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Contemporary data centers implement hybrid storage systems that consist of
layers from solid-state drives (SSDs) and hard disk drives (HDDs). Due to
their high data retrieval speed, SSDs layer is used to store important data
blocks that have features like high frequency of access. To boost their
security level, many of such systems implement self-encryption algorithms
like advanced encryption standard (AES), Blowfish, and triple data
encryption standard (3DES) with different key sizes that vary in their
complexity and their decryption latency whenever a block is requested for
read. Frequently accessed data blocks with increased decryption latencies are
better to be migrated to the SSDs layer to decrease their retrieval latency. In
this paper, we introduce a linear complexity algorithm hybrid self-encryption
storage data migration (HSESM) that migrates important data blocks that
requires long decryption latencies from the HDDs layer to the SSDs one.
Performance evaluation shows that HSESM data migration process can
reduce data blocks read latencies in 13.71%-23.61% under worst-case

scenarios.
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1. INTRODUCTION

Distributed systems in today’s world including cloud systems use distributed data centers to store
data that increases rapidly in terms of size. Most of data centers are designed in a hybrid approach where they
consist of array of hard disk drives (HDDs) and solid-state drives (SSDs) [1]. The SSDs are known of their
high data read/write speed performance in comparison to the HDDs, but in the same, their cost per storage
unit is high. Hence, data centers will need for HDDs as a lower cost storage to enable the data center to
accommodate the huge amount of data [2]. SSDs are used to store data blocks that are continuously needed to
be retrieved by users’ applications in the read operations, whereas HDDs store less needed data blocks [1].

When it comes to the security and privacy for those data blocks stored in the data centers, symmetric
self-encryption devices (SEDs) is implemented on both layers of the hybrid system by using variant
symmetric encryption algorithms [3]. The data blocks that are written on or read from either the HDDs or the
SSDs layer are encrypted or decrypted using a supplementary processing engine attached with the devices
[4]. This boosts the security level for the data stored on the storage system. However, data decryption latency
creates extra overhead when a particular data block is requested to be retrieved.

Due to the significant speed difference between the SSDs and the HDDs, SSDs will be the best
place to store the continuously requited data blocks by the users’ applications. So, when these data blocks are
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requested, the total read latency time that includes their decryption and reading will be significantly less in
comparison to the case if they allocated on the HDDs. For this reason, it is important to continuously assess
data blocks stored on the hybrid system using features like their access frequency, if they belong to real-time
or foreground applications, and if they use complex encryption algorithms that take longer time in decryption
in order to indicate if each particular data block is more important to be read faster. This assessment helps
making important data blocks that are highly accessed and take long time in decryption process to be
migrated from the HDDs layer to the SDDs one in case if they were not originally located on the SSDs. In
fact, the chance of finding that a data block is originally allocated on the HDDs layer is higher due to their
significant volume [5]. However, moving the data blocks that are classified as important from the HDDs to
the SSDs and those that are classified as less important in the opposite direction may consume the available
bandwidth of the hybrid storage system. This is because there exists a maximum number of 1/0 requests that

may take place concurrently in any storage system without being congested [1], [5].

Based on this introduction to our research, it is worthwhile to list its primary motivations that
underscore its significance:

a. Hybrid storage systems are widely used in todays distributed data centers to provide high storage capacity
and data retrieve performance.

b. There exists a significant gap in data read performance between SSDs and HDDs implemented in such
systems. Hence, data migration is important to move important data to the SSDs layers that show faster
read performance.

¢. Hybrid storage systems implement self-encryption algorithms to boost security level for the stored data.
Data decryption latency creates extra overhead when a particular data block is requested to be retrieved.

d. Migrating important data blocks, those that are highly accessed by users and take longer time to be
decrypted, to the SSDs layer will reduce data retrieve latency. However, this is restricted by the I/O
bandwidth available in the hybrid storage system.

e. Other researchers have not provided in any means solutions that perform data migration in self-encryption
hybrid storage system to improve data retrieve performance. They just provided performance evaluation
of different encryption algorithms on such systems.

f. The importance for a having a simple complexity algorithm for migrating important data to the SSDs
layer in such systems is significant.

In order to address the above mentioned research motivation, we introduce in this paper a linear
complexity algorithm for migrating data between the hybrid storage system layers. The algorithm called
hybrid self-encryption storage data migration (HSESM) keeps assessing the encrypted data blocks stored on
the hybrid storage system to determine for each block if it has a significant importance for the users’
applications to be placed on the SSDs layer. The model also takes into consideration the complexity of the
decryption process in terms of time and if it has high significance of the total data block reading time. The
algorithm then keeps adaptively moving the data blocks between the two storage layers by considering the
available 1/0 bandwidth that is affected by the current use of the storage system. Up to our best knowledge,
our research is the first that performs data migration for symmetric encrypted data based on the available 1/0
bandwidth in hybrid storage systems. Other researchers have examined the performance of different
symmetric encryption algorithms using different storage devices [3].

The remaining parts of this paper as follow: section 2 illustrates the related work, section 3 proposes
our HSESM algorithm, section 4 provides simulation and performance evaluation, and section 5 provides a
research conclusion.

2. RELATED WORK
Here we discuss some topics related to our research including hybrid storage systems and symmetric
self-encryption.

2.1. Hybrid storage systems

Data storage devices have developed during the past decades with different types of hardware.
Magnetic HDDs are the oldest types of storage that are still used in big data centers as they can accommodate
large amount of data with less cost per storage unit. SSDs were developed as a new type of storage devices
that are much faster and energy efficient. Thery use flash NAND technology that has proven high read/write
speed and low power consumption in comparison to HDDs [6]. As of their ability to handle huge volume of
1/0 requests per second (IOPS), they are still much expensive in comparison to HDDs and have not
completely replaced them. Some research provided solutions to increase the number of 1/O requests that can
be processed in a second IOPS in non-volatile SSDs where it can reach to one million IOPS [7].

Hybrid storage systems use several layers of storage devices such as HDDs and SSDs. The
important data that are expected to be accessed soon tend to be stored in the upper SSDs layer to facilitate
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their access [1]. For large data centers, researchers suggest adding SSDslayer on the top of HDDs one to
buffer users’ frequently requested data block in the SSDs. Data blocks prefetching solutions were proposed to
bring the data from HDDs to the SSDs before they are being actually requested by the users’ applications. So,
more data will be found in the SSDs [1]. As there exists high volume of 1/O requests in such systems, [8]
suggest using a small part of the SSDs in order to easy the scheduling process of the desk requests and to
reduce the challenges on the HDDs storage.

Data centers tend to be parallel hybrid storage systems as they have multi-levels of storage devices
where each level is in a form of an array. This provides high 1/0 bandwidth and helps in reading and writing
many data blocks in parallel, preform data migration, and facilitating data prefetching. Data migration helps
in moving hot data blocks that are highly requested for reads to the SSDs level [9]. Some research focused in
reducing the unnecessary migration for data between the HDDs and the SSDs for the dying data to improve
the performance of the hybrid storage system [10]. Many researchers proposed prefetching tools to leverage
the available I/0O bandwidth in parallel hybrid storage systems in order to make important data to be available
in the SSDs level either by informed or predictive approach [11], [12].

2.2. Self-encryption systems and encryption algorithms

Self-encryption drives (SEDs) have hardware capabilities that enable them to perform the
encryption and decryption process internally. Encryption engines that are integrated to the drivers’ controllers
are used for the cryptography process [11]. Cloud Data centers that use hybrid storage systems use SEDs
system for data protection and security as they have many advantages when compared with software
encryption. Advantages includes speed, less complexity high adoption, and device durability [13]. In
addition, it uses many symmetric encryptions with different key sizes that do not need to be shared over the
network.

Symmetric encryption algorithms perform the encryption/decryption process using a known key
value that might be with different sizes and does not need to be shared over the network. There exist several
symmetric encryption algorithms including advanced encryption standard (AES), data encryption standard
(DES), triple data encryption standard (3DES), and Blowfish. They vary in performance especially in terms
of encryption speed while using different data blocks sizes [14].

Many researchers suggest using hybrid encryption techniques that combine several encryption
algorithms to leverage their capabilities and to improve the encryption strength [15]-[17]. Others have
introduced hybrid encryption using chaotic system [18]. Asymmetric encryption algorithms such as Rivest-
Shamir-Adleman (RSA) involve using a public and private key to secure the data transmission over the
network. Symmetric encryption shows faster performance in terms of execution time in comparison to the
asymmetric approach [19], [20]. Some algorithms used asymmetric encryption to protect the key of the
symmetric encryption [21]. Symmetric encryption is more energy efficient and resilient for attacks based
from quantum computers [22]. In study [23], authors have introduced a data security novel for hybrid cloud
systems to ensure the protection of the user’s data using three symmetric encryption approaches that are
provided as-a-service. This indeed show the importance of such symmetric encryption solutions in cloud data
centres. The authors of [24] have proposed a symmetric double encryption mechanism for securing the data
sent and received in cloud systems in a form of two layers of cryptography. Some researcher found that there
are some weaknesses that may exist in SSDs self-encryption and might be compromised due the specification
and design issues. Hence, they recommend using more security measures and not only relying on hardware
security [25].

For hybrid storage systems, researchers have only examined the performance of symmetric self-
encryption algorithms performance on different layers. No research has investigated the possibilities of
migrating self-encrypted data blocks among the different layers to leverage the high performance provided by
the SSDs layer and to reduce the total data read latencies that include the decryption cost that might vary
based on the complexity of the used algorithm and the key size.

3. PROPOSED SOLUTION

Hybrid storage systems consist of layers of HDDs and SDDs to provide variety of storage layers to
store different types of data. They implement symmetric self-encryption mechanism to boost the security of
the stored data. When requesting a data block that is already encrypted in such systems, the total read latency
includes the time latency needed to have it decrypted. This latency may increase due to the complexity of the
cryptography algorithm and the key size. Many sensitive data blocks require using more complex
cryptography algorithms and extra long key sizes to increase their security level. This will increase the total
read latency whenever a particular block is requested by the users’ applications. As mentioned previously,
the possibility of finding a data already placed in the HDDs layer is more due to their significant size. In
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order to leverage the capabilities of hybrid storage systems, important data blocks have to be continuously
assessed and migrated from the HDDs layer to the SSDs one in order to reduce the total data retrieve latency
and the effect of the decryption process. This should take into consideration the available 1/0 bandwidth in
the hybrid storage system that constrains the amount of data blocks that can be migrated among the two
layers. HSESM algorithm is introduced to assess the important data blocks that are highly frequently
accessed, belong to foreground processes, and show extended decryption latencies, in order to migrate them
to the SSDs layer by leveraging the available 1/0 bandwidth of the storage system. Other research has only
examined the performance of such symmetric algorithms on different types of storage systems [3].

In a hybrid storage system, there exits many 1/O read requests that are continuously issued by users’
applications for data blocks stored on the system during their execution. For each requested block, HSESM
algorithm makes an assessment if a data block that is stored on the HDDs layer is important and should be
moved to the SSDs one. Then it performs the migration process by taking into consideration the available 1/0
bandwidth between the two layers. In case the SSDs layer reached to its maximum capacity, the opposite
should take place and the less accessed data blocks are moved to HDDs.

To efficiently perform the above-mentioned data migration process, HSESM algorithm consists of
four threads that keep executing concurrently: i) assessment thread (Tassmt), ii) data migration from HDD to
SSD thread (Twmig_ndd_ssa), 1) SSD full capacity assessment (Trun_ssp), and iv) data migration from SSD to
HDD thread (Twmig_ssa_ndd)- Before their execution, there exists some global data structures and variables that
are declared to facilitate the work of the threads.

3.1. Global data structures and variables

HSESM threads require the declaration for several global data structures and variables to function.
There exists a list that contains information for each data block stored on the hybrid storage system (Lg_info).
Each data block is allocated a node in this list and contains the following variables: (Vgiock_number) 10 Store a
unigue number for the data block, (Vaccess Freq) initialized to zero and contains the total number of times it
was requested for reading, (Vroecpt) initialized to zero and contains the recent latency of time it took to be
decrypted an it is usually in milliseconds, (Vin_ssp) Boolean variable where true value indicates that the block
is allocated in the SSDs layer, (Vrriority) Boolean variable where a true value indicates that the block belongs
to a real-time or foreground application rather than a background one, (Vssps scheduled) BOOlean variable
initialized to false where true value indicates that the block is scheduled for migration from the SSDs layer to
the HDDs one, and (Vbps_scheduled) BOOlean variable initialized to false where true value indicates that the
block is scheduled for migration from the HDDs layer to the SSDs one.

In addition, there exists global variables declared to be used for calculations related to accessed data
blocks. (Vhgst_Freq) initialized to zero to store the highest recorded (V access_Freq) fOr the requested data blocks,
(Vist_Freq) initialized to zero and to store the lowest recorded (Vaccess Freq) fOr the requested data blocks,
(Vhgst Tecpt) initialized to zero to store the highest recorded (Vrpeept) for the requested data blocks, and
(VLst_Toecpt) initialized to zero and to store the lowest recorded (Vrpecpt) for the requested data blocks.

Let the global variable (Votsize) be the total size of the hybrid storage system in term of data blocks
assuming fixed size data blocks will be stored on both layers. Let (Vsspssize) be the SSDs layer size using the
same fixed size data blocks. The ratio of the SSDs layer size in respect to the total size of the storage system
is calculated in global variable (Vr ssps) using (1). Up to (Vr ssps) ratio of the entire data blocks will be
stored on the SSDs layer.

Vr_ssps = Vsspssize = Vrotaisize 1)

A global queue structure (QmigHops_ssps) is declared to queue the data blocks that are scheduled for migration
from the HDDs layer to the SSDs one by enqueuing each (Vaiock number). (Qmigssps Hops) is the same for the
opposite direction.

In a hybrid storage system, there exists a maximum bandwidth value that represents the number of
data blocks that can be read from the SSDs layer to the HDDs one and the opposite from the HDDs layer to
the SSDs during the normal operation of the system while it is responding to the users 1/O read and write
requests [1], [5]. In case this number was exceeded, the read and writes operations on both layers will exceed
their normal latencies. Let a global variable (Vew_sspsHpps) be the maximum bandwidth for moving data from
SDDs to the HDDS and a global variable (Vew_nppsssps) to be the one from the HDDs to the SSDs. The
bandwidth increases in non-peak times as the pressure on the storage system decreases. Maximum bandwidth
was measured by other research by sensing whenever the storage system reaches to an increased latency
higher than an expected level during the process of performing the 1/0 requests [1]. In addition, most storage
systems provide information on the maximum bandwidth in the specifications documents. In this algorithm,
we will assume fixed values of maximum bandwidth in the performance evaluation section. However, the
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algorithm is flexible for any variable values for the maximum bandwidth that can change over the execution
time. Table 1 summarises the global data structures and variables.

Table 1. Summary of the global data structures and variables

Identifier Description Identifier Description
L info- Unique data block number Vhgst_Tecpt Current highest value of Lg info-VToecpt
VBIock number
L& info- Data block read requests Vit Toecpt Current lowest value of Lg_info-VToecpt
V access Freq
Lg_info-VTDecpt Recent decryption latency in time Votalsize Total size of the storage system two
layers in data blocks
Ls info-Vin ssp Is the block in SSDs Vsspssize SSDs layer size in data blocks
Lg_info-Veriority Real-time/foreground block VR ssps SSDs layer size ratio to the total size of
the entire storage system
L& info- The block scheduled for migration to  Qwigrpps_ssos Queue of scheduled data blocks for
VssDs scheduled SSDs migration to the SSDs
L& info- The block scheduled for migration to  Qwigssps_Hoos Queue of scheduled data blocks for
VHDDs scheduled HDDs migration to the HDDs
Vhigst Freq Current highest value of Lgino- Vaw sspsHpps Maximum bandwidth of data block that
V access Freq OF the entire data blocks can be moved from SSDs to the HDDs
Vit Freq Current lowest value of Lgino- Vew Hppsssps Maximum bandwidth of data block that
V access Freq OF the entire data blocks can be moved from HDDs to the SSDs

3.2. Assessment thread (Tassmt)

This thread continuously evaluates each requested data block by the users’ applications to decide if
it is eligible for migration from the HDDs to the faster SSDs layer based on its importance. For each
requested data block, it updates variables on how often it is accessed and how long it takes to have it
decrypted, calculating these in global maximum and minimum variables. If the block is already in the SSDs
layer, no further action takes place. For those requested data blocks allocated in the HDDs layer and belong
to foreground or real-time processes, the thread calculates the percentiles for both, access frequency and
decryption time latency based on the size of the SSDs layer relatively to the total size of the storage system.
It also considers in this calculation the mentioned maximum and minimum values of the access frequencies
and the decryption latencies. These percentiles are used to identify thresholds that indicate which blocks have
the importance to be migrated to the SSDs. If a block’s access frequency and decryption latency exceed these
percentiles, it’s scheduled for migration to the SSDs layer to improve its retrieval speed.

For each data block requested by the users’ applications from the hybrid storage system regardless
in which layer it is initially stored, this thread first retrieves its information node from the blocks information
list (Le_info). First, it increments its access frequency variable (Vaccess_Freq). Then, it updates the two global
variables: highest access frequency (Vhgst Freq) and lowest access frequency (Vistrreq). Their update is a
simple comparison, where if the updated value (V access_rreq) OF the block is more than or equals (Vhgst_Freq), it
will replace its value. Same thing happens if it is less than or equals (Vs Freq). At the same time, the thread
calculates the latency that the block took to be self-decrypted using its symmetric encryption algorithm, and
store that value in (Vtpecpt). The calculation of the self-decryption process latency is done by simple timer.
Then, maximum and minimum decryption latency global variables (Vugst Toecpt and Vist Tpecpt respectively)
are updated similarly to the approach done with access frequency variables.

At this point, the thread reads the values (Vin ssps), (Vssps_scheduled), and (Veriority) Of the data bock.
(Vin_ssps) indicates if the block is already allocated in the SSDs layer, (Vssps_scheduled) indicated if it was
already scheduled for migration to the SSDs layer, and (Veriority) indicates if the block belongs to a real-time
or foreground application. In case both (Vin_ssps) OF (Vssps_scheduled) Were true or (Veriority) Was false, the thread
will not continue its remaining part on the current block and waits for the next requested one as the current
data block is either already scheduled for migration to the SSDs layer or it is already allocated over there, or
it belongs to a background application where its reading speed efficiency is not an issue. Otherwise, the
thread continues to the next steps as the data block might be eligible for migration since it is allocated in the
HDDs layer, not scheduled for migration, and belongs to a priority application.

Based on the ratio of the SSDs layer size in respect to the total size of the storage system (R ssps),
the percentile (Paccess Freq) IS calculated using (2) that represents the minimum value of (Vaccess Freq) Where
data blocks who have at least this value are important be migrated to the SSDs layer. This is assuming that
the data blocks access frequency values (Vaccess Freq) are uniformly distributed. This assumption is valid as in
any system, there exists many data blocks that are much frequently accessed, others that are rarely accessed,
and many others that are accessed with normal frequencies.
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PAccess_Freq = VLst_Freq + VR_SSDS X (VHgst_Freq - VLst_Freq) (2)

Similar to (2), the percentile (Prpecpr) is calculated using (3) that represents the minimum value of
(Vroecpr) Where data blocks who have at least this value are important to be migrated to the SSDs layer as
they have the highest decryption latency. So, finding them in the SSDs layer is more important to speed up
their reading process. We make here the same assumption where decryption time values of the data blocks
(V1oecpt) are uniformly distributed.

PTDecpt = VLst_TDecpt + VR_SSDS X (VHgst_TDecpt - VLst_TDecpt) (3)

After the calculation of the two percentiles local variables, the thread compares if the data block
access frequency (Vaccess Freq) IS greater than or equals the percentile (Paccess_Freq) and if the decryption time of
the data block (Vrtpecp) Was more than or equals the percentile (Prpecpt). In this case, the data block is
considered an important block that must be migrated to the SSDs layer to have the latencies of all of its future
read requests minimized. The block number (Vgiock_number) 1S €nqueued to the end of the queue (QmigHpps_ssps)
so it is scheduled to be moved to the SSDs layer by the thread (Twmig ndd_ssa) Whenever a slot of the storage
system bandwidth allows. The variable (Vssps_scheduled) 1S Set to true so if it was requested again by the user’s
application before it is migrated to the SSDs layer, the thread will not add it again to the queue. Algorithm 1
shows a pseudocode for (T assmt) thread that was explained.

Algorithm 1. (T assmt) pseudocode
while (true)
for each accessed data block do
retrieve (Lg info) node
increment (Vaccess rreq)
update (Vigst_rreq) and (Vist_rreq) based on (Vaccess rreq)
calculate (Vipecpt) self-decryption latency
update (Vagst tpecpt) and (Vist rpecpt) based on (Vrpecpt)
if (Vin ssps == False and Vssps scheauiea == False and Veriority == True)
calculate (Paccess rreq) based on (2)
calculate (Prpecpt) based on (3)
1f (Vaccess rreq >= Paccess rreq @and Vrpecpt >= Prpecpt)
enqueue (Vsiock numver) tO the end of (Quiguops ssps)
set (Vssps_scheduled) to True
end if
end if
end for
end while

3.3. Data migration from hard disk drive to solid-state drive thread (Twmig_hdd_ssd)

This thread performs the migration process for important data blocks to the SSDs layer that were
determined by (Tassmt) thread. It keeps monitoring the current number of ongoing 1/O reads from the HDDs
and 1/O writes on the SSDs to determine if the value (Vsw_Hppsssps) Was not reached. The number of these
ongoing 1/0 requests are considered a consumption of the bandwidth, and it is recorded in a local variable
(VBcon_HDDs_ssps). The HDDs to SSDs migration size that represents the number of data blocks scheduled for
migration in (Qmigroos_ssps) and can be moved immediately based on the available bandwidth is calculated by
(4), stored in local variable (Vwmigsize_HDDssSDs)-

VMigSize,HDDsSSDs = VBW,HDDSSSDS - VBCon,HDDs,SSDs (4)

Then, the first (Vwmigsize HDDsssps) count of data blocks in the front of (QmigHobs ssps) Will be moved
from the HDDs layer to the SSDs one. There nodes in (QwmigHops ssps) Will be dequeued. In addition, each
block (Vin_sspbs) and (Vssps_scheduted) Variables in (Lg info) are set to True and False respectively. Algorithm 2
shows a pseudocode for (Twmig_ndd ssd) thread that was explained.

Algorithm 2. (Twmig_ndd_ssa) pSeudocode
while (true)
Vacon mpps ssps = ongoing HDDs read and SSDs write requests
if Vacon nops ssps < Vew HDDsSSDs
calculate VMigSlZeiHDDSSSDS using (4)
for each of the first VMlgslzeiHDDgSSDg nodes in QMngDDgisSDS
copy block number Vsiock numper to SSDs Layer
delete block number Veiock numwer from HDDs Layer
update block Vin ssps in Lg info Lo True
update block Vssps scheduled in Ls_into Lo False
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dequeue block node from Quignops ssps
end for
end if
end while

3.4. Solid-state drives full capacity assessment (Truil_ssp)

This thread keeps calculating the number of data blocks written to SSDs layer to check if it has
reached its maximum capacity (Vssossize) especially that SSDs layer is significantly less in size than the
HDDs one. It uses a local variable (Vssp_siocks_count) t0 calculate the number of data blocks in the SSDs. To
initialize the variable, the thread goes through (Lg info) for one time and increments (Vssp_Blocks Count)
whenever (Vin_ssps) is found true. The thread then keeps monitoring whenever a block is written on the SSDs
layer to increment (Vssp_slocks_count)- | the maximum size is reached, a data block in the SSDs layer must be
scheduled for migration from the SSDs to the HDDs. The least complex approach to perform that is to
linearly go through (Lg_info) list and to keep finding the data blocks that are allocated in the SSDs layer where
(Vin_ssp) is true and have value of access frequency (Vaccess Freq) that became less than the percentile
(Paccess_Freq) Which is calculated here using (2). As percentile (Paccess_rreq) Keeps changing while data blocks
are accessed, there must be data blocks in the SSDs layer that their access frequency become less than the
percentile and become less important. Hence, these blocks will be moved to the HDDs layer to open a space
for new important data blocks. Whenever a block is found, it (Vgiock_number) Will be enqueued to the end of
(Qwigssps_Hops) and the value of (Vssp_glocks_count) 1S decremented. The block (VHops_scheduled) 1S Set to true so it
will not be rescheduled again before its migration. Algorithm 3 shows a pseudocode for (Trui_ssp) thread that
was explained.

Algorithm 3. (Trui_ssp) pseudocode
for all blocks in Ls into do

if Vin ssps == True
increment Vssp Blocks_count
end 1if
end for

while (true)
if a new block written on the SSDs Layer
increment Vssp Blocks_Count
calculate percentile Paccess rreq USing (2)

if Vssp_Blocks_count == Vsspssize
for each node in Ls info
if Vin ssp == True and Vupps_schedulea == False

1if Vaccess rreq < Paccess Freg
enqueue Vsilock number tO the end of Quigssps sops
decrement Vssp Blocks Count
set Vupps_schedulea tO True
end if
end if
end for
end if
end if
end while

3.5. Data migration from solid-state drive to hard disk drive thread (Twmig_ssd_hdd)

This thread performs the migration of the data blocks to the HDDs layer whenever the SSDs are full
for those data block determined by thread (Trui_ssp). Similar to (Twmig_ndd_ssda), it keeps monitoring the current
number of ongoing 1/O reads from the SSDs and 1/O writes on the HDDs to determine if the value of the
bandwidth (Vew ssostops) Was not reached. It also records the consumption of the bandwidth in a local
variable (Vecon_ssps_Hpps). Similarly, the size of SSDs to HDDs migration that represents the number of data
blocks scheduled for migration in (Qwigssps_Hpps) and can be moved immediately based on the available
bandwidth is calculated by (5) in a local variable (Vwmigsize_sspsHDDs)-

VMigSize_SSDsHDDs = VBW_SSDSHDDS - VBCon_SSDs_HDDs (5)

Then, the first (Vmigsize_sspshpps) count of data blocks in the front of (Qmigssps Hops) Will be moved
from the SSDs layer to the HDDs one. There nodes in (Qwigssps_Hops) Will be dequeued. In addition, each
block (Vin_ssps) and (Vwpps_scheduled) Variables in (Lg info) are both set to False. Algorithm 4 shows a
pseudocode for (Twmig_ssd_ndd) thread.
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Algorithm 4. (Twmig_ssd_haa) pseudocode
while (true)
Vacon ssps #pps = ongoing SSDs read and HDDs write requests
1f Vacon ssps upps < VBw_sspsHDDs
calculate Vuigsize sspsupps Using (5)

for each of the first Vuigsize sspsupps Nodes in Quigssps uops
copy block number Vesiock numver to HDDs Layer
delete block number Vsiock numper from SSDs Layer
update block Vin ssps in Lg info to False
update block Vupps scheduled in Ls_into Lo False
dequeue block node from Quigssps uops

end for

end if
end while

3.6. Hybrid self-encryption storage data migration algorithm complexity analysis

As mentioned previously, HSESM to our best knowledge and review to the literature is the only
algorithm that performs data migration for important data blocks in self-encryption hybrid storage systems.
Analysing its complexity is important to show if it will be able to achieve its goals with minimal steps and
time. The thread (Tassmt) in each iteration evaluates (n) blocks access frequency and decryption latency and
updates the global variables. Hence, it has a time complexity of O(n) per iteration in the worst-case scenario.
(Trun_ssp) thread also has a complexity of O(n) in the worst-case scenario when assessing all the data blocks
in the SSDs layer. The two data migration threads (Twig_ndd_ssa @nd Twig_ssa_naa) Move data blocks between the
two layers based on the available 1/0 bandwidth. In case (k) data blocks will be moved from the HDDs to the
SSDs and (m) data blocks will be moved in the opposite direction, the complexity of the threads per
execution cycle will be O(k) and O(m) respectively considering the worst-case scenario. In fact, the size of
(m) is expected to be less than the size of (k) due to the increased volume of the HDDs layer. The overall
algorithm’s complexity with its four threads hence will be in O(n). This indicates that the algorithm is
computationally light, quick to execute, and highly scalable. Figure 1 shows the algorithm complexity
asymptotic notation per thread.

o(n) o(n)

O(k)

Complexity (Arbitrary Units)

O(m)

T T T T
TAssmt TFull_SsD TMig_ssd_hdd TMig_hdd_ssd
Threads

Figure 1. Algorithm complexity asymptotic notation per thread, overall complexity: O(n)

4. PERFORMANCE EVALUATION

Due to the migration process of the important data blocks that HSESM perform to the SSDs by
using the available 1/0 bandwidth, it leverages the high speed of the SSDs layer and reduces the data retrieve
time in a significant amount. This improves the performance of users’ applications. In this section, we
present a simulation for the HSESM to evaluate its performance benefits that can be achieved in hybrid
storage systems implementing symmetric self-encryption.

The performance metric that is used to measure the performance of HSESM algorithm is the total
read latency for the entire data blocks that were requested by the users’ applications during their execution
over a particular period of time. The comparison will be in the case of using HSESM Algorithm with the case
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of not putting it in use. The difference ratio represents how much the algorithm contributed in optimizing
data retrieve performance of the hybrid data center that implements symmetric self-encryption. Whenever
more requested data blocks are founded in the SSDs layer, their total reading latency will be less under the
presence of decryption process latency.

For that purpose, we built a simulator using python that implements HSESM algorithm and execute
it on a randomly generated trace that reflects real-world scenarios for records of users’ applications requests
for data blocks. There exist many factors that affects the performance evaluation of the algorithm. First, the
locality of reference where if the users” applications read request tend to be more for the data blocks that are
initially in the SSDs layer, hence, less migration will be needed. Second, the size of the SSDs layer in
comparison to the HDDs one and the initial placement of the data blocks, indeed less SSDs size will decrease
the amount of data blocks founded in the SSDs layer. Next, the ratio of the requested data blocks in the
HDDs layer that were classified as important blocks and need to be migrated to the SSDs layer during a
particular period of the system execution time. More important blocks will lead to extra need for data blocks
to be migrated. In addition, the available bandwidth for moving the data blocks from the HDDs layer to the
SSDs one whenever a block is scheduled for migration and the opposite whenever the SSDs layer becomes
full in capacity. More consumed bandwidth in both directions will reduce the speed of the migration process
and the chance of finding more data blocks in the SSDs layer. Both the randomly generated trace and the
simulator consider different scenarios of the mentioned factors. The trace consists of 2000 records of users’
applications read requests, where we found this number is enough to simulate our algorithm and to prove its
performance over enough duration of time.

We assume a conservative assumption that the size of the SSDs layer is 30% of the total hybrid
storage system and the size of the HDDs one is 70%. This is due to reasons that we mentioned previously.
For data reference locality, we can simulate different scenario, due to the space limitation, we simulated a
worst-case scenario when only 30% of the requested data blocks in the trace are initially in the SSDs layer.

Similar to Assaf et al. [5], we set the size of each data block stored in the hybrid storage system to
10 MB for the purpose of performance evaluation as data centers tend to use relatively large data blocks to
improve the systems performance. However, our solution is flexible under the case of using different sizes of
data blocks.

We implemented the following symmetric self-encryption algorithms for encrypting the data blocks
in the system: AES-128, AES-256, Blowfish-128, Blowfish-256, and 3DES. Table 2 shows the range of
decryption latencies in seconds that we got while decrypting the data blocks each of size 10 MB during the
simulation using a normal speed processor (1.6 GHz Dual-Core Intel Core i5). In fact, the choice of the
encryption algorithm is related to the application and the nature of the sensitive data need to be protected.

Table 2. Ranges of decryption latencies for AES, blowfish, and 3DES for data blocks of size 10 MB
Decryption algorithm  Latency range in (s)

AES-128 0.035465-0.058096
AES-256 0.039253-0.049405
Blowfish-128 0.108130-0.142406
Blowfish-256 0.120671-0.149756
3DES 0.474093-0.630230

Regardless of processing unit used in the self-encryption system, both AES and Blowfish show
increased decryption latency when using larger key size. 3DES shows more complexity and high decryption
latency in comparison to the others. Hence, data blocks that tend to be frequently used, their decryption
latency is high, and belongs to real-time or foreground applications will be classified as important blocks that
are subject for migration to the SSDs layer in case they exceed the updated value of the percentiles calculated
in (2) and (3).

For the ratio of the important data blocks, we programmed our trace generator to take different
scenarios of the amount of data blocks to be classified as important. We simulated three scenarios were 50%,
40%, and 30% of the trace requested data blocks that are initially in the HDDs layer are classified as
important. We assume that 50% is a good upper limit for that ratio due to the increased volume of the HDDs
layer as well as for the fact that most of the important data blocks tend to be initially allocated in SSDs layer.

For the bandwidth available for migrating the data between the two layers, we assume a
conservative assumption that it will reach to 70% of consumption during the peak times and then it relaxes to
60% and 50% when there becomes less pressure on the storage system. Higher consumption rate of the
available bandwidth will reduce the system efficiency and raise the need for scalability.
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The final input needed in the simulation is the disk read latencies in seconds from the HDDs
(Latencyrpps) and SSDs (Latencyssps) as well as the latency in seconds for reading a data block from the
HDDs and have it written in the SSDs or the opposite direction (Latencyrpps-ssos) When using a block size of
10 MB. We used the validated values in [5] where the ranges of these values are illustrated in Table 3.

Table 3. Validated values of disk latencies parameters
Disk latency parameter  Latency range in (s)

Latencypps 0.075-0.12
Latencyssps 0.045-0.052
Latencyrpos-ssos 0.115-0.122

After executing the simulator using the different scenarios, we found that the total disk read latency
without using HSESM is (199.1s) as the locality of the requested data blocks is set to be 30% in the SSDs.
Implementing HSESM will always result reduced total disk read latencies under different scenarios mentioned
above of consumed bandwidth and the amount of data blocks being classified as important. Figure 2 shows that
HSESM data migration process has contributed in improving the performance of the hybrid storage system
between 13.71% and 23.61% of total disk read latency reduction. HSESM also has contributed in reducing
the effect of the decryption latency for those data blocks frequently requested by the users’ applications
especially when they tend to use more complex symmetric encryption algorithms with larger key sizes. It
clearly shows that whenever the consumed bandwidth is less and the number of the encrypted data blocks
that were classified as important are more, the ratio of improvement is higher. For some short period of time,
the case of bandwidth consumption of 60% shows less improvement ratio when 50% of data blocks were
classified as important. This was due to the increased opposite migration to the HDDs that took place in that
period during the simulation. But in general, the curve follows the mentioned general performance trend. As
we mentioned in the introduction that after thorough research, our research is the first that provides data
migration solution for important symmetric encrypted data blocks in hybrid storage systems. Hence, our
results and findings can offer a valuable baseline for any potential similar future research.

—8— /O Bandwidth Consumption 70%
1/0 Bandwidth Consumption 60%
—&— /O Bandwidth Consumption 50%

18

Improvement Ratio (%)

16 4

14

50% 40% 30%
Ratio of Important Data Blocks

Figure 2. Improvement ratio of total disk read latency in (%) provided by HSESM under different scenarios
of the amount of important data blocks and the consumed 1/0 bandwidth for data migration

5. CONCLUSION

In this paper, we introduced a data migration algorithm (HSESM) for symmetric self-encryption
data centers that implement hybrid storage systems of SSDs and HDDs layers. It keeps migrating frequently
used data blocks that belong to real-time or foreground processes and require more decryption latency to the
SSDs layer in order to take advantage of its increased speed performance. The algorithm leverages the
available 1/0 bandwidth of the storage system to perform the migration process aiming to decrease the total
data read latencies. HSESM was simulated under different scenarios when the data blocks were encrypted
using AES, blowfish, 3DES with different key sizes. It was able to decrease the total read latency of the
requested data blocks by the users’ applications in 13.71%-23.61%. One important future work that we
would like to investigate is the effect of data migration on power consumption in self-encryption hybrid
storage systems considering the energy efficiency of SSDs layer.
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