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 Lung cancer (LC) is one of the most prevalent causes of cancer-related death 

worldwide. World Health Organization (WHO) classifies LC into two broad 

histological subtypes: non-small cell lung cancer (NSCLC) which is the 

cause of about 85% of cases and small cell lung cancer (SCLC) which 

makes up the remaining 15%. Several issues can influence LC detection 

including poor image quality, insufficient training data, low-quality image 

characteristics, and poor tumor localization. To overcome these challenges a 

novel TRI-level LC classification via deep learning-based GoogleNet with 

computed tomography (CT) images (TRI-LCNet) approach has been 

proposed for early-stage LC detection using CT images. Initially, the LC-

input images CT are collected from openly accessible datasets. The lung CT 

images have been preprocessed using a Gaussian star filter (GaSF) to 

decrease noise, followed by feature extraction using GoogleNet. The 

extracted LC features are then given into a support vector machine (SVM) 

which is utilized as a classification tool to distinguish between different 

classes of LC cases. The TRI-LCNet approach performance was assessed by 

several metrics: specificity, accuracy, F1 score, and recall. The outcomes 

show that the suggested method obtains a higher accuracy range of 96.93% 

for the early identification of LC. 
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1. INTRODUCTION 

Lung cancer (LC) afflicts both men and women and accounts for nearly 25% of all cancer-related 

fatalities [1]. Roughly 80% of deaths from causes of LC directly by smoking. LC primarily occurs in two 

forms: non-small cell lung cancer (NSCLC), the most common, and small cell lung cancer (SCLC) [2]. 

Accordingly, it is predicted that of 30,000 Canadians in 2020, 21,000 will receive an LC diagnosis and will 

lose their lives to the illness. By 2050, the frequency of LC globally is expected to have doubled, making it 

the most common cancer. Air pollution, diesel exhaust, asbestos exposure at work, secondhand smoke, radon 

exposure, and other factors can cause LC in non-smokers or other substances some people do not smoke [3]. 

Various diagnostic procedures, containing X-rays, CT scans, biopsies, and sputum cytology, are conducted to 

detect malignant cells and rule out other conditions. Skilled pathologists evaluate the microscopic 

histopathology slides obtained during biopsies to diagnose LC and identify its subtypes [4], [5]. Numerous 

types of LC are difficult for pathologists and other medical professionals to diagnose quickly [6]. 

Misdiagnosis of cancer types is rising, leading to unsuitable treatments and potential patient death. Machine 
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learning (ML) is a branch of AI, that makes computers learn from data and improve tasks through experience 

[7], [8]. Low-dose CT (LDCT) is an effective LC screening method, demonstrating 85% selectivity and 99% 

specificity in the NELSON trial [9]. A recent investigation found an overall false positive rate of 81% [10], 

necessitating further imaging for validation [11]. Numerous public and private LC databases support early 

detection strategies. A multi-model network architecture accommodates varying nodule sizes, reducing 

training time [12]. This approach achieves 90.6% accuracy using ensemble learning for lung nodule 

classification [13], [14], providing an LC detection network. 

Recent studies have investigated various lung cancer detection (LCD) frameworks, primarily 

utilizing ML approaches [15]. Hatuwal and Thapa [16] highlighted the effectiveness of convolutional neural 

networks (CNNs), achieving accuracy rates of 96.2% for validation and 96.11% for training. Shah et al. [17] 

improved detection accuracy using ensemble methods, reaching a total accuracy of 95%. Venkatesh et al. 

[18] used optimized CNNs, achieving 96.97% accuracy while reducing false positives. Naseer et al. [19] 

employed AlexNet, reporting specificity, sensitivity, and accuracy rates of 96.77%, 99.08%, and 97.64%, 

respectively. Shanthi and Rajkumar [20] proposed a wrapper-based feature selection algorithm employing a 

modified stochastic diffusion search (SDS), demonstrating superior performance. Mridha et al. [21] 

identified specific protein markers for early detection, complementing ML methods. Rehman et al. [22] 

reported 91% and 93% accuracy rates with K-nearest neighbors and support vector machine (SVM) 

classifiers, while Patra [23] introduced a radial basis function (RBF) classifier with 81.25% accuracy. 

Mathios et al. [24] presented a non-invasive method using cell-free DNA fragmentomes, achieving a 94% 

detection rate via CT imaging. Lastly, Li et al. [25] addressed challenges in LDCT and emphasized its role in 

reducing LC mortality through early detection. Several challenges have been identified in existing methods 

for detecting LC including poor image quality, insufficient training data, inaccurate tumor localization, and 

difficulty in reducing false positives. Additionally, existing models such as CNN and RBF classifiers exhibit 

lower accuracy, and non-invasive methods require further refinement for clinical use. A novel TRI-level lung 

cancer classification via deep learning-based GoogleNet with CT images (TRI-LCNet) approach has been 

proposed for early-stage LCD utilizing CT images to overcome these issues. The primary contributions of the 

research are as follows: 

− The primary objective of this research is to develop a novel TRI-LCNet approach for early-stage LC 

detection. 

− Initially, the lung CT images are pre-processed utilizing a Gaussian star filter (GaSF) to reduce the noise 

and improve clarity for more accurate analysis. 

− The preprocessed CT images of the lungs are obtained as input for GoogleNet to extract the significant 

features. 

− The images are used for the following phase by concatenating the extracted features using SVM to 

classify cases of normal, NSCLC, and SCLC. 

− The efficacy of the proposed TRI-LCNet was measured utilizing performance metrics namely precision, 

recall, accuracy, F1 score, and specificity. 

The remainder of this research has been scheduled as follows. The full explanation of the proposed 

TRI-LCNet method for LC detection is in section 2. Results and discussion in section 3 and a conclusion and 

future work in section 4. 

 

  

2. METHOD 

In this section, a novel TRI-LCNet has been proposed for detecting different classes of LC such as 

normal, SCLC, and NSCLC. The overall workflow of the suggested TRI-LCNet approach is portrayed in 

Figure 1. 
 

2.1.  Dataset description 

The lung image database consortium and image database resource initiative (LIDC-IDRI) dataset 

comprise LC screening thoracic CT images and diagnostics from 1,018 patients. It includes over 1,000 

annotated lesions by four experienced radiologists, capturing both nodules and non-nodule findings. The 

scans come with metadata describing patient demographics, lesion characteristics, and malignancy 

likelihood. The dataset is widely used for research in LCD tasks. 

 

2.2.  Data pre-processing 

The medical images are enhanced by pre-processing, which reduces noise and enhances subtle 

changes. Initially, the LC-input CT images were preprocessed using GaSF to enhance the features of the 

image by lessening noise and enhancing the visibility of lung structures, which can aid in more accurate 

feature extraction. 
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Figure 1. The overall workflow of the TRI-LCNet framework 

 

 

2.2.1. Gaussian star filter 

GaSF enhances lung CT scans by highlighting star-like structures, correlating with pathological 

features, and reducing noise while preserving important details, particularly star shapes. The Mathematical 

expression of the proposed Gaussian star low pass filter is as (1): 

 

𝐺𝑎𝑆𝐿𝐹(𝑢, 𝑣) = {
𝐺𝑆𝑎𝐿𝐹(𝑢,𝑣) = {

max(𝐻1, 𝐻2)𝑖𝑓 𝐻1 ≠ 0
𝐻1 + 𝐻2 𝑒𝑙𝑠𝑒

𝐺𝑎𝑆𝐿𝐹(𝑢,𝑣) = 𝐺𝑎𝑆𝐿𝐹(𝑢, 𝑣) 𝑒𝑙𝑠𝑒
 if GaSLF (𝑢, 𝑣) = 0 (1) 

 

Where 𝑢𝑛, 𝑣𝑛 are the 𝑛𝑡ℎ peak point center points of the filter, and 𝑎𝑛 and 𝑏𝑛 are calculated using a region-

growing technique with ellipse parameters. 

 

𝐻1(𝑢, 𝑣) = ∑ 𝑒
−𝐷1𝑛

2(𝑢,𝑣)

2𝑁
𝑁=1  (2) 

 

𝐷1𝑛(𝑢, 𝑣) = (
𝑢−𝑢𝑛

𝑎𝑛
)

2

+ (
𝑣−𝑣𝑛

𝑏𝑛
)

2

 (3) 

 

𝐻2(𝑢, 𝑣) = ∑ 𝑒
−𝐷

2𝑛2(𝑢,𝑣)

2𝑁
𝑛=1  (4) 

 

𝐷2𝑛(𝑢, 𝑣) = (
𝑢−𝑢𝑛

𝑏𝑛
)

2

+ (
𝑣−𝑣𝑛

𝑎𝑛
)

2

 (5) 

 

Finally, in the frequency system, the proposed GaSF, is defined as (6): 

 

𝐺𝑆𝐹(𝑢, 𝑣) = 1 − 𝐺𝑎𝑆𝐿𝐹(𝑢, 𝑣) (6) 

 

The values of the GaSLF coefficients range from 1 to 0. The GaSF estimated parameter design aims to 

eliminate noise zones identified within the image. Additionally, GaSF is suggested for filtering gray-level 

images tainted by periodic or quasi-periodic noise. 

 

2.3.  Feature extraction 

Lung image features are extracted and analyzed by first gathering a substantial amount of raw data, 

which is then divided into manageable cohorts. GoogleNet simplifies this process by extracting high-and 

low-level features from pre-processed lung CT images through its deep architecture and inception modules. 

 

2.3.1. GoogleNet 

One kind of construction uses a neural network with convolution and the inception architecture is 

called GoogleNet. The network may select from each block range of convolutional filter sizes thanks to the 

use of inception modules. An inception network arranges these modules in a stack on top of one another, 
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occasionally utilizing stride 2 max-pooling layers, the grid resolution can be cut in half. The GoogleNet 

inception module architecture is demonstrated in Figure 2. 

 

 

 
 

Figure 2. The architecture of the GoogleNet inception module 

 

 

In contrast to earlier cutting-edge architectures like AlexNet and ZF-Net, the GoogleNet architecture 

is significantly different. It creates deeper architecture by utilizing a variety of techniques, including global 

average pooling and 1×1 convolution. A simple mathematical representation of an inception module, let’s 

assume three types of operations (1×1, 3×3, and 5×5 convolutions) are performed, and their outputs are 

concatenated: 

 

𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑣1𝑥1(𝑋), 𝐶𝑜𝑛𝑣3𝑥3(𝑋), 𝐶𝑜𝑛𝑣5×5(𝑋), 𝑃𝑜𝑜𝑙(𝑋)) (7) 

 

where 𝑋 is the input to the inception module, and Concat denotes the concatenation of feature maps along the 

channel dimension. Its efficient design with reduced parameters and innovative use of 1x1 convolutions 

makes it an effective tool for image categorization tasks. 

 

2.4.  Support vector machine 

An ML under supervision approach for applications involving regression and classification is the 

SVM. For its efficiency in elevated dimensions’ areas and its capacity for categorization difficulties, it is very 

well-liked to create decision boundaries that maximize the margin between different classes. The 

mathematical representation of SVM finds a hyperplane in a dataset that is linearly separable defined by: 

 

𝑤. 𝑥 + 𝑏 = 0 (8) 

 

Here, w represents the weight vector, b denotes the bias and x represents the input feature vector. The 

hyperplane is subject to the following constraint for correctly classified data points: 

 

𝑦𝑖(𝑤.𝑥𝑖+𝑏) ≥ 1 (9) 

 

where 𝑦𝑖 is the class label (+1 𝑜𝑟 − 1) for each data point 𝑥𝑖. This constraint ensures that the data points are 

correctly classified with the maximum margin from the hyperplane. For datasets that are linearly not 

separable, SVM employs kernel functions to project the data into a high-dimension space, in which a linear 

hyperplane is utilized to separate the classes. The decision function for SVM can be represented as (10): 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ ∝𝑖 𝑦𝑖
𝑁
𝑖=1 𝐾(𝑥𝑖 , 𝑥) + 𝑏) (10) 

 

Here, 𝐾(𝑥𝑖 , 𝑥) denotes the kernel function that determines the likeness between both data points 𝑥𝑖 and 𝑥, 

and ∝𝑖 are the Lagrange multipliers obtained from the optimization problem. 
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2.4.1. Non-small cell lung cancer 

NSCLC constitutes 85% of LCs, primarily linked to smoking, air pollution, genetics, asbestos, or 

radon exposure. Symptoms include chronic cough, chest pain, dyspnea, weight loss, and fatigue. Prognosis 

hinges on early detection, and treatment response, and advancements in targeted therapies and 

immunotherapy have enhanced outcomes, aided by mathematical models predicting tumor growth and 

treatment efficacy. 
 

𝑁(𝑡) = 𝑁0. 𝑒𝑟𝑡 (11) 

 

Where 𝑁(𝑡) indicates the count of tumor cells with time t, 𝑁0 denotes the starting cell count, while r denotes 

the growth rate. Tumor growth that slows down as the tumor reaches a larger size: 

 

𝑁(𝑡) = 𝑁0. 𝑒
𝑘

𝑟 . (1 − 𝑒−𝑟𝑡) (12) 

 

where K is the carrying capacity of the environment, and r is the initial growth rate. 

 

2.4.2. Small cell lung cancer 

SCLC is closely linked to smoking and spreads rapidly, with key risk factors including secondhand 

smoke, radiation, asbestos, and genetics. It presents symptoms like chronic cough, chest pain, dyspnea, 

fatigue, and edema, and is staged as limited or extended based on its spread. Treatment options include 

chemotherapy, radiation, and immunotherapy, while mathematical models predict tumor growth and 

pharmacokinetic models assess how drugs are absorbed, metabolized, and eliminated in the body. 

 

𝐶(𝑡) =
𝐷.𝑘𝑎

𝑉𝑑(𝐾𝑎−𝐾𝑒)
. (𝑒−𝑘

𝑒𝑡 − 𝑒−𝑘
𝑎𝑡 ) (13) 

 

where the quantity of medication present at time t is indicated by C(t), D is the administered dose, 𝑘𝑎 is the 

rate constant of absorption, 𝑘𝑒 is the constant of the elimination rate and 𝑣𝑑 is the distribution volume. 

 

 

3. RESULTS AND DISCUSSION 

The LIDC-IDRI dataset is utilized in this subsection to assess the performance of the TRI-LCNet. 

The CT images are sourced from the LIDC-IDRI dataset and pre-processed into appropriate frames before 

being further processed. To estimate findings, the test samples were analyzed using accuracy, specificity, 

precision, f1score, and recall. 

Figure 3 displays the visualization of the TRI-LCNet approach using the LIDC-IDRI dataset. 

Column 1 shows the input with raw lung CT scan images, followed by column 2, where the images are pre-

processed using a GaSF to enhance quality by reducing noise and improving clarity. In column 3, GoogleNet 

is employed for feature extraction, focusing on the critical features needed for accurate classification. Finally, 

column 4 presents the results, effectively distinguishing between Normal, NSCLC, and SCLC. 

 

 

 
 

Figure 3. Experimental results of proposed TRI-LCNet 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Tri-level lung cancer classification via deep learning based GoogleNet with computed … (Vinoth Rathinam) 

2203 

3.1.  Performance analysis 

Specificity, recall, accuracy, precision, and F1 score are the factors for evaluation that will be 

applied to gauge the effectiveness of the planned LCD network. Where 𝑇𝑝𝑜𝑠 and 𝑇𝑛𝑒𝑔 indicate the actual 

benefits and drawbacks of the sample images, 𝐹𝑝𝑜𝑠 and 𝐹𝑛𝑒𝑔 shows the sample images false positives and 

negatives. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠
 (14) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
 (15) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
 (16) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (17) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) (18) 

 

Table 1 illustrates the efficiency assessment of the TRI-LCNet across three classes namely Normal, 

NSCLC, and SCLC. For the normal class, the model delivered 97.12% specificity, 98.24% precision, 96.25% 

recall, a 96.69% F1 score, and 98.41% accuracy. In NSCLC, TRI-LCNet achieved 94.27% specificity, 

96.12% precision, 95.05% recall, a 95.48% F1 score, and 97.25% accuracy. For SCLC, it obtained 96.24% 

specificity, 97.28% precision, 96.08% recall, a 96.52% F1 score, and 95.13% accuracy. A graphic 

representation of the suggested TRI-LCNet performance evaluation is provided in Figure 4. 

 

 

Table 1. Performance analysis of the TRI-LCNet approach 
Classes Specificity Precision Recall Accuracy F1 score 

Normal 97.12 98.24 96.25 98.41 96.69 

NSCLC 94.27 96.12 95.05 97.25 95.48 

SCLC 96.24 97.28 96.08 95.13 96.52 

 

 

 
 

Figure 4. A graphic representation of the performance analysis for several LC classes 

 

 

The accuracy graph in Figure 5 is estimated using the accuracy range and 100 epochs. As the 

number of epochs rises, the accuracy also rises. Figure 6 displays the loss range, showing that the loss 

decreases with increasing epochs. The suggested approach achieves an outstanding level of LCD accuracy by 

utilizing CT images. The results showed that the suggested has a low error rate and a 96.93% classification 

accuracy based on 100 training epochs. 
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Figure 5. Accuracy curve of the suggested TRI-LCNet 

 

 

 
 

Figure 6. Loss curve of the suggested TRI-LCNet 

 

 

3.2.  Comparative analysis 

The efficacy of every network was estimated to confirm that the outcomes of the TRI-LCNet 

achieve high accuracy. The proposed GoogleNet with four DL classifiers LeNet, VGG-16, AlexNet, and the 

proposed TRI-LCNet Model was tested for competency. The comparison of various feature extraction is 

demonstrated in Table 2. The suggested GoogleNet achieves 97.6% accuracy than AlexNet, LeNet, and 

VGG-16 which obtains 6.55%, 8.29%, and 5.22%. A range of criteria were used to estimate each network's 

performance, including specificity, recall, precision, F1 score, and accuracy. 
 

 

Table 2. Comparison of several networks and proposed network 
Networks Specificity F1 score Precision Recall Accuracy 

AlexNet 89.2 86.0 87.5 84.6 91.2 

LeNet 88.7 85.7 86.2 85.3 89.5 

VGG-16 90.6 88.8 89.0 88.7 92.5 

GoogleNet 97.8 94.4 98.4 96.5 97.6 

 
 

Table 3 demonstrates the accuracy comparison between prior approaches and the suggested  

TRI-LCNet for LC detection. The TRI-LCNet approach enhances the accuracy of 0.75%, 6.41%, 16.17%, 

and 4.05% better than CNN, SDS, RBF, and ML. This demonstrates TRI-LCNet's superior performance in 

LC detection compared to several traditional frameworks. 
 

 

Table 3. Accuracy comparison of state-of-art models and proposed TRI-LCNet 
Authors Methods Accuracy (%) 

Hatuwal and Thapa [16] 
Shanthi and Rajkumar [20] 

Rehman et al. [22] 

Patra [23] 

CNN 
SDS 

ML 

RBF 

96.2 
90.71 

93 

81.25 

Proposed TRI-LCNet 96.93 
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The performance assessment of the proposed TRI-LCNet model using various lung CT image 

datasets, including LIDC-IDRI, LUNA16, NSCLC radiogenomics, and Cohen’s lc, is shown in Table 4. The 

TRI-LCNet model demonstrates the highest accuracy (96.93%) and F1 score (96.23%) on the LIDC-IDRI 

dataset, which is likely due to the detailed annotations of lung nodules in this dataset. The LUNA16 dataset 

also shows a strong efficiency of 95.02% accuracy and a 93.51% F1 score. However, the model's 

performance declines slightly on the NSCLC radiogenomics and Cohen’s lc datasets, which may be 

attributed to differences in dataset structure and variability in the features used. Despite this, the TRI-LCNet 

model maintains a high level of efficiency across all datasets, highlighting its robustness for LCD tasks. 

 

 

Table 4. Efficiency analysis of the TRI-LCNet model with different datasets 
Datasets Accuracy F1 score 

LIDC-IDRI (ours) 96.93 96.23 

LUNA16  95.02 93.51 
NSCLC radiogenomics 

Cohen’s lung cancer 

92.68 

94.23 

90.25 

92.56 

 

 

3.3.  Discussion 

In this work, the TRI-LCNet model was developed for detecting and classifying LC types such as 

normal, NSCLC, and SCLC using CT images from the LIDC-IDRI dataset. The results demonstrate 

significant improvements in accuracy and efficiency over existing models. The suggested GoogleNet 

achieved an overall accuracy of 97.6%, outperforming AlexNet, LeNet, and VGG-16 with accuracy 

improvements of 6.55%, 8.29%, and 5.22% respectively, as shown in Table 2. Additionally, TRI-LCNet 

outperformed other prior methods with an accuracy improvement of 0.75% over CNN and up to 16.17% over 

RBF classifiers, as illustrated in Table 3. The model’s performance across different datasets detailed in  

Table 4 shows that TRI-LCNet achieved the highest accuracy on the LIDC-IDRI dataset (96.93%) and strong 

performance on LUNA16 (95.02%). Although there was a slight performance decline on the NSCLC 

Radiogenomics and Cohen’s LC datasets, TRI-LCNet still maintained a high level of efficiency, highlighting 

its robustness for LCD tasks. Figures 5 and 6 illustrate the steady rise in accuracy and lower loss across the 

epochs, confirming the model's generalization capability. Overall, the TRI-LCNet model provides a highly 

accurate and efficient solution for early LCD, significantly decreasing false positives and offering a 

promising tool for improving patient outcomes. 

  

3.4.  Clinical setting 

The clinical integration of the proposed TRI-LCNet model is designed for the efficient classification 

of LC cases employing CT images applicable in hospital settings. The system involves patients undergoing 

diagnosis and treatment with their lung CT images being collected. These images are processed by the  

TRI-LCNet model which classifies the cases into normal, NSCLC, or SCLC categories. The results are then 

provided to doctors assisting them in refining the patient's diagnosis and treatment plan. The real-time 

clinical application of the TRI-LCNet model can be tested in radiology departments and diagnostic centers to 

verify its accuracy in detecting LC. Furthermore, this system could be integrated into telemedicine platforms 

for remote diagnosis, and it can be evaluated across various hospitals in clinical trials to assess its 

performance in diverse patient populations. Such practical applications demonstrate the robustness of the 

TRI-LCNet model and its potential to enhance the early detection and treatment of LC increasing patient 

outcomes in real-world healthcare environments. 

   

  

4. CONCLUSION 

In this work, a novel TRI-LCNet approach has been proposed for early-stage LCD. Initially, the LC-

input images CT are collected from the datasets that are openly accessible. The lung CT images have been 

preprocessed using a GaSF to decrease noise, followed by feature extraction using GoogleNet. The extracted 

LC features are then concatenated and fed into an SVM which is used as a classification tool to distinguish 

between different classes of LC cases. The LC detection performance network performance involved 

applying a few metrics, including recall, F1 score, specificity, accuracy, and precision measurements. The 

outcomes of the experiment show that the TRI-LCNet framework offers a high accuracy range of 96.93% for 

early detection of LC. The proposed TRI-LCNet is limited by its reliance on a small dataset, affecting 

generalizability, and the scalability of SVM may hinder performance with larger, high-dimensional data. 

Future work could involve expanding the dataset for better generalizability and integrating multimodal data 

such as clinical factors to further enhance diagnostic accuracy. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2198-2208 

2206 

ACKNOWLEDGMENTS  

The authors would like to thank the management for their constant support.  

 

 

FUNDING INFORMATION  

Authors state no funding was received. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT  

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Vinoth Rathinam ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓     

Ramathilagam Arunagiri  ✓  ✓  ✓  
  

✓ ✓ 
 

  

Valarmathi Krishnasamy ✓  ✓ ✓  ✓    ✓ ✓ ✓   

Sasireka Rajendran ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓     

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT  

Authors state no conflict of interest. 

 

 

INFORMED CONSENT  

We have obtained informed consent from all individuals included in this study. 

 

 

ETHICAL APPROVAL  

This study did not require ethical approval as it involved only publicly available data, which was 

analyzed anonymously and did not involve any identifiable human subjects. 

 

 

DATA AVAILABILITY 

Data availability is not applicable to this paper as no new data were created or analyzed in this 

study. 

 

     

REFERENCES 
[1] R. Nooreldeen and H. Bach, “Current and future development in lung cancer diagnosis,” International Journal of Molecular 

Sciences, vol. 22, no. 16, pp. 1–18, Aug. 2021, doi: 10.3390/ijms22168661. 

[2] R. S. K. Boddu, P. Karmakar, A. Bhaumik, V. K. Nassa, Vandana, and S. Bhattacharya, “Analyzing the impact of machine 

learning and artificial intelligence and its effect on management of lung cancer detection in covid-19 pandemic,” Materials 
Today: Proceedings, vol. 56, pp. 2213–2216, 2022, doi: 10.1016/j.matpr.2021.11.549. 

[3] N. S. Reddy and V. Khanaa, “Intelligent deep learning algorithm for lung cancer detection and classification,” Bulletin of 

Electrical Engineering and Informatics, vol. 12, no. 3, pp. 1747–1754, Jun. 2023, doi: 10.11591/eei.v12i3.4579. 
[4] Y. Chen, J. Feng, J. Liu, B. Pang, D. Cao, and C. Li, “Detection and Classification of Lung Cancer Cells Using Swin 

Transformer,” Journal of Cancer Therapy, vol. 13, no. 07, pp. 464–475, 2022, doi: 10.4236/jct.2022.137041. 

[5] A. Heidari, D. Javaheri, S. Toumaj, N. J. Navimipour, M. Rezaei, and M. Unal, “A new lung cancer detection method based on 
the chest CT images using Federated Learning and blockchain systems,” Artificial Intelligence in Medicine, vol. 141, Jul. 2023, 

doi: 10.1016/j.artmed.2023.102572. 

[6] G. S. Saragih, Z. Rustam, and J. E. Aurelia, “A hybrid model based on convolutional neural networks and fuzzy kernel K-
medoids for lung cancer detection,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 24, no. 1, pp. 1–8, 

Oct. 2021, doi: 10.11591/ijeecs.v24.i1.pp126-133. 

[7] S. G. Ortiz, R. H. Ortiz, A. J. Gavilanes, R. Á. Faican, and B. P. Zambrano, “A serial image analysis architecture with positron 
emission tomography using machine learning combined for the detection of lung cancer,” Revista Española de Medicina Nuclear 

e Imagen Molecular (English Edition), vol. 43, no. 3, May 2024, doi: 10.1016/j.remnie.2024.500003. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Tri-level lung cancer classification via deep learning based GoogleNet with computed … (Vinoth Rathinam) 

2207 

[8] S. Wankhade and S. Vigneshwari, “A novel hybrid deep learning method for early detection of lung cancer using neural 
networks,” Healthcare Analytics, vol. 3, pp. 1–13, Nov. 2023, doi: 10.1016/j.health.2023.100195. 

[9] W. Chiangjong et al., “Cell-main spectra profile screening technique in simulation of circulating tumour cells using maldi-tof 

mass spectrometry,” Cancers, vol. 13, no. 15, pp. 1–15, Jul. 2021, doi: 10.3390/cancers13153775. 
[10] S. R. Quasar, R. Sharma, A. Mittal, M. Sharma, D. Agarwal, and I. de La T. Díez, “Ensemble methods for computed tomography 

scan images to improve lung cancer detection and classification,” Multimedia Tools and Applications, vol. 83, no. 17, pp. 52867–

52897, Nov. 2024, doi: 10.1007/s11042-023-17616-8. 
[11] M. S. Bhuiyan et al., “Advancements in Early Detection of Lung Cancer in Public Health: A Comprehensive Study Utilizing 

Machine Learning Algorithms and Predictive Models,” Journal of Computer Science and Technology Studies, vol. 6, no. 1, pp. 

113–121, Jan. 2024, doi: 10.32996/jcsts.2024.6.1.12. 
[12] T. I. A. Mohamed, O. N. Oyelade, and A. E. Ezugwu, “Automatic detection and classification of lung cancer CT scans based on 

deep learning and ebola optimization search algorithm,” PLoS ONE, vol. 18, no. 8, Aug. 2023, doi: 

10.1371/journal.pone.0285796. 
[13] G. Chassagnon et al., “Artificial intelligence in lung cancer: current applications and perspectives,” Japanese Journal of 

Radiology, vol. 41, no. 3, pp. 235–244, Nov. 2023, doi: 10.1007/s11604-022-01359-x. 

[14] C. Abbosh et al., “Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA,” Nature, vol. 616, no. 7957, 
pp. 553–562, Apr. 2023, doi: 10.1038/s41586-023-05776-4. 

[15] S. G. Armato et al., “The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed 

reference database of lung nodules on CT scans,” Medical Physics, vol. 38, no. 2, pp. 915–931, Feb. 2011, doi: 
10.1118/1.3528204. 

[16] B. K. Hatuwal and H. C. Thapa, “Lung Cancer Detection Using Convolutional Neural Network on Histopathological Images,” 

International Journal of Computer Trends & Technology, vol. 68, no. 10, pp. 21–24, Oct. 2020, doi: 10.14445/22312803/ijctt-
v68i10p104. 

[17] A. A. Shah, H. A. M. Malik, A. H. Muhammad, A. Alourani, and Z. A. Butt, “Deep learning ensemble 2D CNN approach towards 

the detection of lung cancer,” Scientific Reports, vol. 13, no. 1, pp. 1–15, Feb. 2023, doi: 10.1038/s41598-023-29656-z. 
[18] C. Venkatesh, K. Ramana, S. Y. Lakkisetty, S. S. Band, S. Agarwal, and A. Mosavi, “A Neural Network and Optimization Based 

Lung Cancer Detection System in CT Images,” Frontiers in Public Health, vol. 10, pp. 1–9, Jun. 2022, doi: 

10.3389/fpubh.2022.769692. 
[19] I. Naseer, T. Masood, S. Akram, A. Jaffar, M. Rashid, and M. A. Iqbal, “Lung Cancer Detection Using Modified AlexNet 

Architecture and Support Vector Machine,” Computers, Materials and Continua, vol. 74, no. 1, pp. 2039–2054, 2023, doi: 

10.32604/cmc.2023.032927. 
[20] S. Shanthi and N. Rajkumar, “Lung Cancer Prediction Using Stochastic Diffusion Search (SDS) Based Feature Selection and 

Machine Learning Methods,” Neural Processing Letters, vol. 53, no. 4, pp. 2617–2630. 2021, doi: 10.1007/s11063-020-10192-0. 

[21] M. F. Mridha et al., “A Comprehensive Survey on the Progress, Process, and Challenges of Lung Cancer Detection and 
Classification,” Journal of Healthcare Engineering, pp. 1–43, Dec. 2022, doi: 10.1155/2022/5905230. 

[22] A. Rehman, M. Kashif, I. Abunadi, and N. Ayesha, “Lung Cancer Detection and Classification from Chest CT Scans Using 

Machine Learning Techniques,” in 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), 
IEEE, Apr. 2021, pp. 101–104. doi: 10.1109/CAIDA51941.2021.9425269. 

[23] R. Patra, “Prediction of lung cancer using machine learning classifier,” in Computing Science, Communication and Security: First 

International Conference, COMS2 2020, Gujarat, 2020, India, pp. 132-142, doi: 10.1007/978-981-15-6648-6_11. 
[24] D. Mathios et al., “Detection and characterization of lung cancer using cell-free DNA fragmentomes,” Nature Communications, 

vol. 12, no. 1, pp. 1–14, Aug. 2021, doi: 10.1038/s41467-021-24994-w. 

[25] C. Li et al., “Advances in lung cancer screening and early detection,” Cancer Biology and Medicine, vol. 19, no. 5, pp. 591–608, 
May 2022, doi: 10.20892/j.issn.2095-3941.2021.0690. 

  

 

BIOGRAPHIES OF AUTHORS 

 

 

Vinoth Rathinam     received his Bachelors of Engineering–Electronics and 

Communication Engineering from Mohamed Sathak Engineering College and Master of 

Engineering in VLSI Design under Anna University in the year 2007 and 2009 respectively. 

He received his Ph.D. in Information and Communication Engineering under Anna University 

in the year 2017. His area of interest includes image processing, signal processing, and VLSI 

design. He has more than 15 years of professional experience in Engineering Colleges. He has 

received grant of Rs.3.5lakhs for organizing AICTE ATAL FDP during 2023-24. He can be 

contacted at email: vinoth@psr.edu.in. 

    

 

Ramathilagam Arunagiri     is working as a Professor in the Department of 

Computer Science and Engineering at P.S.R. Engineering College, Sivakasi. She has 21 years 

of teaching experience. She completed her Ph.D. in Information and Communication 

Engineering from Anna University in the year 2018. She obtained her M.E. Computer Science, 

Engineering in the year 2004, B.E. Computer Science, and Engineering in the year 1999 from 

Arulmigu Kalasalingam College of Engineering, Krishnankovil. She has published 15 papers 

in reputed international/national journals and presented 20 papers in National and International 

conferences. Her research interests are computer network, security, cloud computing, big data 

analytics, machine learning, and data science. She can be contacted at email: 

ramathilagam@psr.edu.in. 

https://orcid.org/0000-0002-4913-3387
https://scholar.google.com/citations?hl=en&user=t2oEa20AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57015177600
https://www.webofscience.com/wos/author/record/2478230
https://orcid.org/0000-0002-2219-2870
https://scholar.google.com/citations?hl=en&user=_YEYXS0AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57194527141
https://www.webofscience.com/wos/author/record/1451664


                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2198-2208 

2208 

 

Valarmathi Krishnasamy     is currently working as a Professor in the Department 

of Electronics and Communication Engineering at P.S.R. Engineering College, Sivakasi, 

Tamil Nadu, India. She is having 25 years of teaching experience. She has published 46 papers 

in peer reviewed international journals and presented 84 papers in various national and 

international conferences. She has received best paper award for her paper in the International 

Conference on VLSI communication and Instrumentation (ICVCI 2011). Her research 

interests are system identification, image processing, soft computing, wireless networks, cloud 

computing, and machine learning. She can be contacted at email: valarmathi@psr.edu.in. 

  

 

Sasireka Rajendran     received her B.Tech. Biotechnology from Kumaraguru 

College of Technology and Master of Technology in Biotechnology from Mepco Schlenk 

Engineering College under Anna University in the year 2012 and 2014 respectively. Currently 

she is pursuing Ph.D. under Anna University, Chennai. She has cleared Graduate Aptitude 

Test in Engineering. She obtained university 6th Rank during her Post Graduate programme. 

She also received Summer Faculty Research Fellowship at IIT Delhi and Indian Academy of 

Sciences Summer Fellowship at IIT Guwahati in the year 2015 and 2016 respectively. Her 

area of interest includes cancer biology and enzyme technology. She can be contacted at 

email: sasirekabt@mepcoeng.ac.in. 

     

 

https://orcid.org/0000-0002-0806-2121
https://scholar.google.com/citations?hl=en&user=Pfk__xgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=15926511600
https://www.webofscience.com/wos/author/record/1852638
https://orcid.org/0000-0002-9460-7844
https://scholar.google.com/citations?hl=en&user=sbjFIXkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57191893985
https://www.webofscience.com/wos/author/record/63021314

