renewable buy 3.99 4.78 3.405 
Community buy/sell by prosumer 3.2 3.8 2.724 

 

 

The houses are equipped with solar power output with peak value equivalent to 30% of their 

connected load. The forecasted PV power output of the four homes of the community are provided for the 

prediction horizon of 24 hours in Figure 3. The implementation is done in MATLAB 2021a and the 

optimization problem was solved with Gurobi using MATLAB-Gurobi interface. Nine scenarios are 

considered for performing the simulations as shown in Table 5. These nine scenarios are chosen due to their 

relation with the need to assess the operational gains of continuous regional renewable integration in an 

interregional energy community over a non-energy community operation with varying degree of renewable 

energy production by each household and/or the presence of controlled energy storage capacity and 

appliances. 
 

 

 
 

Figure 3. Forecasted PV power generation for the urban and rural regions 
 

 

An important point to note is that one of the contributions of this paper is to minimize the energy 

cost of the community as a whole with less importance to the cost of individual members. The ideal value of 

the energy purchased and sold between the entities involved in the optimization at each time period is 

determined by the program with focus on the minimization of community energy costs. The cost of operation 

for all scenarios is shown in Table 5. Here U1 denotes UH 1, U2 denotes UH 2, R1 denotes rural house 1 and 

R2 denotes rural house 2. It is observable from the table that there is an operational cost reduction in all other 

scenarios compared to the initial scenario 0 where the power consumption of individual houses were 

optimized without any community formation. The selling price to the community is considered to be more 

than the selling price to the grid, both of which are less than the power purchased from the grid. This 

distinction was done to ensure that the available renewable energy is first utilized by the households 

themselves with certain constraints. For homes having low energy consumption, specifically being the homes 

of the rural region, the unallocated power is sold to the community first and then to the grid. The power 

purchased (positive) and sold (negative) by the four urban and rural households to the community is shown in 

Figures 4(a) to (d) and the power purchased from the grid by the community for all the nine scenarios is 

shown in Figure 5. The cost comparison for all the houses along with the community is shown in Figure 6. 

Figures 4(a) to (d) shows the power buying and selling pattern of the individuals which corresponds to the 

power consumption pattern which is reflected through the community and grid energy buying and selling 

prices. Figure 5 shows that a significnt reduction grid demand has been achieved both in the terms of peak 

demand periods and average demand. The peak demand period of the grid has been replaced by a new 
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renewable demand peak during the solar availability hours thus representing the effectiveness of this method. 

The results shown in Figure 6 indicate that there might be slight increase in the cost of individual houses in 

some scenarios. This results from the fact that the RCEMS developed is focussed towards decreasing the cost 

of the regional community as a whole and not individual houses. The increase in energy cost can also be 

attributed to the appliance usage choices made by the users. However, this slight increase in energy cost in 

some days might be offset by larger decrease in some other day depending upon the appliance usage 

preferences of the user. It can also be observed from Table 6 that cost variation of urban users is more than 

that of the rural users when all the scenarios are considered. This can be attributed to the fact that appliance 

level classification for usage of renewable energy has been done in this work. Thus, high energy users with 

higher appliance ownership variation, more number of shiftable appliances and higher PV generation will be 

able to benefit more from the scheme when compared with low energy use households. With increasing 

energy use in urban areas this advantage can incentivize the urban households to form communities with low 

energy use rural households thus benefiting both the parties. 

 

 

Table 5. List of scenarios simulated for continuous regional renewable integration 

Scenario # 
Resource availability 

PV power Battery energy storage system Demand side management 

0 None None Individual 
1 RH 1 None Community 

2 UH 1 None Community 

3 UH 1, RH 1 None Community 
4 UH 1, UH 2 None Community 

5 UH 2, RH 1 None Community 

6 UH 1, UH 2, RH 1 None Community 
7 UH 1, UH 2, RH 1, RH 2 (50%) None Community 

8 UH 1, UH 2, RH 1, RH 2 (90%) None Community 

9 UH 1, UH 2, RH 1, RH 2 (90%) UH 1 Community 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 4. Buying (positive) and selling (negative) power from and to the community by: (a) rural home 1,  

(b) rural home 2, (c) urban home 1, and (d) urban home 2 
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Figure 5. Total power bought from the grid by the community for all the scenarios 
 

 

 
 

Figure 6. Cost comparison of the participating households and the community for all the scenarios 
 
 

Table 6. Home and community costs obtained by the proposed method 
# Scenario U1 U2 R1 R2 Community cost Percentage reduction in community cost 

Experimental case 419.23 420.29 125.86 122.29 1087.67 - 

Scenario 0 412.84 413.21 122.91 119.88 1068.84 1.73 
Scenario 1 410.78 388.99 93.74 117.66 1011.16 7.03 

Scenario 2 339.68 392.16 119.59 116.98 968.41 10.96 

Scenario 3 335.41 363.39 93.74 118.20 910.74 16.27 
Scenario 4 378.72 327.91 93.74 119.23 919.60 15.45 

Scenario 5 329.65 328.44 108.67 114.30 881.06 19.00 

Scenario 6 323.96 316.40 93.75 99.87 833.98 23.32 
Scenario 7 311.81 308.00 91.58 102.48 813.87 25.17 

Scenario 8 314.45 294.31 92.74 91.50 793.00 27.09 

Scenario 9 289.28 276.36 90.15 92.30 748.09 31.22 

 

 

It is to be noted that the households only buy energy from the community during the daytime when 

solar energy is available. This restricted the cost reduction operation during the solar hours only. The 

introduction of energy storage in the community can further decrease the cost by allowing the households to 

store the available solar energy bought from the community and using it in the non solar hours as 

demonstrated in scenario 9 where a battery bank was introduced in urban house no 1. 
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4. CONCLUSION 

This paper provides the formation of a regional energy management system for application to 

multiregional and mixed demographics energy communities. The proposed energy management system 

addresses the regional diversity in per capita energy consumption by catering to the specific energy 

consumption features of urban and rural power consumers. The proposed regional energy management 

system addresses the regional diversity in per capita energy consumption by catering to the specific energy 

consumption features of urban and rural power consumers. It incorporates the demography influenced 

differences in power consumption patterns through a demography oriented ToU tariff system and a fuzzy 

logic decision module to control the preallocation of available renewable resources to the different consumers 

based on their demographical categorization. The problem is formulated in the form of MILP incorporating 

the regional power use restrictions to obtain a more realistic technical and economical solution. The hourly 

renewable energy allocation limit to each urban and rural house is obtained by using the fuzzy logic inference 

system. The system is tested on the energy profiles of two urban and two rural households simulated using 

LoadProGen in MATLAB 2021a. The results show that the implementation of the system always provides 

operational savings compared to the conventional systems. The results clearly show the relevance of forming 

a multiregional energy community as it reduces both the load on the grid and the energy cost of the houses as 

well as the community. The relevance of energy prices from different sources is also very significant as they 

can directly affect the amount of power being traded amongst the individual houses, community and grid. 

The results also show that incremental integration of the renewable sources and storage devices in the urban 

and rural region energy communities can give the best possible results as it can increase the flexibility of 

appliance usage outside the renewable availability hours also. Future work will be done to extend the 

proposed methodology to incorporate the commercial and industrial consumers of the urban and rural regions 

along with all the different consumer categories for the semi urban regions. The development of the required 

hardware will then be done to implement the proposed solution in utility sectors. 
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