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 This research on hybrid models for drug recommendation systems proposes 

long short-term memory (LSTM) and type-2 fuzzy logic (T2FL) to make its 

recommendations more accurate and reliable. The model leverages LSTM's 

ability to capture temporal patterns in medical data while addressing the 

inherent uncertainty through T2FL. Evaluation metrics such as mean 

absolute error (MAE), root mean squared error (RMSE), coefficient of 

determination (R²), accuracy, precision, recall, F1-Score, and area under the 

curve-receiver operating characteristic (AUC-ROC) demonstrate that the 

proposed model significantly outperforms traditional models like LSTM 

without fuzzy, linear regression, and random forest. Integrating these two 

methods results in more accurate and consistent predictions, making the 

model highly effective in handling complex and uncertain data. Practical 

implications include the potential for improving personalized treatment 

plans and patient outcomes in clinical settings. Future research directions 

involve applying this hybrid approach to larger, more diverse datasets and 

exploring additional hybrid methods that enhance prediction accuracy and 

model robustness. The findings suggest that the LSTM+T2FL model is a 

promising tool for advancing drug recommendation systems in the medical 

field. 
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1. INTRODUCTION 

Drug recommendation systems play a crucial role in the medical field, particularly in ensuring that 

patients receive timely and effective treatment [1]. However, the increasing volume of medical data poses 

significant challenges, particularly when it comes to processing and analyzing this information efficiently [2]. 

The inherent uncertainty in medical data—due to variations in patient responses to medications [3], 

incomplete clinical records, and ambiguous diagnoses [4]—further complicates the accuracy and reliability 

of existing drug recommendation systems [5]. 

While various methods have been employed to recommend drugs, many have needed help managing 

the complexity and uncertainty inherent in medical data effectively [2]. Conventional methods, such as linear 

regression or rule-based models, often fail to provide accurate recommendations because they need to 

account for the inherent uncertainties in the data [6]. Moreover, more sophisticated machine learning 

approaches, though promising, often require further adaptation to handle the variability in medical data [7]. 

Faced with these challenges, integrating deep learning technology with fuzzy logic presents an innovative 
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solution that can enhance the accuracy and reliability of drug recommendation systems [8]. This approach 

enables systems to process complex data more effectively and deliver more accurate recommendations, 

ultimately improving the quality of patient care [2]. 

Long short-term memory (LSTM) networks have proven to be highly effective in managing 

sequential data and long-term dependencies in medical predictions [9]. By maintaining information over 

extended time intervals, LSTM networks excel in capturing the temporal patterns crucial for accurate 

diagnoses and treatment recommendations [10]. Their ability to remember previous states allows them to 

handle patient data's complex, fluctuating nature, leading to more personalized and timely interventions [11]. 

Moreover, LSTM's robustness against noise and missing data enhances the reliability of predictions, even in 

cases where data quality is less than ideal [12]. This capability makes LSTM a powerful tool for improving 

patient outcomes, ensuring that medical decisions are data-driven and contextually aware [13]. 

The central challenge of drug recommendation systems is managing the inherent uncertainty and 

ambiguity in clinical data [14]. Variations in patient response to medications, often influenced by genetics, 

lifestyle, and comorbidities, make it difficult to predict outcomes accurately [15]. Additionally, complete or 

consistent medical records complicate the decision-making process, as crucial patient information may need 

to be included or interpreted [16]. This uncertainty can lead to less effective treatment recommendations, 

risking patient safety and outcomes [17]. Overcoming these challenges requires integrating advanced 

technologies like fuzzy logic and machine learning to handle data variability better and provide more reliable 

recommendations [18]. 

Integrating type-2 fuzzy logic (T2FL) into drug recommendation systems enhances prediction 

accuracy by effectively handling clinical data's inherent uncertainty and vagueness [19]. Unlike traditional 

models, T2FL can better accommodate variations in patient responses to medications, offering a more 

nuanced approach to decision-making [20]. This capability allows the system to generate personalized and 

robust recommendations, even when faced with incomplete or ambiguous information [21]. By capturing the 

complexities of medical data more accurately, T2FL ensures that patients receive the most appropriate 

treatments [22]. Ultimately, this integration improves patient outcomes and confidence in the system's 

recommendations [23].  

The combination of LSTM and T2FL models in medical applications significantly outperforms 

traditional prediction models by addressing temporal dependencies and patient data uncertainty [24]. 

Traditional models often need help with medical information's dynamic and uncertain nature, leading to less 

accurate predictions [25]. In contrast, LSTM excels at capturing the sequential patterns in patient histories, 

while T2FL effectively manages the inherent ambiguity in clinical data [26]. This integration allows for more 

personalized and reliable treatment recommendations, ensuring that the unique complexities of each patient's 

case are better understood and addressed [27]. As a result, patient outcomes improve, and medical decisions 

become more precise and confident [28]. 

The variability in patient data significantly impacts the reliability of drug recommendation systems 

based on LSTM and T2FL by introducing challenges related to data consistency and accuracy [29]. As 

patient conditions fluctuate and new data points are added, LSTM models effectively capture these temporal 

changes, ensuring that the recommendations remain relevant over time [30]. However, the inherent 

uncertainty and ambiguity in clinical data can lead to inconsistent predictions, which T2FL addresses by 

accommodating this variability and refining the decision-making process [24]. This combination allows the 

system to adapt to the unique characteristics of each patient, providing more personalized and reliable 

recommendations [25]. Ultimately, managing data variability ensures that the system remains robust and 

effective in delivering accurate treatment options [31]. 

Expert systems that combine LSTM and T2FL are highly adaptable to a wide range of clinical 

conditions due to their ability to handle both temporal dependencies and the inherent uncertainty in medical 

data [32]. LSTM networks excel at learning from sequential data, making them particularly effective in 

tracking the progression of chronic diseases or monitoring patient responses over time [24]. T2FL further 

enhances this adaptability by managing the ambiguity and variability in clinical data, allowing the system to 

make accurate predictions even in complex or poorly defined scenarios [23]. This combination enables the 

expert system to offer personalized recommendations across different medical contexts, from managing 

diabetes to predicting adverse drug reactions [27]. As a result, these systems are versatile and robust, 

ensuring reliable decision-making in diverse clinical environments [33].  

Several approaches have been developed to address these challenges, including machine learning 

models like LSTM networks and fuzzy logic systems. LSTM has proven effective in capturing temporal 

patterns in sequential data such as patient histories and medication timelines [10]. Similarly, fuzzy logic 

systems, particularly T2FL, have demonstrated the ability to manage uncertainty in data [22]. Despite their 

success in individual applications, both methods exhibit limitations. LSTM struggles with managing 

uncertainty in real-world data, while fuzzy logic systems alone are not well-equipped to handle the temporal 

dependencies that are critical in medical data. 
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While previous studies have employed LSTM or T2FL separately to manage temporal data or 

uncertainty, respectively, none have effectively combined these two methods to tackle both challenges 

simultaneously. This gap in the literature represents a significant opportunity to improve the accuracy and 

reliability of drug recommendation systems. Our research seeks to address this gap by proposing a hybrid 

model that integrates LSTM’s temporal sequence learning capabilities with T2FL’s uncertainty management. 

This approach aims to enhance predictive performance in complex, uncertain datasets where both temporal 

patterns and uncertainty play critical roles. 

The novelty of our approach lies in the integration of temporal sequence learning through LSTM 

and uncertainty management via T2FL, which has not been adequately explored in previous works. This 

method not only predicts future outcomes based on past patient records but also accommodates the inherent 

vagueness present in clinical data, offering a significant improvement in both accuracy and reliability. 

Through this research, we aim to create a more intelligent and reliable drug recommendation system. Our 

expected outcome is a significant improvement in prediction accuracy, which will ultimately contribute to 

better patient care. This study represents a meaningful advancement in medical decision-making technology 

by providing a robust, adaptive solution to the dual challenges of temporal dependencies and uncertainty in 

medical data. 

 

 

2. PROPOSED METHOD 

2.1.  Long short-term memory  

An LSTM, an RNN with special memory cells, can handle long-term dependencies better than a 

vanilla RNN precisely because it can handle the vanishing gradient problem – which means it can learn long-

term dependencies – by controlling the flow of information through these memory cells. There are three 

memory gates in LSTM – input, forget, and output – that regulate when to let memories in or out. LSTM 

remembers information over the long term through these gates and utilizes it effectively. 

Mathematically, the operations in LSTM can be described as: 

a. Forget gate. This gate decides which information to forget from the memory cell, as in (1). 

 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

 

where 𝑓𝑡 is the forget gate vector, 𝑊𝑓 is the trained weight, ℎ𝑡−1 is the output from the previous cell, 𝑥𝑡 is the 

current input, and 𝑏𝑓 is the bias. 

b. Input gate. This gate decides which new information to add to the memory cell, as in (2). 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

 (2) 

𝐶𝑡̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

  

where 𝑖𝑡 is the input gate vector, and 𝐶𝑡̃ is the candidate new memory value to be added. 

c. Memory cell update. As in (3), the memory cell's value is updated based on the forget and input gates. 

 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡̃ (3) 

 

where 𝐶𝑡 is the current memory cell value. 

d. Output gate. This gate decides which information to output from the memory cell, as in (4). 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

 (4) 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) 

  

where ℎ𝑡 is the output from the current memory cell. 

For example, in medical settings where temporal data analysis is essential, the ability of LSTM to 

retain and process long-term information is of great value. Temporal sequences of data, such as disease 

history and progression and treatment responses, are imperative to predict patient outcomes. LSTM models 

can make more accurate and meaningful predictions by considering the temporal context inherent in medical 

data. This can lead to immense improvements in medical care and personalized medicine. 
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2.2.  Type-2 fuzzy logic 

T2FL is an extension of type-1 fuzzy logic, which can deal with higher uncertainty. In type-1 fuzzy 

logic, uncertainty is treated by assigning a membership function to each input, thus mapping each input to a 

membership degree between 0 and 1. This approach assumes that the membership degree is known precisely, 

but this premise is only sometimes true in real life, especially for complex, ambiguous, or noisy data. 

T2FL introduces an additional layer of flexibility by allowing the membership function to be fuzzy. 

In other words, the degree of membership is not a single value but a range of possible values represented by a 

secondary membership function. This secondary membership function can capture the uncertainty about the 

degree of membership, thus providing a more robust way to model and manage uncertainty in the data. 

Mathematically, a type-2 fuzzy set 𝐴̃ in a universe of discourse 𝑋 is characterized by a fuzzy 

membership function μ𝐴(𝑥, 𝑢), where 𝑥 ∈ 𝑋 and 𝑢 ∈ 𝐽𝑥 ⊆ [0,1]. The function μ𝐴(𝑥, 𝑢) maps each pair 

(𝑥, 𝑢) to a value in the interval [0,1], which can be expressed as in (5). 
 

𝐴̃ = { ((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢)) ∣∣ ∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1] } (5) 
 

Here, 𝐽𝑥 is the primary membership of 𝑥, and μ𝐴(𝑥, 𝑢) is the secondary membership function that represents 

the degree of membership of 𝑢 within the interval 𝐽𝑥. 

T2FL handles uncertainty better than type-1 fuzzy logic by allowing for a range of possible 

membership values rather than a single crisp value. This additional layer of fuzziness makes T2FL more 

effective in modeling complex and uncertain environments where precise information is difficult to obtain. 

As a result, T2FL is particularly useful in applications like medical decision-making, where data can be 

ambiguous, noisy, or incomplete. 

 

2.3.  Proposed model 

This research proposes a drug recommendation system model, illustrated in Figure 1, which 

combines the LSTM approach with T2FL. The model comprises several vital stages that generate more 

accurate drug recommendation predictions. 
 
  

 
 

Figure 1. Proposed model for a drug recommendation system 
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a. Input data. The first stage involves receiving input data, which includes patient medical data such as 

medical history, symptoms, lab test results, and treatment history. The LSTM model processes this 

temporal data. 

b. LSTM layer. The input data is then passed through the LSTM layer. The LSTM layer reads the data 

sequence and identifies its temporal patterns, such as the order of medical events or how a patient’s 

condition changes over time. LSTM has special memory cells to hold important long-term information for 

later use. 

c. T2FL system. The output from the LSTM is then passed to the T2FL system. At this stage, uncertainties 

in the data, such as variations in patient responses to treatment, are managed by T2FL. This system allows 

for fuzzy membership degrees, providing greater flexibility in handling uncertainty and producing more 

accurate decisions. 

d. Decision-making module. The results from the T2FL system are then utilized in the decision-making 

module. This module generates drug recommendations based on the analysis conducted by both the 

LSTM and T2FL. The recommendations consider the processed temporal data and existing uncertainties, 

offering more accurate solutions tailored to the patient's needs. 

e. Output. The final stage is the model's output, the personalized drug recommendation. Based on the 

available data, this recommendation may include the type of drug, dosage, or combination therapy 

suggested for the patient. 

 

 

3. METHOD 

3.1.  Dataset and preprocessing 

The dataset used in this research was sourced from a reliable medical database and contains crucial 

information such as patient medical history, symptoms, lab test results, and treatment history. These 

attributes include patient ID, age, and gender, as well as details on health conditions and treatment outcomes. 

Data preprocessing was carefully performed to handle missing data, where missing values were imputed or 

filled based on previous records. Additionally, normalization was applied to ensure data was on a consistent 

scale, which is essential for the optimal performance of the LSTM model. Categorical attributes were also 

converted into numerical format through one-hot encoding, enabling the model to process the data 

effectively. 

Temporal data organization was a crucial step in the dataset preparation, where data was 

chronologically ordered for each patient. This allows the LSTM model to capture temporal patterns in the 

medical data, a crucial aspect of making accurate predictions. By carefully preparing the dataset, this research 

ensures the data is ready for analysis using LSTM and T2FL. These steps enhance data quality and ensure 

that the model can address the uncertainty and complexity of medical data. The result is a drug 

recommendation system that is smarter and more responsive to patient needs. 

 

3.2.  Experimental design 

This study was devoted to examining the performance of the hybrid model of LSTM and T2FL for 

drug recommendation. The pre-prepared dataset was divided into two parts: 80% was used to train the model 

(training set), and the remaining 20% was used to test the model (testing set). This was so the model could be 

trained on enough data to learn the existing patterns and tested on unseen data to examine its generalization 

capability. 

The dataset was preprocessed using Python’s Pandas and NumPy libraries to handle missing values 

and apply normalization. One-hot encoding was used for categorical variables such as gender and treatment 

type. The LSTM model was implemented using the TensorFlow framework and the T2FL was built using a 

custom implementation based on Gaussian membership functions with uncertain means. Parameter tuning 

was done through grid search, where the batch size, learning rate, and dropout rate were varied and the 

optimal combination was selected based on validation loss. 

The learning set is used to train the LSTM model and establish the parameters of the T2FL system. 

The model is trained until it learns the patterns to predict it precisely. After the training, the test set 

determines how the model performs on data it has never seen before. This would demonstrate how accurately 

the model can predict new data. 

During the model training, several vital parameters were utilized to optimize the performance of the 

LSTM and T2FL. Table 1 summarizes the parameters used in this experiment. This experimental design 

ensures the model is effectively trained and tested, with parameters set to balance prediction accuracy and 

generalization capability. The results from this experiment provide insights into how well the proposed 

model can be applied in real-world scenarios for drug recommendation. 
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Table 1. Parameter settings 
Parameter Value 

LSTM layer size 128 units 
Number of LSTM layers 2 layers 

Batch size 32 

Learning rate 0.001 
Optimizer Adam 

Epochs 50 

Dropout rate 0.2 (to prevent overfitting) 
Type-2 fuzzy membership function Gaussian with uncertain mean 

Defuzzification method Centroid of area (COA) 

 

   

3.3.  Evaluation method 

Table 2 illustrates the regression and classification metrics for the proposed model. For the regression 

problem, mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination (R²) 

are used to measure the model's predictive accuracy for continuous outcomes. For the classification problem, 

accuracy along with precision, recall, F1-Score, and area under the curve-receiver operating characteristic 

(AUC-ROC) can be used to analyze the predictive ability of a model for categorical outcomes (e.g., the model 

may predict whether a particular drug should be recommended for a person with specific parameters with a sure 

accuracy). These models provide a thorough approach to assessing the model’s performance. These metrics can 

determine the prediction's accuracy and model performance under noisy, complex data. 

 

 

Table 2. Evaluation metrics 
Metric type Metric name  Formula Description 

Regression MAE  MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1   Measures the average absolute difference 

between predicted and actual values. 

RMSE  
RMSE = √

1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   

Measures the square root of the average 
squared differences between predicted and 

actual values. 

R² 

  
𝑅2 = 1 −

∑ (𝑦𝑖−𝑦𝑖̂)2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

  Measures the proportion of variance in the 

dependent variable that is predictable from 

the independent variables. 

Classification Accuracy 
  

Accuracy =
TP + TN

TP + TN + FP + FN
  Measures the proportion of correct 

predictions out of total predictions made. 

Precision Precision =
TP

TP + FP
  Measures the proportion of true positive 

predictions among all positive predictions. 
Recall (sensitivity)  Recall =

TP

TP + FN
  Measures the proportion of actual positive 

cases correctly identified by the model. 

F1-Score 
  

F1-Score = 2 ×
Precision×Recall

Precision + Recall
  Harmonic mean of precision and recall, 

balancing the two metrics. 

AUC-ROC  Area under the curve of ROC 

that plots true positive rate vs. 
false positive rate. 

Measures the model’s ability to distinguish 

between classes. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Regression evaluation 

Table 3 shows the performance of the LSTM and T2FL combined model in comparison with 3 base 

models (LSTM without fuzzy, linear regression, and random forest) using MAE, RMSE, and the R² as 

evaluation metrics. The LSTM+T2FL model has a smaller MAE of 1.25, so the LSTM with fuzzy logic 

performs better than other models. In contrast, the LSTM without fuzzy logic has a higher MAE of 1.45, 

highlighting the benefit of integrating fuzzy logic to reduce prediction errors. Linear regression records an 

MAE of 1.50, and random forest comes in at 1.40, performing worse than the proposed approach. These 

results demonstrate that traditional models and random forests are less effective at handling complex data. 

Overall, the integration of T2FL with LSTM significantly improves prediction accuracy. 

 

 

Table 3. Regression performance comparison 
Model MAE RMSE R² 

LSTM+T2FL 1.25 1.75 0.85 

LSTM (without fuzzy) 1.45 2.00 0.80 

Linear regression 1.50 2.10 0.78 
Random forest 1.40 1.95 0.82 
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The LSTM+T2FL model demonstrates the lowest RMSE at 1.75, indicating fewer significant 

prediction errors than other models. The LSTM without fuzzy logic has a higher RMSE of 2.00, showing that 

T2FL enhances the model's resilience to outliers or significant errors. Linear regression records an RMSE of 

2.10, while random forest comes in at 1.95, both underperforming relative to the proposed approach. These 

results suggest that traditional models are less capable of managing significant errors. Integrating T2FL with 

LSTM significantly improves the model's ability to minimize significant prediction errors. 

LSTM+T2FL achieves an R² of 0.85, indicating that the model effectively explains 85% of the 

data's variance, demonstrating its strong ability to model relationships between variables. In contrast, LSTM 

without fuzzy logic has an R² of 0.80, showing it is slightly less capable of capturing data variance compared 

to the model with T2FL. Linear regression and random forest have R² values of 0.78 and 0.82, respectively, 

revealing that traditional approaches are not as robust as the proposed method in capturing complex data 

variations. These results underscore the superior performance of the LSTM+T2FL model. Overall, the 

integration of T2FL significantly enhances the model's ability to represent the underlying data patterns 

accurately. 

The proposed approach, which integrates LSTM with T2FL, delivers better MAE, RMSE, and R² 

results than the LSTM without fuzzy, linear regression, and random forest models. These results demonstrate 

that T2FL effectively addresses the uncertainty in the data and enhances the LSTM's ability to capture 

complex temporal patterns. Consequently, the proposed model outperforms others in making accurate and 

reliable predictions, making it a more effective solution for drug recommendation systems. 

 

4.2.  Classification evaluation 

Table 4 compares the proposed model's performance and robustness against noise with three 

baselines (the LSTM model without fuzzy logic, the support vector machine, and the random forest), 

considering accuracy, precision, recall, F1-Score, and AUC-ROC as evaluation metrics. 
 
 

Table 4. Classification performance comparison  
Model Accuracy Precision Recall F1-Score AUC-ROC 

LSTM+T2FL 0.92 0.91 0.90 0.91 0.94 

LSTM (without fuzzy) 0.88 0.87 0.86 0.87 0.89 

Support vector machine 0.85 0.84 0.83 0.83 0.87 

Random forest 0.87 0.86 0.85 0.85 0.88 

 
 

LSTM+T2FL has the highest accuracy and can predict 92% of the cases, which is better than others. 

This demonstrates that integrating T2FL significantly enhances prediction accuracy compared to other 

models. In contrast, LSTM without fuzzy has a lower accuracy of 0.88, indicating that adding fuzzy logic 

offers a clear advantage in managing complex data. SVM and random forest show accuracy levels of 0.85 

and 0.87, respectively, underscoring the relative ineffectiveness of traditional approaches compared to the 

proposed model. Overall, the integration of T2FL proves to be more effective in achieving higher accuracy in 

predictions. 

LSTM+T2FL achieves a precision of 0.91, indicating a lower rate of false positives than other 

models. LSTM without fuzzy, with a precision of 0.87, falls short of the performance seen with the 

integration of fuzzy logic, highlighting its role in improving positive prediction accuracy. SVM and random 

forest, with precisions of 0.84 and 0.86, respectively, further illustrate the superiority of the proposed model. 

These traditional models are less effective at minimizing false positives. Overall, the integration of T2FL 

significantly enhances the model’s precision. 

LSTM+T2FL achieves a recall of 0.90, demonstrating its strong effectiveness in identifying positive 

cases. LSTM without fuzzy shows a slightly lower recall of 0.86, suggesting that integrating fuzzy logic 

enhances the model’s ability to capture more positive instances. SVM and random forest, with recall values 

of 0.83 and 0.85, respectively, further underscore the superiority of the proposed model. These results 

indicate that traditional models are less capable of identifying all positive cases than the LSTM+T2FL 

approach. Overall, including fuzzy logic improves the model's sensitivity to positive cases. 

LSTM+T2FL achieves an F1-Score of 0.91, demonstrating a solid balance between precision and 

recall. This indicates that the model excels in delivering consistent and reliable predictions. LSTM without 

fuzzy has a lower F1-Score of 0.87, highlighting that including fuzzy logic enhances the balance between 

precision and recall. SVM and random forest, with F1-Scores of 0.83 and 0.85, respectively, further illustrate 

that traditional approaches are less effective in maintaining this balance than the proposed model. The 

integration of T2FL significantly improves the model's overall predictive performance. 
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LSTM+T2FL achieves the highest AUC-ROC score at 0.94, demonstrating its exceptional ability to 

distinguish between positive and negative classes. LSTM without fuzzy logic shows a 0.89 AUC-ROC score, 

which reveals that the model's discriminant capability increases with the inclusion of fuzzy logic. SVM and 

random forest show 0.87 and 0.88, respectively. These results suggest that traditional models are less 

effective in distinguishing between classes than the LSTM+T2FL approach. Overall, including fuzzy logic 

significantly improves the model's ability to differentiate between classes accurately. 

The LSTM+T2FL approach outperforms all other models across all classification evaluation 

metrics, including accuracy, precision, recall, F1-Score, and AUC-ROC. Integrating T2FL into LSTM 

significantly improves the model’s ability to handle uncertainty and complexity in medical data. As a result, 

the proposed model provides more reliable and accurate predictions, making it a superior solution for drug 

recommendation systems. 

 

4.3.  Summarization of key findings 

We found that integrating LSTM networks with T2FL significantly enhances the accuracy and 

reliability of drug recommendation systems. Specifically, LSTM's ability to capture temporal dependencies 

inpatient data, when combined with T2FL's strength in managing uncertainty, resulted in more precise and 

contextually aware predictions. Our results indicate that our hybrid methodology surpassed conventional 

models, including LSTM alone, linear regression, and random forest, especially when medical data was 

inadequate or confusing. The proposed strategy yielded enhanced predictive accuracy, as demonstrated by 

advancements in critical performance metrics, including MAE, RMSE, and R2. This research addresses the 

crucial challenge of managing both temporal complexity and uncertainty in medical data, providing a more 

robust and adaptive solution that contributes to more reliable drug recommendations and improved patient 

care outcomes. 

 

4.4.  Result interpretations 

Our findings indicate that higher uncertainty in medical data, typically associated with poor 

performance in traditional drug recommendation systems, is effectively managed by integrating T2FL with 

LSTM networks. This hybrid approach captured temporal patterns and addressed the inherent vagueness in 

patient records, resulting in improved predictive accuracy. Compared with other studies, such as those 

utilizing standalone LSTM or fuzzy logic systems, our model demonstrated superior performance across 

multiple metrics, including MAE and RMSE. Interestingly, while previous research suggested that increased 

data complexity might lead to decreased model performance, our results defied this expectation by showing 

that the proposed method thrived in complex, uncertain environments. One possible alternative explanation is 

that the combined model's ability to handle temporal dependencies and uncertainty in tandem provided a 

unique advantage not explored in previous works. This suggests that future systems may benefit from similar 

hybrid approaches, leveraging deep learning and fuzzy logic without sacrificing accuracy or adaptability. 

 

4.5.  Research limitations 

This study investigated a comprehensive integration of LSTM networks and T2FL for improving 

drug recommendation systems, effectively addressing both temporal dependencies and uncertainty in medical 

data. However, additional and in-depth research may be required to confirm the generalizability of this 

hybrid model across larger and more diverse datasets, particularly in medical environments with more 

complex and heterogeneous patient records. While the relatively small dataset used in this study may limit 

the scope of the findings, the results remain valid as they highlight the potential of the proposed method in 

handling uncertainty and improving predictive accuracy. The consistent performance improvements across 

key evaluation metrics—such as MAE, RMSE, and R2—demonstrate that the model effectively answers the 

research question by providing more reliable drug recommendations in uncertain data contexts despite the 

limitations of scale and diversity. 

 

4.6.  Future research implication 

Our research shows that the hybrid integration of LSTM networks and T2FL is more resilient in 

handling uncertainty and temporal complexities in medical data than traditional models like standalone 

LSTM or random forest. This finding builds on previous studies that emphasized the limitations of existing 

models in managing the inherent vagueness of clinical records. The research contributes new insights into 

how combining deep learning and fuzzy logic can enhance the accuracy and reliability of drug 

recommendation systems. Future research may explore scaling this hybrid approach to more diverse medical 

datasets and practical methods for implementing such systems in real-world healthcare settings, where data 

uncertainty and sequence dependencies are critical. This opens the door for further advancements in adaptive, 

personalized healthcare technologies, building on the foundation established by this study. 
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5. CONCLUSION 

This research highlights the significant advancements in drug recommendation systems achieved by 

integrating LSTM networks with T2FL. By effectively addressing temporal dependencies and inherent 

uncertainties in medical data, the hybrid approach surpasses traditional models in both predictive accuracy 

and reliability. The system demonstrates the potential to revolutionize personalized patient care and medical 

decision-making, particularly in handling complex clinical environments. 

Future research could explore scaling this model to larger and more heterogeneous datasets to 

validate its robustness and generalizability. Additionally, investigating the integration of other machine 

learning and fuzzy systems or applying this hybrid framework to other domains, such as chronic disease 

management or adverse drug reaction prediction, could further enhance its utility and effectiveness. These 

directions promise to build on the foundation laid by this study, driving the development of adaptive, 

intelligent healthcare technologies. 
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