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Lung cancer (LC) is one of the most prevalent causes of cancer-related death
worldwide. World Health Organization (WHO) classifies LC into two broad
histological subtypes: non-small cell lung cancer (NSCLC) which is the
cause of about 85% of cases and small cell lung cancer (SCLC) which
makes up the remaining 15%. Several issues can influence LC detection
including poor image quality, insufficient training data, low-quality image
characteristics, and poor tumor localization. To overcome these challenges a
novel TRI-level LC classification via deep learning-based GoogleNet with
computed tomography (CT) images (TRI-LCNet) approach has been
proposed for early-stage LC detection using CT images. Initially, the LC-
input images CT are collected from openly accessible datasets. The lung CT
images have been preprocessed using a Gaussian star filter (GaSF) to
decrease noise, followed by feature extraction using GoogleNet. The
extracted LC features are then given into a support vector machine (SVM)

which is utilized as a classification tool to distinguish between different
classes of LC cases. The TRI-LCNet approach performance was assessed by
several metrics: specificity, accuracy, F1 score, and recall. The outcomes
show that the suggested method obtains a higher accuracy range of 96.93%
for the early identification of LC.
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1. INTRODUCTION

Lung cancer (LC) afflicts both men and women and accounts for nearly 25% of all cancer-related
fatalities [1]. Roughly 80% of deaths from causes of LC directly by smoking. LC primarily occurs in two
forms: non-small cell lung cancer (NSCLC), the most common, and small cell lung cancer (SCLC) [2].
Accordingly, it is predicted that of 30,000 Canadians in 2020, 21,000 will receive an LC diagnosis and will
lose their lives to the illness. By 2050, the frequency of LC globally is expected to have doubled, making it
the most common cancer. Air pollution, diesel exhaust, asbestos exposure at work, secondhand smoke, radon
exposure, and other factors can cause LC in non-smokers or other substances some people do not smoke [3].
Various diagnostic procedures, containing X-rays, CT scans, biopsies, and sputum cytology, are conducted to
detect malignant cells and rule out other conditions. Skilled pathologists evaluate the microscopic
histopathology slides obtained during biopsies to diagnose LC and identify its subtypes [4], [5]. Numerous
types of LC are difficult for pathologists and other medical professionals to diagnose quickly [6].
Misdiagnosis of cancer types is rising, leading to unsuitable treatments and potential patient death. Machine
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learning (ML) is a branch of Al, that makes computers learn from data and improve tasks through experience
[71, [8]. Low-dose CT (LDCT) is an effective LC screening method, demonstrating 85% selectivity and 99%
specificity in the NELSON trial [9]. A recent investigation found an overall false positive rate of 81% [10],
necessitating further imaging for validation [11]. Numerous public and private LC databases support early
detection strategies. A multi-model network architecture accommodates varying nodule sizes, reducing
training time [12]. This approach achieves 90.6% accuracy using ensemble learning for lung nodule
classification [13], [14], providing an LC detection network.

Recent studies have investigated various lung cancer detection (LCD) frameworks, primarily
utilizing ML approaches [15]. Hatuwal and Thapa [16] highlighted the effectiveness of convolutional neural
networks (CNNs), achieving accuracy rates of 96.2% for validation and 96.11% for training. Shah et al. [17]
improved detection accuracy using ensemble methods, reaching a total accuracy of 95%. Venkatesh et al.
[18] used optimized CNNs, achieving 96.97% accuracy while reducing false positives. Naseer et al. [19]
employed AlexNet, reporting specificity, sensitivity, and accuracy rates of 96.77%, 99.08%, and 97.64%,
respectively. Shanthi and Rajkumar [20] proposed a wrapper-based feature selection algorithm employing a
modified stochastic diffusion search (SDS), demonstrating superior performance. Mridha et al. [21]
identified specific protein markers for early detection, complementing ML methods. Rehman et al. [22]
reported 91% and 93% accuracy rates with K-nearest neighbors and support vector machine (SVM)
classifiers, while Patra [23] introduced a radial basis function (RBF) classifier with 81.25% accuracy.
Mathios et al. [24] presented a non-invasive method using cell-free DNA fragmentomes, achieving a 94%
detection rate via CT imaging. Lastly, Li et al. [25] addressed challenges in LDCT and emphasized its role in
reducing LC mortality through early detection. Several challenges have been identified in existing methods
for detecting LC including poor image quality, insufficient training data, inaccurate tumor localization, and
difficulty in reducing false positives. Additionally, existing models such as CNN and RBF classifiers exhibit
lower accuracy, and non-invasive methods require further refinement for clinical use. A novel TRI-level lung
cancer classification via deep learning-based GoogleNet with CT images (TRI-LCNet) approach has been
proposed for early-stage LCD utilizing CT images to overcome these issues. The primary contributions of the
research are as follows:

— The primary objective of this research is to develop a novel TRI-LCNet approach for early-stage LC
detection.

— Initially, the lung CT images are pre-processed utilizing a Gaussian star filter (GaSF) to reduce the noise
and improve clarity for more accurate analysis.

— The preprocessed CT images of the lungs are obtained as input for GoogleNet to extract the significant
features.

— The images are used for the following phase by concatenating the extracted features using SVM to
classify cases of normal, NSCLC, and SCLC.

— The efficacy of the proposed TRI-LCNet was measured utilizing performance metrics namely precision,
recall, accuracy, F1 score, and specificity.

The remainder of this research has been scheduled as follows. The full explanation of the proposed
TRI-LCNet method for LC detection is in section 2. Results and discussion in section 3 and a conclusion and
future work in section 4.

2. METHOD

In this section, a novel TRI-LCNet has been proposed for detecting different classes of LC such as
normal, SCLC, and NSCLC. The overall workflow of the suggested TRI-LCNet approach is portrayed in
Figure 1.

2.1. Dataset description

The lung image database consortium and image database resource initiative (LIDC-IDRI) dataset
comprise LC screening thoracic CT images and diagnostics from 1,018 patients. It includes over 1,000
annotated lesions by four experienced radiologists, capturing both nodules and non-nodule findings. The
scans come with metadata describing patient demographics, lesion characteristics, and malignancy
likelihood. The dataset is widely used for research in LCD tasks.

2.2. Data pre-processing

The medical images are enhanced by pre-processing, which reduces noise and enhances subtle
changes. Initially, the LC-input CT images were preprocessed using GaSF to enhance the features of the
image by lessening noise and enhancing the visibility of lung structures, which can aid in more accurate
feature extraction.
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Figure 1. The overall workflow of the TRI-LCNet framework

2.2.1. Gaussian star filter

GaSF enhances lung CT scans by highlighting star-like structures, correlating with pathological
features, and reducing noise while preserving important details, particularly star shapes. The Mathematical
expression of the proposed Gaussian star low pass filter is as (1):

max(H,, H,)if H; # 0

GSalF, ={ .
AR ) H, + Hyelse  if GaSLF (u,v) = 0 @)
GaSLF,,) = GaSLF (u,v) else

GaSLF (u,v) =

Where u,, v, are the nt" peak point center points of the filter, and a,, and b,, are calculated using a region-
growing technique with ellipse parameters.
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Finally, in the frequency system, the proposed GaSF, is defined as (6):
GSF(u,v) =1 — GaSLF (u,v) (6)

The values of the GaSLF coefficients range from 1 to 0. The GaSF estimated parameter design aims to
eliminate noise zones identified within the image. Additionally, GaSF is suggested for filtering gray-level
images tainted by periodic or quasi-periodic noise.

2.3. Feature extraction

Lung image features are extracted and analyzed by first gathering a substantial amount of raw data,
which is then divided into manageable cohorts. GoogleNet simplifies this process by extracting high-and
low-level features from pre-processed lung CT images through its deep architecture and inception modules.

2.3.1. GoogleNet

One kind of construction uses a neural network with convolution and the inception architecture is
called GoogleNet. The network may select from each block range of convolutional filter sizes thanks to the
use of inception modules. An inception network arranges these modules in a stack on top of one another,

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025; 2198-2208



Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 2201

occasionally utilizing stride 2 max-pooling layers, the grid resolution can be cut in half. The GoogleNet
inception module architecture is demonstrated in Figure 2.

Filter
Concatenation

1X1convolunons ‘ _ _ 1X1c0nvolunons
‘ 1X1convolul10ns ‘ ‘ lxlconvoluhons ‘ _

Previous layer

Figure 2. The architecture of the GoogleNet inception module

In contrast to earlier cutting-edge architectures like AlexNet and ZF-Net, the GoogleNet architecture
is significantly different. It creates deeper architecture by utilizing a variety of techniques, including global
average pooling and 1x1 convolution. A simple mathematical representation of an inception module, let’s
assume three types of operations (1x1, 3x3, and 5x5 convolutions) are performed, and their outputs are
concatenated:

Inception = Concott((fonle1 (X), Convs,3(X), Convgys(X), Pool(X)) @)

where X is the input to the inception module, and Concat denotes the concatenation of feature maps along the
channel dimension. Its efficient design with reduced parameters and innovative use of 1x1 convolutions
makes it an effective tool for image categorization tasks.

2.4. Support vector machine

An ML under supervision approach for applications involving regression and classification is the
SVM. For its efficiency in elevated dimensions’ areas and its capacity for categorization difficulties, it is very
well-liked to create decision boundaries that maximize the margin between different classes. The
mathematical representation of SVM finds a hyperplane in a dataset that is linearly separable defined by:

wx+b=0 (8)

Here, w represents the weight vector, b denotes the bias and x represents the input feature vector. The
hyperplane is subject to the following constraint for correctly classified data points:

Viwax+b) = 1 )
where y; is the class label (+1 or — 1) for each data point x;. This constraint ensures that the data points are
correctly classified with the maximum margin from the hyperplane. For datasets that are linearly not

separable, SVM employs kernel functions to project the data into a high-dimension space, in which a linear
hyperplane is utilized to separate the classes. The decision function for SVM can be represented as (10):

fo) = sign(XiL; o y; K (x;,x) + b) (10)

Here, K(x;, x) denotes the kernel function that determines the likeness between both data points x; and x,
and «; are the Lagrange multipliers obtained from the optimization problem.
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2.4.1. Non-small cell lung cancer

NSCLC constitutes 85% of LCs, primarily linked to smoking, air pollution, genetics, asbestos, or
radon exposure. Symptoms include chronic cough, chest pain, dyspnea, weight loss, and fatigue. Prognosis
hinges on early detection, and treatment response, and advancements in targeted therapies and
immunotherapy have enhanced outcomes, aided by mathematical models predicting tumor growth and
treatment efficacy.

N(t) = Ny.e™ (11)

Where N(t) indicates the count of tumor cells with time t, N, denotes the starting cell count, while r denotes
the growth rate. Tumor growth that slows down as the tumor reaches a larger size:

k
N(t) = Ng.er.(1—e™™) (12)
where K is the carrying capacity of the environment, and r is the initial growth rate.

2.4.2. Small cell lung cancer

SCLC is closely linked to smoking and spreads rapidly, with key risk factors including secondhand
smoke, radiation, asbestos, and genetics. It presents symptoms like chronic cough, chest pain, dyspnea,
fatigue, and edema, and is staged as limited or extended based on its spread. Treatment options include
chemotherapy, radiation, and immunotherapy, while mathematical models predict tumor growth and
pharmacokinetic models assess how drugs are absorbed, metabolized, and eliminated in the body.

C(t) = —2Ka__ (g7ket — g7kar) (13)

Va(Ka—Ke) ’

where the quantity of medication present at time t is indicated by C(t), D is the administered dose, k, is the
rate constant of absorption, k, is the constant of the elimination rate and v, is the distribution volume.

3. RESULTS AND DISCUSSION

The LIDC-IDRI dataset is utilized in this subsection to assess the performance of the TRI-LCNet.
The CT images are sourced from the LIDC-IDRI dataset and pre-processed into appropriate frames before
being further processed. To estimate findings, the test samples were analyzed using accuracy, specificity,
precision, flscore, and recall.

Figure 3 displays the visualization of the TRI-LCNet approach using the LIDC-IDRI dataset.
Column 1 shows the input with raw lung CT scan images, followed by column 2, where the images are pre-
processed using a GaSF to enhance quality by reducing noise and improving clarity. In column 3, GoogleNet
is employed for feature extraction, focusing on the critical features needed for accurate classification. Finally,
column 4 presents the results, effectively distinguishing between Normal, NSCLC, and SCLC.

Input Pre-processing Feature Results

Extraction

OO
»

Figure 3. Experimental results of proposed TRI-LCNet
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3.1. Performance analysis
Specificity, recall, accuracy, precision, and F1 score are the factors for evaluation that will be
applied to gauge the effectiveness of the planned LCD network. Where T, and T,,., indicate the actual

benefits and drawbacks of the sample images, F,,s and F,., shows the sample images false positives and
negatives.

s T
Specificity = —=2— (14)
Tneg+Fpos
. . T
Precision = —E% (15)
Tpost+Fpos
Tpos
Recall = (16)
TpostFneg
T, +T,
Accuracy = ——P=—"9 17)
Total no.of samples
Precision*Recall
Flscore =2 (——) (18)
Precision+Recall

Table 1 illustrates the efficiency assessment of the TRI-LCNet across three classes namely Normal,
NSCLC, and SCLC. For the normal class, the model delivered 97.12% specificity, 98.24% precision, 96.25%
recall, a 96.69% F1 score, and 98.41% accuracy. In NSCLC, TRI-LCNet achieved 94.27% specificity,
96.12% precision, 95.05% recall, a 95.48% F1 score, and 97.25% accuracy. For SCLC, it obtained 96.24%
specificity, 97.28% precision, 96.08% recall, a 96.52% F1 score, and 95.13% accuracy. A graphic
representation of the suggested TRI-LCNet performance evaluation is provided in Figure 4.

Table 1. Performance analysis of the TRI-LCNet approach
Classes  Specificity Precision Recall Accuracy F1 score
Normal 97.12 98.24 96.25 98.41 96.69
NSCLC 94.27 96.12 95.05 97.25 95.48
SCLC 96.24 97.28 96.08 95.13 96.52

100
99
98
97
96
95
94
93
92
91
90

mNormal mNSCLC » SCLC

Perrformance Rate (%0)

Specificity Precision  Recall Flscore Accuracy

Parameters

Figure 4. A graphic representation of the performance analysis for several LC classes

The accuracy graph in Figure 5 is estimated using the accuracy range and 100 epochs. As the
number of epochs rises, the accuracy also rises. Figure 6 displays the loss range, showing that the loss
decreases with increasing epochs. The suggested approach achieves an outstanding level of LCD accuracy by
utilizing CT images. The results showed that the suggested has a low error rate and a 96.93% classification
accuracy based on 100 training epochs.
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Figure 5. Accuracy curve of the suggested TRI-LCNet
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Figure 6. Loss curve of the suggested TRI-LCNet

3.2. Comparative analysis

The efficacy of every network was estimated to confirm that the outcomes of the TRI-LCNet
achieve high accuracy. The proposed GoogleNet with four DL classifiers LeNet, VGG-16, AlexNet, and the
proposed TRI-LCNet Model was tested for competency. The comparison of various feature extraction is
demonstrated in Table 2. The suggested GoogleNet achieves 97.6% accuracy than AlexNet, LeNet, and
VGG-16 which obtains 6.55%, 8.29%, and 5.22%. A range of criteria were used to estimate each network's
performance, including specificity, recall, precision, F1 score, and accuracy.

Table 2. Comparison of several networks and proposed network

Networks  Specificity  F1score  Precision Recall  Accuracy
AlexNet 89.2 86.0 87.5 84.6 91.2
LeNet 88.7 85.7 86.2 85.3 89.5
VGG-16 90.6 88.8 89.0 88.7 925
GoogleNet 97.8 94.4 98.4 96.5 97.6

Table 3 demonstrates the accuracy comparison between prior approaches and the suggested
TRI-LCNet for LC detection. The TRI-LCNet approach enhances the accuracy of 0.75%, 6.41%, 16.17%,
and 4.05% better than CNN, SDS, RBF, and ML. This demonstrates TRI-LCNet's superior performance in
LC detection compared to several traditional frameworks.

Table 3. Accuracy comparison of state-of-art models and proposed TRI-LCNet

Authors Methods Accuracy (%)
Hatuwal and Thapa [16] CNN 96.2
Shanthi and Rajkumar [20] SDS 90.71
Rehman et al. [22] ML 93
Patra [23] RBF 81.25
Proposed TRI-LCNet 96.93
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The performance assessment of the proposed TRI-LCNet model using various lung CT image
datasets, including LIDC-IDRI, LUNA16, NSCLC radiogenomics, and Cohen’s Ic, is shown in Table 4. The
TRI-LCNet model demonstrates the highest accuracy (96.93%) and F1 score (96.23%) on the LIDC-IDRI
dataset, which is likely due to the detailed annotations of lung nodules in this dataset. The LUNA16 dataset
also shows a strong efficiency of 95.02% accuracy and a 93.51% F1 score. However, the model's
performance declines slightly on the NSCLC radiogenomics and Cohen’s Ic datasets, which may be
attributed to differences in dataset structure and variability in the features used. Despite this, the TRI-LCNet
model maintains a high level of efficiency across all datasets, highlighting its robustness for LCD tasks.

Table 4. Efficiency analysis of the TRI-LCNet model with different datasets

Datasets Accuracy  F1 score
LIDC-IDRI (ours) 96.93 96.23
LUNA16 95.02 93.51
NSCLC radiogenomics 92.68 90.25
Cohen’s lung cancer 94.23 92.56

3.3. Discussion

In this work, the TRI-LCNet model was developed for detecting and classifying LC types such as
normal, NSCLC, and SCLC using CT images from the LIDC-IDRI dataset. The results demonstrate
significant improvements in accuracy and efficiency over existing models. The suggested GoogleNet
achieved an overall accuracy of 97.6%, outperforming AlexNet, LeNet, and VGG-16 with accuracy
improvements of 6.55%, 8.29%, and 5.22% respectively, as shown in Table 2. Additionally, TRI-LCNet
outperformed other prior methods with an accuracy improvement of 0.75% over CNN and up to 16.17% over
RBF classifiers, as illustrated in Table 3. The model’s performance across different datasets detailed in
Table 4 shows that TRI-LCNet achieved the highest accuracy on the LIDC-IDRI dataset (96.93%) and strong
performance on LUNA16 (95.02%). Although there was a slight performance decline on the NSCLC
Radiogenomics and Cohen’s LC datasets, TRI-LCNet still maintained a high level of efficiency, highlighting
its robustness for LCD tasks. Figures 5 and 6 illustrate the steady rise in accuracy and lower loss across the
epochs, confirming the model's generalization capability. Overall, the TRI-LCNet model provides a highly
accurate and efficient solution for early LCD, significantly decreasing false positives and offering a
promising tool for improving patient outcomes.

3.4. Clinical setting

The clinical integration of the proposed TRI-LCNet model is designed for the efficient classification
of LC cases employing CT images applicable in hospital settings. The system involves patients undergoing
diagnosis and treatment with their lung CT images being collected. These images are processed by the
TRI-LCNet model which classifies the cases into normal, NSCLC, or SCLC categories. The results are then
provided to doctors assisting them in refining the patient's diagnosis and treatment plan. The real-time
clinical application of the TRI-LCNet model can be tested in radiology departments and diagnostic centers to
verify its accuracy in detecting LC. Furthermore, this system could be integrated into telemedicine platforms
for remote diagnosis, and it can be evaluated across various hospitals in clinical trials to assess its
performance in diverse patient populations. Such practical applications demonstrate the robustness of the
TRI-LCNet model and its potential to enhance the early detection and treatment of LC increasing patient
outcomes in real-world healthcare environments.

4. CONCLUSION

In this work, a novel TRI-LCNet approach has been proposed for early-stage LCD. Initially, the LC-
input images CT are collected from the datasets that are openly accessible. The lung CT images have been
preprocessed using a GaSF to decrease noise, followed by feature extraction using GoogleNet. The extracted
LC features are then concatenated and fed into an SVM which is used as a classification tool to distinguish
between different classes of LC cases. The LC detection performance network performance involved
applying a few metrics, including recall, F1 score, specificity, accuracy, and precision measurements. The
outcomes of the experiment show that the TRI-LCNet framework offers a high accuracy range of 96.93% for
early detection of LC. The proposed TRI-LCNet is limited by its reliance on a small dataset, affecting
generalizability, and the scalability of SVM may hinder performance with larger, high-dimensional data.
Future work could involve expanding the dataset for better generalizability and integrating multimodal data
such as clinical factors to further enhance diagnostic accuracy.
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