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This paper presents a robust and sustainable energy management system
driven by regional demographic patterns developed using fuzzy logic and
mixed integer linear programming (MILP). This method detects and
integrates variations in the energy use patterns of urban and rural
communities attaining improved efficiency in the management of regional
power demand. The detection and integration of the urban and rural energy
use patterns were done by combining period partitioning based regional time
of use tariff and fuzzy based appliance level renewable resource allocation to
develop a function to be optimized using an improved MILP which provides
users with the optimum schedule of appliance usage based on their
demographic classification. The effectiveness of the proposed method was
tested by running MATLAB simulations of different scenarios emulating
continuous regional renewable integration planning with urban and rural
power consumption profiles generated using LoadProGen. The proposed
method’s effectiveness is confirmed by the achievement of a reduction upto
31% in the community energy cost as well as significant reduction in the

energy costs of each participant over different scenarios compared to the
unoptimized base case. The proposed method can be effectively utilized in
energy management applications catering to multiregional and mixed
demographic communities.
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1. INTRODUCTION

A critical aspect of modern energy management systems is grid integration of renewable energy
sources in order to utilize the full capacity of prosumers. The main objective is to maximize renewable
energy utilization and ensure a reliable and stable electric supply. The major obstacles towards achieving this
aim are posed by the intermittent nature of renewable sources and the uncertainty of load demand
characteristics at the consumer end. The solution proposed by a work has been to identify the various factors
that influence automatic demand response, the effect of real time energy use incentive measures and the
utilization of the fast response time of interruptible loads [1]. However, the proposed solutions target a
predetermined consumer base. The implementation of a wide area energy management system will have to
deal with interruptible loads over different regions that can be demographically divided into urban, semi-
urban and rural regions, each consisting of a wide variety of consumers having different energy use priorities.
As such, a common incentive may not be appealing to the majority of consumers and thus may result in
limited participation in the energy management program. Artificial intelligence (Al) is now seeing a lot of
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application in the development of energy management systems. The most popular techniques that have seen
extensive application in demand side management are the different variations of swarm optimization, fuzzy
logic and K-means [2], [3]. Though these methods have been successful in achieving their objectives as
described through their validation by better peak to average ratio and user comfort however they fail to
address the variation of the load consumption pattern on a regional scale. Regional approaches to demand
side management were proposed using the flexibility indices and K-means technique which was further used
to determine a discrete user comfort window for appliance scheduling but it did not consider the regional
diversity in energy use priority and the availability of renewable sources [4], [5].

The opportunity for developing multi energy hub models and integrated energy management
systems have also been sufficiently explored. The proposed solutions seek to provide an optimal solution for
the demand supply complexity and increasing energy management efficiency through capturing renewable
integrated grid behaviour for different degrees of renewable energy penetration [6]-[11]. The complexity of
power system planning is rapidly increasing with the development of smart homes, micro grids and smart
distribution systems. Several researchers have proposed different methodologies of energy management to
address the uncertain stochastic behaviour of renewable energy sources integrated in these smart power
environments and the subsequent stochastic dynamic reconfiguration of smart distribution grids [12], [13].
The increasing applications of smart home technologies has necessitated the development of automatic home
energy management systems capable of handling user constraints and develop new strategies for the power
flow management of smart building microgrids [14], [15].

The implementation of smart metering has led to the development of non-intrusive load monitoring
techniques for better energy management systems to reduce costs and develop better coordination among
smart home units [16]. A two-level energy management system has been developed for residential consumers
which combine appliance level energy management and global energy management to reduce individual
house consumption along with global cost and peak to average ratio [17]. Along with demand side
management, development generation side management strategies to address the variations of renewable
generation also merits attention to achieve utmost success in proposing a solution [18], [19].

The development of smart microgrids has increased the opportunity of peer to peer energy trading
across different microgrids for better load and generation management. The proposed solutions use Al
techniques such as fuzzy logic, and incorporates multi agent distribution systems taking into consideration
the network and user constraints [20]-[22]. A novel solution for energy scheduling incorporating peer to peer
electricity and heat exchange structure, has been proposed by Shi et al. [23]. The formation of energy hubs
and multi microgrid has increased the intractability of power systems which has prompted researchers to
propose novel solutions to solve the computational intractable nature of stochastic energy management of
power systems [9], [24]. The advent of smart energy communities has made the development of energy
management systems to align the consumer energy demand with the available renewable energy very
important. With the increased penetration of different renewable energy sources, energy storage systems, and
electric vehicles the complexity of the systems required to manage the scheduling of the load demand and
energy storage charging has increased. Several constraints are needed to be considered to ensure optimal
operation of these energy communities.

Several research work has been done to incorporate energy storage systems, electric vehicles and
different sources of distributed energy in the development of energy management systems [25], [26].
However, even with the multitude of promising research works being conducted, there are still some gaps
which can be addressed for increasing the efficiency of the energy management systems further.

The development of an energy management system incorporating demand side and resource
allocation management based on per capita energy consumption is yet to be explored. The per capita energy
consumption varies with the demography of the region under consideration namely urban, semi urban and
rural. The total number of power consumers supplied by any utility can be categorized as urban, semi urban
and rural consumers. With the advent of microgrids and energy communities, the demographical aspect of
energy management becomes even more important as mixed demographical regions are required to be
effectively catered to. The influence of demography on the users’ appliance ownership, usage patterns and
subsequently on the per capita energy consumption makes it an important aspect to be considered for
developing an efficient energy management system. The present solutions also do not consider the effect of
preallocation of the available renewable resources towards self and community consumption. The
preallocation of resources can play a crucial role in increasing the efficiency of energy management systems
as it allows for pre-informed demand response management which can reduce power wastage and supply
uncertainty. This can result in a more inclusive energy sharing community which is critical in ensuring
affordable, reliable and modern supply to urban, rural and semi urban regions being catered to by the energy
management system. Another aspect that is yet to be addressed is the continuous integration planning of
renewable resources in both urban and rural regions. With increasing penetration of renewable energy in the
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primary mix of energy supply it is critical to develop an energy management system which can adjust its
parameters with the increasing renewable resource integration to present a long-term sustainable solution to
regional energy management.

The proposed method caters to the above problems by developing a mixed integer linear
programming (MILP) based regional energy management system which takes into consideration the
demographics of a region through a time of use tariff system which can differentiate between urban and rural
consumers with an integrated fuzzy module to preallocate the available resources between self and
community consumption by considering appliance level usage statistics. The proposed model also caters to
the continuous integration planning of renewable resources based on demography which has been verified by
exploring multiple scenarios with various combinations of renewable availability and storage capacity. The
organization of the rest of the paper is as follows. Section 2 describes the methodology of the proposed
energy management system by explaining the formation of the ToU tariff, fuzzy module to determine the
resource preallocation and the core MILP model. The results and discussions are present in section 3. The
major findings of the paper, implementation areas and future work is summarized in section 4.

2. METHOD

The development of an energy management system to cater to urban and rural areas keeping in mind
the demographical influence on the energy use priorities requires the implementation of a tariff system which
can be used to differentiate between the peak, valley, and flat periods of urban and rural areas. The
implementation of this tariff system in the optimization algorithm is critical in effective resource allocation
and demand management on a regional basis. A time of day tariff system was developed using the time of
use tariff plan provided by the state utility board and the peak, flat, and valley period of power demand
partitioning method explained in [27]. The process of the tariff determination using the said method has been
shown in Figure 1(a) and is mathematically expressed (1) and (2).

. 1 —_
min {F(Pf,,,pr) = 27 2me.rv) (P — Pm)z} (1)

i€e24
—_— 1
Pm=;ZiemPi 2

Another important aspect of effective demand response management in a renewable integrated
mixed demographic region having both urban and rural components is renewable resource allocation. With
efficient management the consumer can be incentivized to fulfill their power requirement at a time instant by
drawing power from both grid and the available renewable resource. This consumer may become a prosumer
by selling the unused renewable power to the community. However, it is important to determine the
maximum share of each participant of the community to ensure maxmum efficiency. A fuzzy logic-based
technique was developed end to determine the percentage of hourly demand of all urban and rural consumers
which can be supplied from grid or the available renewable energy at an appliance level. This technique
benefits not only the consumers having renewable generation but also those who are unable to install any
renewable source. The fuzzy rulebase developed to tag the urban and renewable hourly loads as grid or
renewable compatible is shown in Table 1.

The process of determining the maximum renewable resource allocation through fuzzy application is
explained (3) to (6), where R is the total renewable energy available at time t, Rf, denotes community
renewable energy available from the k" house at time t, R{ denotes the renewable energy available from self
at time t, S; ., is the selection coefficient of each appliance of the j™ appliance of the k™ house of the r"
region whose value determines whether the appliance will draw from grid or renewable. A value of 1 denotes
renewable source whereas a value of 2 denotes grid source. 7ty ,, P; k., LY, @and TD are the runtime and
power consumption of the j appliance of the k™ house of the r™ region, upper limit of renewable resource
allocation to the k™ house of the r™" region at the t™" time.

RZ = ?[:1 ng,t + R{ (3)

Sj,k,r = f(R{, Pj,k,‘rl rtj,k,T)' VSj‘k'.r € [1,2] (4)

rt,P € f(Urb, Rur) (5)
SikrXPjir

Ly = L2 S, € [1] (6)
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The proposed MILP based predictive control integrates the fuzzy logic module explained above with
an intelligent optimizer. The concept underlying the intelligent optimizer for the regional community energy
management system (RCEMS) is presented in the Figure 1(b). The intelligent optimizer comprises of a fuzzy
logic system and a MILP module. The fuzzy logic module combines the weather parameters and consumer
appliance preferences to determine the maximum hourly percentage of loads that can be allocated to each
consumer to maximize the benefits of the region catered to by the RCEMS. The output of the fuzzy module is
provided as an input to the MILP optimizer along with the following information:

— Information related to electrical consumption and appliance use priority of urban and rural residential
units i.e., P, , is consumption of active power in Watts, R, , .. is consumption of reactive power in Var,
and P/, is available photovoltaic (PV) power.

— Energy storage availability and storage capacity details, SoCy  , is state of charge of the battery bank.

— The appliance switching pattern, regional appliance usage priority, and the fixed or flexible nature of the
appliances of house k in region r.

Input the power demand data of
the region r: Py = (P, Pa, ... P2y}

Generate new sequence after sorting
demand profile in increasing order

l

The boundary variables P, and Py, are initialised as P, , =
P{,Pp, = P{wherei=1&j=2

I
)
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Figure 1. Flowchart of: (a) TOD tariff development algorithm for urban and rural region power demand and
(b) general structure of the work proposed
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Table 1. Fuzzy rule base for load source mapping with renewable availability
Appliance power consumption

Renewable availability  Appliance runtime  Very high High Medium Low Very low

High Very high Not likely  Not likely  Not likely Likely Likely
High Not likely  Not likely  Likely Likely Very likely
Medium Not likely  Likely Likely Very likely  Very likely
Low Likely Likely Very Likely  Very likely  Very likely
Very low Likely Likely Very Likely  Very likely  Very likely

Low Very high Not likely ~ Not likely  Not likely Not likely Likely
High Not likely  Not likely  Not likely Likely Likely
Medium Not likely  Not likely  Likely Likely Likely
Low Not likely  Likely Likely Likely Very likely
Very low Likely Likely Likely Very likely  Very likely

The above information was obtained from each house by the aggregator per hour. In case of
schedulable appliances that can be automatically controlled, the number of working hours and the time gap
between two consecutive working hours of each schedulable appliance for house k of the r* region was
provided to the aggregator. The active power consumption is composed of the elements shown in (7).

— AMC MC MC
Pytr = X521 Vier jtPrerj + Xj=1 Vier,jtPrrj + 2j=1 Tt P, (7)

— Appliances whose operation is user defined at a pre-fixed time interval. They are neither monitored nor
controlled by the energy management system (MC).

— Appliances with flexible runtime and both controlled and monitored by the energy management system
(AMC).

— Appliances monitored by the energy management system but controlled by the user (MC).
where t € [1,2...,24], k € [UHL1, UH2, RH1, RH2], r € [Urb, Rur] and j € [1, 2, ..., total_appliances].
v,v,7 € [0,1] denote the switching states of MC, AMC, and MC appliances.

The complexity of forming the problem of community energy management is very high. The
proposed RCEMS was able to manage the power consumption of the entire region-based community in order
to obtain a solution with the cost of operation minimized to the maximum extent. The complexity of the
RCEMS arises from the fact that there are multiple factors to ensure such as the energy balance of each
residential unit considered, the energy balance of the demographic regions considered, the balance between
the cost reduction and comfort of the users of each region and the energy community as a whole, the state of
charge of available energy storage devices, obtaining an economic balance between charging the devices
with available renewable or grid energy and the energy balance between the grid and the community under
study. The objective function detailed in (8) is solved for each sampling time interval by the proposed
appliance specific MILP based optimizer model.

grid+ + ren+ + comm+ +
Nt oNH Pt,k,r X CGiy + Pt,k,r X CR{, + Pt,k,r X CCf,

t=14ik=1 id—
grid - comm-— -
Pt,k,r X CGt’r —Fekr X CCt,r

minC™m = min YNk, At (8)

In (8), the prediction period of 24 hours is denoted byNt, the total number of participating houses
from the urban and rural communities are given by NH, NR denotes the total number of regional variations
considered and the sampling rate of one hour is represented by At. Ptf’kryi“/Ptf’kryid_ denotes grid active power
(kW) projected to be bought and sold, PSy™*/PERR™ ™ is the community active power (kW) projected to be
bought and sold, CG;,/CG;, being the hourly cost of grid active power projected to be bought and sold,
CCHICCE, being the hourly cost of regional community active power bought and sold, P/ is the total
renewable energy used, CR{, being the cost of self-generated renewable energy used by a residential unit,

t € [1,2,..,Nt], k € [UH1,UH2,RH1,RH2], and r € [Urb, Rur].

0 < PI'** < conn_load,,, x SEE, )
0 < PI'** < conn_load,,, x S&, (10)

The constraints that have been considered are listed from (9) to (21). The grid power bought and
sold by a residential unit has to be non-negative and less than the unit’s contracted power as ensured by (9)
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and (10) The variables used to distinguish between the selling or buying mode of a participant from the grid

are tkr

e [0,1], where O means power is being sold and 1 means power is being bought.

0<P¥™ <conn_load, , xS, -

0 < PEom™* < conn_loady., X S¢e 12
tkr tkr

The limits of community power bought and sold by any residential unit is given by (11) and (12)

CB

S.
where Ly

€ [0,1]. For these constraints the contracted power is considered to be the connected load

conn_loadk,r.

Zr 1 k Comm+ = Irvi 1;2’51(1 - Ll,é‘r)R,i‘r (13)
appgpvr + apppeve + PG + PETTT + PR = LY, (14)
Péet + P_appfiey ™ = PG+ PIT™ + PR, (15)
Sékr + Stier <1 (16)
SCE 458, <1 (17)
S_appix, + S_appfy, + S_appiir™ < 1 (18)
N=t - app(s aPPL thr TS aPPz thr TS appf?’li”r”) X app_Piyr = Prir (19)
2y X" S_appf, x app_P < PEY (20)
SN TR NN =P S_appfy i, + S_appfi i, + S_appfiist = app_rung g, (21)

The community power balance is given (13) and the balance of individual unit’s allocated renewable
energy consumption is implemented (14) where apps?”* is the PV power utilized by the i schedulable

appliance, appr{"* being the PV power utilized by the i™ fixed use appliance. At any time instant, the

recharging power drawn by the battery from the PV source or the grid is given by PRP* and PESf

respectively. P2, denotes discharging power drawn from the battery by the residential units and Pappfzif is
the total grid power drawn by the combination of fixed and schedulable appliances. The power balance of the
appliance power consumptions over the scheduling horizon is given (15). Constraints (16) and (17) restrict
the participants from selling the grid or community power bought by them to the community again. Any
appliance switched on at a particular time interval is at the liberty to draw power from community, grid or
self PV source if available but cannot utilize exploit than one source as implemented (18). The consumer’s

choice for switching of fixed appliances is adhered to (19). SaMJ e Sappftkr, Sappcomm € [0,1] denotes

the source selection variables for grid, self-renewable and community respectively. appp,, , denotes the

rated power of the appliance under consideration. The limit of power drawn by the appliances at any instant
has to be less than or equal to the available PV power as ensured (20). The daily runtime requirement
fulfillment for any appliance is ensured (21). The balance between energy generation and consumption for
grid and renewable is delinked and ensured separately (22) and (23). For all these constraints t €
[1,2, ...,24], k € [UH1, UH2, RH1, RH2], r € [Urb, Rur],and i € [1, 2, ..., total_appliances].

ST app_SEE, + 2P app PV 4+ PO + PE™T + PRES = PLY, (22)

tkr

if battery is not available then PR} = 0.
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Napps ) MappF ) Napps NappF GB+ _
Yy appgrids+ + 2o app gria+ +2io appeomm+ +2,51 apppomm+ + Pry =
grid+ comm+ B—
For  +Poir ™ + Pepr (23)

The battery, if available, is allowed to be charged from all three sources as this allows the battery to
take advantage of the off-peak grid tariff and also the renewable availability period to get charged allowing
the use of the battery during the peak hours.

min _SOC? < SoCE < max _SoCP (24)
Sociélit,k = Socﬁ'naz,k (25)
SoCE, = SoCE,_, +n? X chy + nf. x disch, (26)
Pet —PEty <Ry 27)
Per 1 — P <Rq (28)
SB6 + SBC 4 §BR <1 (29)

In (24) specifies that the state of charge SoCZ of the storage system of the k" house should lie
between the maximum and minimum values given by max_SoCF and min _SoC¢ respectively. SoCg;, , and
S0CFya1x are the initial and final charging state of the battery banks. SoC#, is the state of charge of the

battery bank B of the k" house at time t. % and " are the charging and discharging efficiency of the battery
bank. The charging and discharging power being drawn by the battery bank at time ¢ is given by the variables
ch; and disch, respectively P,f_;’ and P,E; and are the charging and discharging power being drawn by the
battery of the k" house at time period ¢. The ramp up and ramp down values for charging and discharging
values of the battery are are R, and R,. SB¢, SB¢, SBR are the switching variables of the battery bank for
charging from grid, community and renewable sources respectively. In (25) ensures the level of battery bank
that needs to be maintained at the end of the period of prediction. The state of charge of the battery at any
instant is given (26). The charging and discharging rate cannot be more than the ramp up or ramp down
values respectively as ensured (27) and (28). In (29) restricts the battery bank to being charged from only one
source at a particular time period.

Osplgg—spl?_maxxsch (30)
0< P,f,;F < P,f_max x(1-S.) (3)
Sen = SBG + SBC  SBR (32)

From (30) to (32) ensures that charging or discharging power of the battery banks is non-negative at
a particular time. In any household, some appliances have flexible usage times. The operation of this
appliances can be shifted to any time period of the day. However, their daily operational quota needs to be
maintained. As such, it is practical to include the provision of such flexible and shiftable appliances in the
proposed algorithm. The schedulable loads have to follow the following restrictions:
— The appliance must operate for the duration specified by the user denoted by WM,. . ;

— It has to remain switched on for a minimum pre-specified period of time WMff("i

— The power demand of the appliance is considered to be constant at its rated power Papps%

The constraints imposed are expressed in (33) to (36) for Vvre [Urb,Rur],
k € [UH1,UH2,RH1,RH2], t € [1,2,....,24], i € [1,2...., NS] where UH1=urban house 1, UH2=urban house
2, RH1=rural house 1, RH2=rural house 2, and NS=total number of schedulable appliances.

WMZR e = WMZR i esr 2 TDYYY (33)

WM kie = Pirm X WMy, (34)
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NS
Yo Wi +v) <1 (35)
v+ vl <1 (36)
WM e =Tty (37)

vi and vf{f are the switch on and switch off status of the appliance. TD/%} is the time delay between

successive switching on time of the appliance. The condition of the appliance remaining switched on for the
prespecified number of consecutive hours is ensured by the constraint in (33). In (34) ensures that the power
consumption P2, of the appliance is constant and equal to its rating during the periods of switched on time
of the appliance WMTOﬁi't. The shift able appliance switched on at a particular time can draw power either
from the grid or renewable source as ensured (35). The startup and shut down time of a schedulable appliance
cannot be at the same time instant as ensured (36) whereas the adherence to total daily runtime of the
appliance is met (37).

3. RESULTS AND DISCUSSION

The simulations are performed on energy profiles of two urban and two rural houses together
forming an energy community. These load profiles were simulated using LoadProGen simulator [28] in
MATLAB 2021a®. The parameters of urban and rural power consumption preferences, appliance ownership
and appliance usage time for simulating these load profiles were obtained from surveys conducted on
residential houses of rural and urban areas [29], [30] and are shown in Table 2 where R denotes rural house
and U denotes urban house. The unoptimised power consumption of the two urban and two rural houses
forming the energy community simulated for the prediction horizon of 24 hours are shown in Figure 2(a).
Figure 2(b) shows the peak, flat, and valley hours obtained by applying the period partitioning model to the
community energy consumption formed by adding the consumption of the four houses together. It shows a
few peak hours in the morning while the valley hours are seen near the evening. The concentration of peak
and flat hours during the daytime can be explained by the running of the space cooling appliances during the
daytime. As these appliances consume a large amount of power they increase the community energy
consumption values by a significant amount. The time horizon for performing the simulations is considered
as 24 hours. The simulations are performed using MILP based community optimization. The upper and lower
limits of the renewable power made available toeach house of the community per hour is obtained by using
the fuzzy inference method explained in section.

Table 2. Appliance ownership and usage details for urban and rural consumers

Rated Number Functioning Fur)ctioning Fun_ctioning
Appliance name power (W) cycle (hours)  duration (hours) window
R U R U R U R U
TV 127 1 2 1 1 5 6 11-22 18-24
Music system 100 - 2 - 1 - 6 - 24
Refrigerator 150 1 1 1 1 11 24 24 24
Computer 250 - 2 - 1 3 - 10-12
18-22
Geyser 2000 - 2 - 1 - 1 - 6-9
Washing machine 400 1 1 1 1 1 2 8-16 10-15
Water pump 750 1 1 1 1 2 2 24 24
Iron 1100 - 1 - 1 - 1 - 24
Ceiling fan 40 1 3 1 1 5 8 24 24
AC 1800 1 2 1 1 5 8 1-7 1-6
12-15 12-16
18-24 22-24
Table fan 70 - 1 - 1 - 4 - 24
Incandescent lamp/CFL/LED 97/12/8 2 3 1 1 9 8 5-8 24
18-24
LED tubes 20 - 3 - 1 - 4 5-8 18-24
18-24
OTG/microwave 1000 1 1 1 1 1 2 5-11 8-10
16-18 21-24
Cooler 224 1 - 1 - 3 - 24 -
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Figure 2. The simulated outputs of: (a) power consumption of the urban and rural houses and (b) the peak,
flat, and valley periods of the community obtained using the period partitioning model

Time of day prices of energy has been used for optimization and the day ahead forecasted values of
the renewable power availability of each house is obtained by using artificial neural network (ANN). The
control signals for battery banks and flexible loads for both the urban and rural residential units are generated
based on the optimized cost function. The simulations are presented for a single season i.e., summer, but with
two distinct regional power consumption characteristics and a community TOD tariff system to capture the
effect of the regional power usage variation on the operation of Al controlled energy community. This study
is crucial for developing a smart energy management system for application to areas encompassing regions
having different demographic patterns. The residential units use a time of use tariff for purchasing energy
from the grid. The purchasing and selling prices for the interactions with grid are shown in Table 3 and that
of the community is shown in Table 4. This helps in observing the performance of the system under an
organized dynamic tariff system. The fuzzy module output LY, .. has been considered as the upper boundary
value of total PV power available to a participant household for self utilization for each time period. The
rated capacity of the battery considered for one urban household has been fixed at 10 kW which is sufficient
to supply the entire connected load of the household. The limit of charging and discharging power is
considered to be 5 kW whereas the ramping power is considered to be 2 kW for both charging and
discharging. The efficiency of charging and discharging is considered to be 95%. The number of schedulable
appliances considered are apps, € [washing machine, electric iron, and water pump] and apps, € [washing
machine and water pump] where apps, denotes the urban schedulable appliances and apps, denotes the
rural schedulable appliances. The restrictions imposed on these appliances are as given in (33) to (37). The
total runtime value that needs to satisfied for each appliance and their rated power is as given in the columns
functioning duration and rated power respectively in Table 2.
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Table 3. Purchase and sale price of the interaction between home and grid
Price in INR/KWh

Period of demand Medium  High Low
Purchase from grid utility 7.97 951 6381
Sell to grid by prosumer 2.4 285 2.04

Table 4. Purchase and sale price of the interaction between home and community
Price in INR/KWh

Period of demand Medium  High  Low
Self renewable buy 3.99 4,78  3.405
Community buy/sell by prosumer 3.2 38 2724

The houses are equipped with solar power output with peak value equivalent to 30% of their
connected load. The forecasted PV power output of the four homes of the community are provided for the
prediction horizon of 24 hours in Figure 3. The implementation is done in MATLAB 2021a and the
optimization problem was solved with Gurobi using MATLAB-Gurobi interface. Nine scenarios are
considered for performing the simulations as shown in Table 5. These nine scenarios are chosen due to their
relation with the need to assess the operational gains of continuous regional renewable integration in an
interregional energy community over a non-energy community operation with varying degree of renewable
energy production by each household and/or the presence of controlled energy storage capacity and
appliances.
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Figure 3. Forecasted PV power generation for the urban and rural regions

An important point to note is that one of the contributions of this paper is to minimize the energy
cost of the community as a whole with less importance to the cost of individual members. The ideal value of
the energy purchased and sold between the entities involved in the optimization at each time period is
determined by the program with focus on the minimization of community energy costs. The cost of operation
for all scenarios is shown in Table 5. Here U1 denotes UH 1, U2 denotes UH 2, R1 denotes rural house 1 and
R2 denotes rural house 2. It is observable from the table that there is an operational cost reduction in all other
scenarios compared to the initial scenario 0 where the power consumption of individual houses were
optimized without any community formation. The selling price to the community is considered to be more
than the selling price to the grid, both of which are less than the power purchased from the grid. This
distinction was done to ensure that the available renewable energy is first utilized by the households
themselves with certain constraints. For homes having low energy consumption, specifically being the homes
of the rural region, the unallocated power is sold to the community first and then to the grid. The power
purchased (positive) and sold (negative) by the four urban and rural households to the community is shown in
Figures 4(a) to (d) and the power purchased from the grid by the community for all the nine scenarios is
shown in Figure 5. The cost comparison for all the houses along with the community is shown in Figure 6.
Figures 4(a) to (d) shows the power buying and selling pattern of the individuals which corresponds to the
power consumption pattern which is reflected through the community and grid energy buying and selling
prices. Figure 5 shows that a significnt reduction grid demand has been achieved both in the terms of peak
demand periods and average demand. The peak demand period of the grid has been replaced by a new
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renewable demand peak during the solar availability hours thus representing the effectiveness of this method.
The results shown in Figure 6 indicate that there might be slight increase in the cost of individual houses in
some scenarios. This results from the fact that the RCEMS developed is focussed towards decreasing the cost
of the regional community as a whole and not individual houses. The increase in energy cost can also be
attributed to the appliance usage choices made by the users. However, this slight increase in energy cost in
some days might be offset by larger decrease in some other day depending upon the appliance usage
preferences of the user. It can also be observed from Table 6 that cost variation of urban users is more than
that of the rural users when all the scenarios are considered. This can be attributed to the fact that appliance
level classification for usage of renewable energy has been done in this work. Thus, high energy users with
higher appliance ownership variation, more number of shiftable appliances and higher PV generation will be
able to benefit more from the scheme when compared with low energy use households. With increasing
energy use in urban areas this advantage can incentivize the urban households to form communities with low
energy use rural households thus benefiting both the parties.

Table 5. List of scenarios simulated for continuous regional renewable integration
Resource availability

Scenario # PV power Battery energy storage system  Demand side management
0 None None Individual
1 RH1 None Community
2 UH 1 None Community
3 UH1 RH1 None Community
4 UH 1, UH2 None Community
5 UH2,RH1 None Community
6 UH1,UH2,RH1 None Community
7 UH 1, UH 2, RH 1, RH 2 (50%) None Community
8 UH 1, UH 2, RH 1, RH 2 (90%) None Community
9 UH 1, UH 2, RH 1, RH 2 (90%) UH 1 Community
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Figure 4. Buying (positive) and selling (negative) power from and to the community by: (a) rural home 1,
(b) rural home 2, (c) urban home 1, and (d) urban home 2
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Figure 5. Total power bought from the grid by the community for all the scenarios
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Figure 6. Cost comparison of the participating households and the community for all the scenarios

Table 6. Home and community costs obtained by the proposed method

# Scenario Ul u2 R1 R2 Community cost  Percentage reduction in community cost
Experimental case  419.23 420.29 12586 122.29 1087.67 -
Scenario 0 41284 41321 12291 119.88 1068.84 1.73
Scenario 1 410.78 388.99 9374 117.66 1011.16 7.03
Scenario 2 339.68 392.16 11959 116.98 968.41 10.96
Scenario 3 33541 36339 9374 118.20 910.74 16.27
Scenario 4 378.72 32791 9374 119.23 919.60 15.45
Scenario 5 32965 32844 108.67 114.30 881.06 19.00
Scenario 6 32396 31640 9375  99.87 833.98 23.32
Scenario 7 31181 308.00 9158 102.48 813.87 25.17
Scenario 8 31445 29431 92.74 91.50 793.00 27.09
Scenario 9 289.28 276.36  90.15  92.30 748.09 31.22

It is to be noted that the households only buy energy from the community during the daytime when
solar energy is available. This restricted the cost reduction operation during the solar hours only. The
introduction of energy storage in the community can further decrease the cost by allowing the households to
store the available solar energy bought from the community and using it in the non solar hours as
demonstrated in scenario 9 where a battery bank was introduced in urban house no 1.
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4. CONCLUSION

This paper provides the formation of a regional energy management system for application to
multiregional and mixed demographics energy communities. The proposed energy management system
addresses the regional diversity in per capita energy consumption by catering to the specific energy
consumption features of urban and rural power consumers. The proposed regional energy management
system addresses the regional diversity in per capita energy consumption by catering to the specific energy
consumption features of urban and rural power consumers. It incorporates the demography influenced
differences in power consumption patterns through a demography oriented ToU tariff system and a fuzzy
logic decision module to control the preallocation of available renewable resources to the different consumers
based on their demographical categorization. The problem is formulated in the form of MILP incorporating
the regional power use restrictions to obtain a more realistic technical and economical solution. The hourly
renewable energy allocation limit to each urban and rural house is obtained by using the fuzzy logic inference
system. The system is tested on the energy profiles of two urban and two rural households simulated using
LoadProGen in MATLAB 2021a. The results show that the implementation of the system always provides
operational savings compared to the conventional systems. The results clearly show the relevance of forming
a multiregional energy community as it reduces both the load on the grid and the energy cost of the houses as
well as the community. The relevance of energy prices from different sources is also very significant as they
can directly affect the amount of power being traded amongst the individual houses, community and grid.
The results also show that incremental integration of the renewable sources and storage devices in the urban
and rural region energy communities can give the best possible results as it can increase the flexibility of
appliance usage outside the renewable availability hours also. Future work will be done to extend the
proposed methodology to incorporate the commercial and industrial consumers of the urban and rural regions
along with all the different consumer categories for the semi urban regions. The development of the required
hardware will then be done to implement the proposed solution in utility sectors.
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