
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 3, June 2025, pp. 2288~2299

ISSN: 2302-9285, DOI: 10.11591/eei.v14i3.9320  2288

Journal homepage: http://beei.org

Linear algorithm for data retrieval performance optimization in

self-encryption hybrid data centers

Maen M. Al Assaf1, Mohammad Qatawneh1,2, AlaaAldin AlRadhi3
1King Abdullah II School for Information Technology, University of Jordan, Amman, Jordan

2Al-Ahliyya Amman University, Amman, Jordan
3Sheridan College, Toronto, Canada

Article Info ABSTRACT

Article history:

Received Sep 18, 2024

Revised Jan 2, 2025

Accepted Mar 9, 2025

 Contemporary data centers implement hybrid storage systems that consist of

layers from solid-state drives (SSDs) and hard disk drives (HDDs). Due to

their high data retrieval speed, SSDs layer is used to store important data

blocks that have features like high frequency of access. To boost their

security level, many of such systems implement self-encryption algorithms

like advanced encryption standard (AES), Blowfish, and triple data

encryption standard (3DES) with different key sizes that vary in their

complexity and their decryption latency whenever a block is requested for

read. Frequently accessed data blocks with increased decryption latencies are

better to be migrated to the SSDs layer to decrease their retrieval latency. In

this paper, we introduce a linear complexity algorithm hybrid self-encryption

storage data migration (HSESM) that migrates important data blocks that

requires long decryption latencies from the HDDs layer to the SSDs one.

Performance evaluation shows that HSESM data migration process can

reduce data blocks read latencies in 13.71%-23.61% under worst-case

scenarios.

Keywords:

Data retrieve

Hybrid storage systems

Linear algorithm

Storage system bandwidth

Symmetric self-encryption

devices

This is an open access article under the CC BY-SA license.

Corresponding Author:

Maen M. Al Assaf

King Abdullah II School for Information Technology, University of Jordan

Amman 11942, Jordan

Email: m_alassaf@ju.edu.jo

1. INTRODUCTION

Distributed systems in today’s world including cloud systems use distributed data centers to store

data that increases rapidly in terms of size. Most of data centers are designed in a hybrid approach where they

consist of array of hard disk drives (HDDs) and solid-state drives (SSDs) [1]. The SSDs are known of their

high data read/write speed performance in comparison to the HDDs, but in the same, their cost per storage

unit is high. Hence, data centers will need for HDDs as a lower cost storage to enable the data center to

accommodate the huge amount of data [2]. SSDs are used to store data blocks that are continuously needed to

be retrieved by users’ applications in the read operations, whereas HDDs store less needed data blocks [1].

When it comes to the security and privacy for those data blocks stored in the data centers, symmetric

self-encryption devices (SEDs) is implemented on both layers of the hybrid system by using variant

symmetric encryption algorithms [3]. The data blocks that are written on or read from either the HDDs or the

SSDs layer are encrypted or decrypted using a supplementary processing engine attached with the devices

[4]. This boosts the security level for the data stored on the storage system. However, data decryption latency

creates extra overhead when a particular data block is requested to be retrieved.

Due to the significant speed difference between the SSDs and the HDDs, SSDs will be the best

place to store the continuously requited data blocks by the users’ applications. So, when these data blocks are

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Linear algorithm for data retrieval performance optimization in self-encryption … (Maen M. Al Assaf)

2289

requested, the total read latency time that includes their decryption and reading will be significantly less in

comparison to the case if they allocated on the HDDs. For this reason, it is important to continuously assess

data blocks stored on the hybrid system using features like their access frequency, if they belong to real-time

or foreground applications, and if they use complex encryption algorithms that take longer time in decryption

in order to indicate if each particular data block is more important to be read faster. This assessment helps

making important data blocks that are highly accessed and take long time in decryption process to be

migrated from the HDDs layer to the SDDs one in case if they were not originally located on the SSDs. In

fact, the chance of finding that a data block is originally allocated on the HDDs layer is higher due to their

significant volume [5]. However, moving the data blocks that are classified as important from the HDDs to

the SSDs and those that are classified as less important in the opposite direction may consume the available

bandwidth of the hybrid storage system. This is because there exists a maximum number of I/O requests that

may take place concurrently in any storage system without being congested [1], [5].

Based on this introduction to our research, it is worthwhile to list its primary motivations that

underscore its significance:

a. Hybrid storage systems are widely used in todays distributed data centers to provide high storage capacity

and data retrieve performance.

b. There exists a significant gap in data read performance between SSDs and HDDs implemented in such

systems. Hence, data migration is important to move important data to the SSDs layers that show faster

read performance.

c. Hybrid storage systems implement self-encryption algorithms to boost security level for the stored data.

Data decryption latency creates extra overhead when a particular data block is requested to be retrieved.

d. Migrating important data blocks, those that are highly accessed by users and take longer time to be

decrypted, to the SSDs layer will reduce data retrieve latency. However, this is restricted by the I/O

bandwidth available in the hybrid storage system.

e. Other researchers have not provided in any means solutions that perform data migration in self-encryption

hybrid storage system to improve data retrieve performance. They just provided performance evaluation

of different encryption algorithms on such systems.

f. The importance for a having a simple complexity algorithm for migrating important data to the SSDs

layer in such systems is significant.

In order to address the above mentioned research motivation, we introduce in this paper a linear

complexity algorithm for migrating data between the hybrid storage system layers. The algorithm called

hybrid self-encryption storage data migration (HSESM) keeps assessing the encrypted data blocks stored on

the hybrid storage system to determine for each block if it has a significant importance for the users’

applications to be placed on the SSDs layer. The model also takes into consideration the complexity of the

decryption process in terms of time and if it has high significance of the total data block reading time. The

algorithm then keeps adaptively moving the data blocks between the two storage layers by considering the

available I/O bandwidth that is affected by the current use of the storage system. Up to our best knowledge,

our research is the first that performs data migration for symmetric encrypted data based on the available I/O

bandwidth in hybrid storage systems. Other researchers have examined the performance of different

symmetric encryption algorithms using different storage devices [3].

The remaining parts of this paper as follow: section 2 illustrates the related work, section 3 proposes

our HSESM algorithm, section 4 provides simulation and performance evaluation, and section 5 provides a

research conclusion.

2. RELATED WORK

Here we discuss some topics related to our research including hybrid storage systems and symmetric

self-encryption.

2.1. Hybrid storage systems

Data storage devices have developed during the past decades with different types of hardware.

Magnetic HDDs are the oldest types of storage that are still used in big data centers as they can accommodate

large amount of data with less cost per storage unit. SSDs were developed as a new type of storage devices

that are much faster and energy efficient. Thery use flash NAND technology that has proven high read/write

speed and low power consumption in comparison to HDDs [6]. As of their ability to handle huge volume of

I/O requests per second (IOPS), they are still much expensive in comparison to HDDs and have not

completely replaced them. Some research provided solutions to increase the number of I/O requests that can

be processed in a second IOPS in non-volatile SSDs where it can reach to one million IOPS [7].

Hybrid storage systems use several layers of storage devices such as HDDs and SSDs. The

important data that are expected to be accessed soon tend to be stored in the upper SSDs layer to facilitate

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2288-2299

2290

their access [1]. For large data centers, researchers suggest adding SSDslayer on the top of HDDs one to

buffer users’ frequently requested data block in the SSDs. Data blocks prefetching solutions were proposed to

bring the data from HDDs to the SSDs before they are being actually requested by the users’ applications. So,

more data will be found in the SSDs [1]. As there exists high volume of I/O requests in such systems, [8]

suggest using a small part of the SSDs in order to easy the scheduling process of the desk requests and to

reduce the challenges on the HDDs storage.

Data centers tend to be parallel hybrid storage systems as they have multi-levels of storage devices

where each level is in a form of an array. This provides high I/O bandwidth and helps in reading and writing

many data blocks in parallel, preform data migration, and facilitating data prefetching. Data migration helps

in moving hot data blocks that are highly requested for reads to the SSDs level [9]. Some research focused in

reducing the unnecessary migration for data between the HDDs and the SSDs for the dying data to improve

the performance of the hybrid storage system [10]. Many researchers proposed prefetching tools to leverage

the available I/O bandwidth in parallel hybrid storage systems in order to make important data to be available

in the SSDs level either by informed or predictive approach [11], [12].

2.2. Self-encryption systems and encryption algorithms

Self-encryption drives (SEDs) have hardware capabilities that enable them to perform the

encryption and decryption process internally. Encryption engines that are integrated to the drivers’ controllers

are used for the cryptography process [11]. Cloud Data centers that use hybrid storage systems use SEDs

system for data protection and security as they have many advantages when compared with software

encryption. Advantages includes speed, less complexity high adoption, and device durability [13]. In

addition, it uses many symmetric encryptions with different key sizes that do not need to be shared over the

network.

Symmetric encryption algorithms perform the encryption/decryption process using a known key

value that might be with different sizes and does not need to be shared over the network. There exist several

symmetric encryption algorithms including advanced encryption standard (AES), data encryption standard

(DES), triple data encryption standard (3DES), and Blowfish. They vary in performance especially in terms

of encryption speed while using different data blocks sizes [14].

Many researchers suggest using hybrid encryption techniques that combine several encryption

algorithms to leverage their capabilities and to improve the encryption strength [15]-[17]. Others have

introduced hybrid encryption using chaotic system [18]. Asymmetric encryption algorithms such as Rivest-

Shamir-Adleman (RSA) involve using a public and private key to secure the data transmission over the

network. Symmetric encryption shows faster performance in terms of execution time in comparison to the

asymmetric approach [19], [20]. Some algorithms used asymmetric encryption to protect the key of the

symmetric encryption [21]. Symmetric encryption is more energy efficient and resilient for attacks based

from quantum computers [22]. In study [23], authors have introduced a data security novel for hybrid cloud

systems to ensure the protection of the user’s data using three symmetric encryption approaches that are

provided as-a-service. This indeed show the importance of such symmetric encryption solutions in cloud data

centres. The authors of [24] have proposed a symmetric double encryption mechanism for securing the data

sent and received in cloud systems in a form of two layers of cryptography. Some researcher found that there

are some weaknesses that may exist in SSDs self-encryption and might be compromised due the specification

and design issues. Hence, they recommend using more security measures and not only relying on hardware

security [25].

For hybrid storage systems, researchers have only examined the performance of symmetric self-

encryption algorithms performance on different layers. No research has investigated the possibilities of

migrating self-encrypted data blocks among the different layers to leverage the high performance provided by

the SSDs layer and to reduce the total data read latencies that include the decryption cost that might vary

based on the complexity of the used algorithm and the key size.

3. PROPOSED SOLUTION

Hybrid storage systems consist of layers of HDDs and SDDs to provide variety of storage layers to

store different types of data. They implement symmetric self-encryption mechanism to boost the security of

the stored data. When requesting a data block that is already encrypted in such systems, the total read latency

includes the time latency needed to have it decrypted. This latency may increase due to the complexity of the

cryptography algorithm and the key size. Many sensitive data blocks require using more complex

cryptography algorithms and extra long key sizes to increase their security level. This will increase the total

read latency whenever a particular block is requested by the users’ applications. As mentioned previously,

the possibility of finding a data already placed in the HDDs layer is more due to their significant size. In

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Linear algorithm for data retrieval performance optimization in self-encryption … (Maen M. Al Assaf)

2291

order to leverage the capabilities of hybrid storage systems, important data blocks have to be continuously

assessed and migrated from the HDDs layer to the SSDs one in order to reduce the total data retrieve latency

and the effect of the decryption process. This should take into consideration the available I/O bandwidth in

the hybrid storage system that constrains the amount of data blocks that can be migrated among the two

layers. HSESM algorithm is introduced to assess the important data blocks that are highly frequently

accessed, belong to foreground processes, and show extended decryption latencies, in order to migrate them

to the SSDs layer by leveraging the available I/O bandwidth of the storage system. Other research has only

examined the performance of such symmetric algorithms on different types of storage systems [3].

In a hybrid storage system, there exits many I/O read requests that are continuously issued by users’

applications for data blocks stored on the system during their execution. For each requested block, HSESM

algorithm makes an assessment if a data block that is stored on the HDDs layer is important and should be

moved to the SSDs one. Then it performs the migration process by taking into consideration the available I/O

bandwidth between the two layers. In case the SSDs layer reached to its maximum capacity, the opposite

should take place and the less accessed data blocks are moved to HDDs.

To efficiently perform the above-mentioned data migration process, HSESM algorithm consists of

four threads that keep executing concurrently: i) assessment thread (TAssmt), ii) data migration from HDD to

SSD thread (TMig_hdd_ssd), iii) SSD full capacity assessment (TFull_SSD), and iv) data migration from SSD to

HDD thread (TMig_ssd_hdd). Before their execution, there exists some global data structures and variables that

are declared to facilitate the work of the threads.

3.1. Global data structures and variables

HSESM threads require the declaration for several global data structures and variables to function.

There exists a list that contains information for each data block stored on the hybrid storage system (LB_info).

Each data block is allocated a node in this list and contains the following variables: (VBlock_number) to store a

unique number for the data block, (VAccess_Freq) initialized to zero and contains the total number of times it

was requested for reading, (VTDecpt) initialized to zero and contains the recent latency of time it took to be

decrypted an it is usually in milliseconds, (Vin_SSD) Boolean variable where true value indicates that the block

is allocated in the SSDs layer, (VPriority) Boolean variable where a true value indicates that the block belongs

to a real-time or foreground application rather than a background one, (VSSDs_scheduled) Boolean variable

initialized to false where true value indicates that the block is scheduled for migration from the SSDs layer to

the HDDs one, and (VHDDs_scheduled) Boolean variable initialized to false where true value indicates that the

block is scheduled for migration from the HDDs layer to the SSDs one.

In addition, there exists global variables declared to be used for calculations related to accessed data

blocks. (VHgst_Freq) initialized to zero to store the highest recorded (VAccess_Freq) for the requested data blocks,

(VLst_Freq) initialized to zero and to store the lowest recorded (VAccess_Freq) for the requested data blocks,

(VHgst_TDecpt) initialized to zero to store the highest recorded (VTDecpt) for the requested data blocks, and

(VLst_TDecpt) initialized to zero and to store the lowest recorded (VTDecpt) for the requested data blocks.

Let the global variable (VTotalSize) be the total size of the hybrid storage system in term of data blocks

assuming fixed size data blocks will be stored on both layers. Let (VSSDsSize) be the SSDs layer size using the

same fixed size data blocks. The ratio of the SSDs layer size in respect to the total size of the storage system

is calculated in global variable (VR_SSDs) using (1). Up to (VR_SSDs) ratio of the entire data blocks will be

stored on the SSDs layer.

𝑉𝑅_𝑆𝑆𝐷𝑠 = 𝑉𝑆𝑆𝐷𝑠𝑆𝑖𝑧𝑒 ÷ 𝑉𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒 (1)

A global queue structure (QMigHDDs_SSDs) is declared to queue the data blocks that are scheduled for migration

from the HDDs layer to the SSDs one by enqueuing each (VBlock_number). (QMigSSDs_HDDs) is the same for the

opposite direction.

In a hybrid storage system, there exists a maximum bandwidth value that represents the number of

data blocks that can be read from the SSDs layer to the HDDs one and the opposite from the HDDs layer to

the SSDs during the normal operation of the system while it is responding to the users I/O read and write

requests [1], [5]. In case this number was exceeded, the read and writes operations on both layers will exceed

their normal latencies. Let a global variable (VBW_SSDsHDDs) be the maximum bandwidth for moving data from

SDDs to the HDDS and a global variable (VBW_HDDsSSDs) to be the one from the HDDs to the SSDs. The

bandwidth increases in non-peak times as the pressure on the storage system decreases. Maximum bandwidth

was measured by other research by sensing whenever the storage system reaches to an increased latency

higher than an expected level during the process of performing the I/O requests [1]. In addition, most storage

systems provide information on the maximum bandwidth in the specifications documents. In this algorithm,

we will assume fixed values of maximum bandwidth in the performance evaluation section. However, the

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2288-2299

2292

algorithm is flexible for any variable values for the maximum bandwidth that can change over the execution

time. Table 1 summarises the global data structures and variables.

Table 1. Summary of the global data structures and variables
Identifier Description Identifier Description

LB_info-
VBlock_number

Unique data block number VHgst_TDecpt Current highest value of LB_info-VTDecpt

LB_info-

VAccess_Freq

Data block read requests VLst_TDecpt Current lowest value of LB_info-VTDecpt

LB_info-VTDecpt Recent decryption latency in time VTotalSize Total size of the storage system two

layers in data blocks

LB_info-Vin_SSD Is the block in SSDs VSSDsSize SSDs layer size in data blocks
LB_info-VPriority Real-time/foreground block VR_SSDs SSDs layer size ratio to the total size of

the entire storage system

LB_info-
VSSDs_scheduled

The block scheduled for migration to
SSDs

QMigHDDs_SSDs Queue of scheduled data blocks for
migration to the SSDs

LB_info-

VHDDs_scheduled

The block scheduled for migration to

HDDs

QMigSSDs_HDDs Queue of scheduled data blocks for

migration to the HDDs
VHgst_Freq Current highest value of LB_info-

VAccess_Freq of the entire data blocks

VBW_SSDsHDDs Maximum bandwidth of data block that

can be moved from SSDs to the HDDs

VLst_Freq Current lowest value of LB_info-
VAccess_Freq of the entire data blocks

VBW_HDDsSSDs Maximum bandwidth of data block that
can be moved from HDDs to the SSDs

3.2. Assessment thread (TAssmt)

This thread continuously evaluates each requested data block by the users’ applications to decide if

it is eligible for migration from the HDDs to the faster SSDs layer based on its importance. For each

requested data block, it updates variables on how often it is accessed and how long it takes to have it

decrypted, calculating these in global maximum and minimum variables. If the block is already in the SSDs

layer, no further action takes place. For those requested data blocks allocated in the HDDs layer and belong

to foreground or real-time processes, the thread calculates the percentiles for both, access frequency and

decryption time latency based on the size of the SSDs layer relatively to the total size of the storage system.

It also considers in this calculation the mentioned maximum and minimum values of the access frequencies

and the decryption latencies. These percentiles are used to identify thresholds that indicate which blocks have

the importance to be migrated to the SSDs. If a block’s access frequency and decryption latency exceed these

percentiles, it’s scheduled for migration to the SSDs layer to improve its retrieval speed.

For each data block requested by the users’ applications from the hybrid storage system regardless

in which layer it is initially stored, this thread first retrieves its information node from the blocks information

list (LB_info). First, it increments its access frequency variable (VAccess_Freq). Then, it updates the two global

variables: highest access frequency (VHgst_Freq) and lowest access frequency (VLst_Freq). Their update is a

simple comparison, where if the updated value (VAccess_Freq) of the block is more than or equals (VHgst_Freq), it

will replace its value. Same thing happens if it is less than or equals (VLst_Freq). At the same time, the thread

calculates the latency that the block took to be self-decrypted using its symmetric encryption algorithm, and

store that value in (VTDecpt). The calculation of the self-decryption process latency is done by simple timer.

Then, maximum and minimum decryption latency global variables (VHgst_TDecpt and VLst_TDecpt respectively)

are updated similarly to the approach done with access frequency variables.

At this point, the thread reads the values (Vin_SSDs), (VSSDs_scheduled), and (VPriority) of the data bock.

(Vin_SSDs) indicates if the block is already allocated in the SSDs layer, (VSSDs_scheduled) indicated if it was

already scheduled for migration to the SSDs layer, and (VPriority) indicates if the block belongs to a real-time

or foreground application. In case both (Vin_SSDs) or (VSSDs_scheduled) were true or (VPriority) was false, the thread

will not continue its remaining part on the current block and waits for the next requested one as the current

data block is either already scheduled for migration to the SSDs layer or it is already allocated over there, or

it belongs to a background application where its reading speed efficiency is not an issue. Otherwise, the

thread continues to the next steps as the data block might be eligible for migration since it is allocated in the

HDDs layer, not scheduled for migration, and belongs to a priority application.

Based on the ratio of the SSDs layer size in respect to the total size of the storage system (R_SSDs),

the percentile (PAccess_Freq) is calculated using (2) that represents the minimum value of (VAccess_Freq) where

data blocks who have at least this value are important be migrated to the SSDs layer. This is assuming that

the data blocks access frequency values (VAccess_Freq) are uniformly distributed. This assumption is valid as in

any system, there exists many data blocks that are much frequently accessed, others that are rarely accessed,

and many others that are accessed with normal frequencies.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Linear algorithm for data retrieval performance optimization in self-encryption … (Maen M. Al Assaf)

2293

𝑃𝐴𝑐𝑐𝑒𝑠𝑠_𝐹𝑟𝑒𝑞 = 𝑉𝐿𝑠𝑡_𝐹𝑟𝑒𝑞 + 𝑉𝑅_𝑆𝑆𝐷𝑠 × (𝑉𝐻𝑔𝑠𝑡_𝐹𝑟𝑒𝑞 − 𝑉𝐿𝑠𝑡_𝐹𝑟𝑒𝑞) (2)

Similar to (2), the percentile (PTDecpt) is calculated using (3) that represents the minimum value of

(VTDecpt) where data blocks who have at least this value are important to be migrated to the SSDs layer as

they have the highest decryption latency. So, finding them in the SSDs layer is more important to speed up

their reading process. We make here the same assumption where decryption time values of the data blocks

(VTDecpt) are uniformly distributed.

𝑃𝑇𝐷𝑒𝑐𝑝𝑡 = 𝑉𝐿𝑠𝑡_𝑇𝐷𝑒𝑐𝑝𝑡 + 𝑉𝑅_𝑆𝑆𝐷𝑠 × (𝑉𝐻𝑔𝑠𝑡_𝑇𝐷𝑒𝑐𝑝𝑡 − 𝑉𝐿𝑠𝑡_𝑇𝐷𝑒𝑐𝑝𝑡) (3)

After the calculation of the two percentiles local variables, the thread compares if the data block

access frequency (VAccess_Freq) is greater than or equals the percentile (PAccess_Freq) and if the decryption time of

the data block (VTDecpt) was more than or equals the percentile (PTDecpt). In this case, the data block is

considered an important block that must be migrated to the SSDs layer to have the latencies of all of its future

read requests minimized. The block number (VBlock_number) is enqueued to the end of the queue (QMigHDDs_SSDs)

so it is scheduled to be moved to the SSDs layer by the thread (TMig_hdd_ssd) whenever a slot of the storage

system bandwidth allows. The variable (VSSDs_scheduled) is set to true so if it was requested again by the user’s

application before it is migrated to the SSDs layer, the thread will not add it again to the queue. Algorithm 1

shows a pseudocode for (TAssmt) thread that was explained.

Algorithm 1. (TAssmt) pseudocode
while (true)

 for each accessed data block do

 retrieve (LB_info) node

 increment (VAccess_Freq)

 update (VHgst_Freq) and (VLst_Freq) based on (VAccess_Freq)

 calculate (VTDecpt) self-decryption latency

 update (VHgst_TDecpt) and (VLst_TDecpt) based on (VTDecpt)

 if (Vin_SSDs == False and VSSDs_scheduled == False and VPriority == True)

 calculate (PAccess_Freq) based on (2)

 calculate (PTDecpt) based on (3)

 if (VAccess_Freq >= PAccess_Freq and VTDecpt >= PTDecpt)

 enqueue (VBlock_number) to the end of (QMigHDDs_SSDs)

 set (VSSDs_scheduled) to True

 end if

 end if

 end for

end while

3.3. Data migration from hard disk drive to solid-state drive thread (TMig_hdd_ssd)

This thread performs the migration process for important data blocks to the SSDs layer that were

determined by (TAssmt) thread. It keeps monitoring the current number of ongoing I/O reads from the HDDs

and I/O writes on the SSDs to determine if the value (VBW_HDDsSSDs) was not reached. The number of these

ongoing I/O requests are considered a consumption of the bandwidth, and it is recorded in a local variable

(VBCon_HDDs_SSDs). The HDDs to SSDs migration size that represents the number of data blocks scheduled for

migration in (QMigHDDs_SSDs) and can be moved immediately based on the available bandwidth is calculated by

(4), stored in local variable (VMigSize_HDDsSSDs).

𝑉𝑀𝑖𝑔𝑆𝑖𝑧𝑒_𝐻𝐷𝐷𝑠𝑆𝑆𝐷𝑠 = 𝑉𝐵𝑊_𝐻𝐷𝐷𝑠𝑆𝑆𝐷𝑠 − 𝑉𝐵𝐶𝑜𝑛_𝐻𝐷𝐷𝑠_𝑆𝑆𝐷𝑠 (4)

Then, the first (VMigSize_HDDsSSDs) count of data blocks in the front of (QMigHDDs_SSDs) will be moved

from the HDDs layer to the SSDs one. There nodes in (QMigHDDs_SSDs) will be dequeued. In addition, each

block (Vin_SSDs) and (VSSDs_scheduled) variables in (LB_info) are set to True and False respectively. Algorithm 2

shows a pseudocode for (TMig_hdd_ssd) thread that was explained.

Algorithm 2. (TMig_hdd_ssd) pseudocode
while (true)

 VBCon_HDDs_SSDs = ongoing HDDs read and SSDs write requests

 if VBCon_HDDs_SSDs < VBW_HDDsSSDs

 calculate VMigSize_HDDsSSDs using (4)

 for each of the first VMigSize_HDDsSSDs nodes in QMigHDDs_SSDs

 copy block number VBlock_number to SSDs Layer

 delete block number VBlock_number from HDDs Layer

 update block Vin_SSDs in LB_info to True

 update block VSSDs_scheduled in LB_info to False

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2288-2299

2294

 dequeue block node from QMigHDDs_SSDs

 end for

 end if

end while

3.4. Solid-state drives full capacity assessment (TFull_SSD)

This thread keeps calculating the number of data blocks written to SSDs layer to check if it has

reached its maximum capacity (VSSDsSize) especially that SSDs layer is significantly less in size than the

HDDs one. It uses a local variable (VSSD_Blocks_Count) to calculate the number of data blocks in the SSDs. To

initialize the variable, the thread goes through (LB_info) for one time and increments (VSSD_Blocks_Count)

whenever (Vin_SSDs) is found true. The thread then keeps monitoring whenever a block is written on the SSDs

layer to increment (VSSD_Blocks_Count). If the maximum size is reached, a data block in the SSDs layer must be

scheduled for migration from the SSDs to the HDDs. The least complex approach to perform that is to

linearly go through (LB_info) list and to keep finding the data blocks that are allocated in the SSDs layer where

(Vin_SSD) is true and have value of access frequency (VAccess_Freq) that became less than the percentile

(PAccess_Freq) which is calculated here using (2). As percentile (PAccess_Freq) keeps changing while data blocks

are accessed, there must be data blocks in the SSDs layer that their access frequency become less than the

percentile and become less important. Hence, these blocks will be moved to the HDDs layer to open a space

for new important data blocks. Whenever a block is found, it (VBlock_number) will be enqueued to the end of

(QMigSSDs_HDDs) and the value of (VSSD_Blocks_Count) is decremented. The block (VHDDs_scheduled) is set to true so it

will not be rescheduled again before its migration. Algorithm 3 shows a pseudocode for (TFull_SSD) thread that

was explained.

Algorithm 3. (TFull_SSD) pseudocode
for all blocks in LB_info do

 if Vin_SSDs == True

 increment VSSD_Blocks_Count

 end if

end for

while (true)

 if a new block written on the SSDs Layer

 increment VSSD_Blocks_Count

 calculate percentile PAccess_Freq using (2)

 if VSSD_Blocks_Count == VSSDsSize

 for each node in LB_info

 if Vin_SSD == True and VHDDs_scheduled == False

 if VAccess_Freq < PAccess_Freq

 enqueue VBlock_number to the end of QMigSSDs_HDDs

 decrement VSSD_Blocks_Count

 set VHDDs_scheduled to True

 end if

 end if

 end for

 end if

 end if

end while

3.5. Data migration from solid-state drive to hard disk drive thread (TMig_ssd_hdd)

This thread performs the migration of the data blocks to the HDDs layer whenever the SSDs are full

for those data block determined by thread (TFull_SSD). Similar to (TMig_hdd_ssd), it keeps monitoring the current

number of ongoing I/O reads from the SSDs and I/O writes on the HDDs to determine if the value of the

bandwidth (VBW_SSDsHDDs) was not reached. It also records the consumption of the bandwidth in a local

variable (VBCon_SSDs_HDDs). Similarly, the size of SSDs to HDDs migration that represents the number of data

blocks scheduled for migration in (QMigSSDs_HDDs) and can be moved immediately based on the available

bandwidth is calculated by (5) in a local variable (VMigSize_SSDsHDDs).

𝑉𝑀𝑖𝑔𝑆𝑖𝑧𝑒_𝑆𝑆𝐷𝑠𝐻𝐷𝐷𝑠 = 𝑉𝐵𝑊_𝑆𝑆𝐷𝑠𝐻𝐷𝐷𝑠 − 𝑉𝐵𝐶𝑜𝑛_𝑆𝑆𝐷𝑠_𝐻𝐷𝐷𝑠 (5)

Then, the first (VMigSize_SSDsHDDs) count of data blocks in the front of (QMigSSDs_HDDs) will be moved

from the SSDs layer to the HDDs one. There nodes in (QMigSSDs_HDDs) will be dequeued. In addition, each

block (Vin_SSDs) and (VHDDs_scheduled) variables in (LB_info) are both set to False. Algorithm 4 shows a

pseudocode for (TMig_ssd_hdd) thread.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Linear algorithm for data retrieval performance optimization in self-encryption … (Maen M. Al Assaf)

2295

Algorithm 4. (TMig_ssd_hdd) pseudocode
while (true)

 VBCon_SSDs_HDDs = ongoing SSDs read and HDDs write requests

 if VBCon_SSDs_HDDs < VBW_SSDsHDDs

 calculate VMigSize_SSDsHDDs using (5)

 for each of the first VMigSize_SSDsHDDs nodes in QMigSSDs_HDDs

 copy block number VBlock_number to HDDs Layer

 delete block number VBlock_number from SSDs Layer

 update block Vin_SSDs in LB_info to False

 update block VHDDs_scheduled in LB_info to False

 dequeue block node from QMigSSDs_HDDs

 end for

 end if

end while

3.6. Hybrid self-encryption storage data migration algorithm complexity analysis

As mentioned previously, HSESM to our best knowledge and review to the literature is the only

algorithm that performs data migration for important data blocks in self-encryption hybrid storage systems.

Analysing its complexity is important to show if it will be able to achieve its goals with minimal steps and

time. The thread (TAssmt) in each iteration evaluates (n) blocks access frequency and decryption latency and

updates the global variables. Hence, it has a time complexity of O(n) per iteration in the worst-case scenario.

(TFull_SSD) thread also has a complexity of O(n) in the worst-case scenario when assessing all the data blocks

in the SSDs layer. The two data migration threads (TMig_hdd_ssd and TMig_ssd_hdd) move data blocks between the

two layers based on the available I/O bandwidth. In case (k) data blocks will be moved from the HDDs to the

SSDs and (m) data blocks will be moved in the opposite direction, the complexity of the threads per

execution cycle will be O(k) and O(m) respectively considering the worst-case scenario. In fact, the size of

(m) is expected to be less than the size of (k) due to the increased volume of the HDDs layer. The overall

algorithm’s complexity with its four threads hence will be in O(n). This indicates that the algorithm is

computationally light, quick to execute, and highly scalable. Figure 1 shows the algorithm complexity

asymptotic notation per thread.

Figure 1. Algorithm complexity asymptotic notation per thread, overall complexity: O(n)

4. PERFORMANCE EVALUATION

Due to the migration process of the important data blocks that HSESM perform to the SSDs by

using the available I/O bandwidth, it leverages the high speed of the SSDs layer and reduces the data retrieve

time in a significant amount. This improves the performance of users’ applications. In this section, we

present a simulation for the HSESM to evaluate its performance benefits that can be achieved in hybrid

storage systems implementing symmetric self-encryption.

The performance metric that is used to measure the performance of HSESM algorithm is the total

read latency for the entire data blocks that were requested by the users’ applications during their execution

over a particular period of time. The comparison will be in the case of using HSESM Algorithm with the case

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2288-2299

2296

of not putting it in use. The difference ratio represents how much the algorithm contributed in optimizing

data retrieve performance of the hybrid data center that implements symmetric self-encryption. Whenever

more requested data blocks are founded in the SSDs layer, their total reading latency will be less under the

presence of decryption process latency.

For that purpose, we built a simulator using python that implements HSESM algorithm and execute

it on a randomly generated trace that reflects real-world scenarios for records of users’ applications requests

for data blocks. There exist many factors that affects the performance evaluation of the algorithm. First, the

locality of reference where if the users’ applications read request tend to be more for the data blocks that are

initially in the SSDs layer, hence, less migration will be needed. Second, the size of the SSDs layer in

comparison to the HDDs one and the initial placement of the data blocks, indeed less SSDs size will decrease

the amount of data blocks founded in the SSDs layer. Next, the ratio of the requested data blocks in the

HDDs layer that were classified as important blocks and need to be migrated to the SSDs layer during a

particular period of the system execution time. More important blocks will lead to extra need for data blocks

to be migrated. In addition, the available bandwidth for moving the data blocks from the HDDs layer to the

SSDs one whenever a block is scheduled for migration and the opposite whenever the SSDs layer becomes

full in capacity. More consumed bandwidth in both directions will reduce the speed of the migration process

and the chance of finding more data blocks in the SSDs layer. Both the randomly generated trace and the

simulator consider different scenarios of the mentioned factors. The trace consists of 2000 records of users’

applications read requests, where we found this number is enough to simulate our algorithm and to prove its

performance over enough duration of time.

We assume a conservative assumption that the size of the SSDs layer is 30% of the total hybrid

storage system and the size of the HDDs one is 70%. This is due to reasons that we mentioned previously.

For data reference locality, we can simulate different scenario, due to the space limitation, we simulated a

worst-case scenario when only 30% of the requested data blocks in the trace are initially in the SSDs layer.

Similar to Assaf et al. [5], we set the size of each data block stored in the hybrid storage system to

10 MB for the purpose of performance evaluation as data centers tend to use relatively large data blocks to

improve the systems performance. However, our solution is flexible under the case of using different sizes of

data blocks.

We implemented the following symmetric self-encryption algorithms for encrypting the data blocks

in the system: AES-128, AES-256, Blowfish-128, Blowfish-256, and 3DES. Table 2 shows the range of

decryption latencies in seconds that we got while decrypting the data blocks each of size 10 MB during the

simulation using a normal speed processor (1.6 GHz Dual-Core Intel Core i5). In fact, the choice of the

encryption algorithm is related to the application and the nature of the sensitive data need to be protected.

Table 2. Ranges of decryption latencies for AES, blowfish, and 3DES for data blocks of size 10 MB
Decryption algorithm Latency range in (s)

AES-128 0.035465-0.058096
AES-256 0.039253-0.049405

Blowfish-128 0.108130-0.142406

Blowfish-256 0.120671-0.149756
3DES 0.474093-0.630230

Regardless of processing unit used in the self-encryption system, both AES and Blowfish show

increased decryption latency when using larger key size. 3DES shows more complexity and high decryption

latency in comparison to the others. Hence, data blocks that tend to be frequently used, their decryption

latency is high, and belongs to real-time or foreground applications will be classified as important blocks that

are subject for migration to the SSDs layer in case they exceed the updated value of the percentiles calculated

in (2) and (3).

For the ratio of the important data blocks, we programmed our trace generator to take different

scenarios of the amount of data blocks to be classified as important. We simulated three scenarios were 50%,

40%, and 30% of the trace requested data blocks that are initially in the HDDs layer are classified as

important. We assume that 50% is a good upper limit for that ratio due to the increased volume of the HDDs

layer as well as for the fact that most of the important data blocks tend to be initially allocated in SSDs layer.

For the bandwidth available for migrating the data between the two layers, we assume a

conservative assumption that it will reach to 70% of consumption during the peak times and then it relaxes to

60% and 50% when there becomes less pressure on the storage system. Higher consumption rate of the

available bandwidth will reduce the system efficiency and raise the need for scalability.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Linear algorithm for data retrieval performance optimization in self-encryption … (Maen M. Al Assaf)

2297

The final input needed in the simulation is the disk read latencies in seconds from the HDDs

(LatencyHDDs) and SSDs (LatencySSDs) as well as the latency in seconds for reading a data block from the

HDDs and have it written in the SSDs or the opposite direction (LatencyHDDs-SSDs) when using a block size of

10 MB. We used the validated values in [5] where the ranges of these values are illustrated in Table 3.

Table 3. Validated values of disk latencies parameters
Disk latency parameter Latency range in (s)

LatencyHDDs 0.075-0.12
LatencySSDs 0.045-0.052

LatencyHDDs-SSDs 0.115-0.122

After executing the simulator using the different scenarios, we found that the total disk read latency

without using HSESM is (199.1s) as the locality of the requested data blocks is set to be 30% in the SSDs.

Implementing HSESM will always result reduced total disk read latencies under different scenarios mentioned

above of consumed bandwidth and the amount of data blocks being classified as important. Figure 2 shows that

HSESM data migration process has contributed in improving the performance of the hybrid storage system

between 13.71% and 23.61% of total disk read latency reduction. HSESM also has contributed in reducing

the effect of the decryption latency for those data blocks frequently requested by the users’ applications

especially when they tend to use more complex symmetric encryption algorithms with larger key sizes. It

clearly shows that whenever the consumed bandwidth is less and the number of the encrypted data blocks

that were classified as important are more, the ratio of improvement is higher. For some short period of time,

the case of bandwidth consumption of 60% shows less improvement ratio when 50% of data blocks were

classified as important. This was due to the increased opposite migration to the HDDs that took place in that

period during the simulation. But in general, the curve follows the mentioned general performance trend. As

we mentioned in the introduction that after thorough research, our research is the first that provides data

migration solution for important symmetric encrypted data blocks in hybrid storage systems. Hence, our

results and findings can offer a valuable baseline for any potential similar future research.

Figure 2. Improvement ratio of total disk read latency in (%) provided by HSESM under different scenarios

of the amount of important data blocks and the consumed I/O bandwidth for data migration

5. CONCLUSION

In this paper, we introduced a data migration algorithm (HSESM) for symmetric self-encryption

data centers that implement hybrid storage systems of SSDs and HDDs layers. It keeps migrating frequently

used data blocks that belong to real-time or foreground processes and require more decryption latency to the

SSDs layer in order to take advantage of its increased speed performance. The algorithm leverages the

available I/O bandwidth of the storage system to perform the migration process aiming to decrease the total

data read latencies. HSESM was simulated under different scenarios when the data blocks were encrypted

using AES, blowfish, 3DES with different key sizes. It was able to decrease the total read latency of the

requested data blocks by the users’ applications in 13.71%-23.61%. One important future work that we

would like to investigate is the effect of data migration on power consumption in self-encryption hybrid

storage systems considering the energy efficiency of SSDs layer.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2288-2299

2298

FUNDING INFORMATION

Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Maen M. Al Assaf ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mohammad Qatawneh ✓ ✓ ✓ ✓ ✓ ✓

AlaaAldin AlRadhi ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study were generated and used through a python based

simulation that was carefully built to reflect real-world scenarios. No external data sets were used in this

research. The data that support the findings of this study are available from the corresponding author, [AA,

MA, MQ], upon reasonable request.

REFERENCES
[1] M. M. Al Assaf, X. Jiang, X. Qin, M. R. Abid, M. Qiu, and J. Zhang, “Informed Prefetching in Distributed Multi-Level Storage

Systems,” Journal of Signal Processing Systems, vol. 90, pp. 619–640, 2018, doi: 10.1007/s11265-017-1277-z.
[2] A. F. Mhdawy and M. M. Al Assaf, “An Energy Efficient Approach for Big Data Mass Storage Systems Using A Sequential

Cache,” Journal of Theoretical and Applied Information Technology, vol. 100, no. 23, pp. 6882-6890, 2022.

[3] B. A. Sassani (Sarrafpour), M. Alkorbi, N. Jamil, M. A. Naeem, and F. Mirza, “Evaluating Encryption Algorithms for Sensitive
Data Using Different Storage Devices,” Scientific Programming, vol. 2020, pp. 1-9, 2020, doi: 10.1155/2020/6132312.

[4] J. Kim et al., “Self-Encrypting Drive Evolving Toward Multitenant Cloud Computing,” Computer, vol. 57, no. 2, pp. 79-90, Feb.

2024, doi: 10.1109/MC.2023.3308955.
[5] M. M. Al Assaf, X. Jiang, M. R. Abid, and X. Qin, “Eco-Storage: A Hybrid Storage System with Energy-Efficient Informed

Prefetching,” Journal of Signal Processing Systems, vol. 72, no. 3, pp. 165-180, 2013, doi: 10.1007/s11265-013-0784-9.

[6] H. Riggs, S. Tufail, I. Parvez, and A. Sarwat, “Survey of Solid State Drives, Characteristics, Technology, and Applications,” 2020
SoutheastCon, 2020, pp. 1-6, doi: 10.1109/SoutheastCon44009.2020.9249760.

[7] J. Zhang, M. Kwon, M. Swift, and M. Jung, “Manycore-based scalable SSD architecture towards one and more million IOPS,”

Annual Non-Volatile Memories Workshop (NVMW), 2021.
[8] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to Improve Disk Scheduling for High-performance I/O,” 2012 IEEE

26th International Parallel and Distributed Processing Symposium, 2012, pp. 715-726, doi: 10.1109/IPDPS.2012.70

[9] J. Niu, J. Xu and L. Xie, “Hybrid Storage Systems: A Survey of Architectures and Algorithms,” in IEEE Access, vol. 6, pp.
13385-13406, 2018, doi: 10.1109/ACCESS.2018.2803302.

[10] M. Lin, R. Chen, J. Xiong, X. Li, and Z. Yao, “Efficient Sequential Data Migration Scheme Considering Dying Data for

HDD/SSD Hybrid Storage Systems,” in IEEE Access, vol. 5, pp. 23366-23373, 2017, doi: 10.1109/ACCESS.2017.2766667.
[11] M. M. Al Assaf, A. Rodan, M. Qatawneh, and M. R. Abid, “A Comparison Study between Informed and Predictive Prefetching

Mechanisms for I/O Storage Systems,” International Journal of Communications, Network and System Sciences, vol. 8, no. 5, pp.

181-186, 2015, doi: 10.4236/ijcns.2015.85019.
[12] M. Al Assaf, “Performance Optimization for Distributed Hybrid Storage Systems Using a Predictive Approach,” International

Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 4819-4826, 2020, doi:

10.30534/ijatcse/2020/91942020.
[13] T. Coughlin, “Solid security: The rise of self-encrypting solid state drives,” SNIA (Solid State Storage Initiative), 2011.

[14] M. N. Alenezi, H. Alabdulrazzaq, and N. Q. Mohammad, “Symmetric encryption algorithms: Review and evaluation study,”

International Journal of Communication Networks and Information Security (IJCNIS), vol. 12, no. 2, pp. 256-272, 2020.
[15] P. Kuppuswamy, S. Q. Y. A. K. Al-Maliki, R. John, M. Haseebuddin, and A. A. S. Meeran, “A hybrid encryption system for

communication and financial transactions using RSA and a novel symmetric key algorithm,” Bulletin of Electrical Engineering

and Informatics (BEEI), vol. 12, no. 2, pp. 1148-1158, 2023, doi: 10.11591/eei.v12i2.4967.
[16] P. Bharathi, G. Annam, J. B. Kandi, V. K. Duggana, and A. T., “Secure File Storage using Hybrid Cryptography,” 2021 6th

International Conference on Communication and Electronics Systems (ICCES), 2021, pp. 1-6, doi:

10.1109/ICCES51350.2021.9489026.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Linear algorithm for data retrieval performance optimization in self-encryption … (Maen M. Al Assaf)

2299

[17] V. Sharma, A. Chauhan, H. Saxena, S. Mishra and S. Bansal, “Secure File Storage on Cloud using Hybrid Cryptography,” 2021
5th International Conference on Information Systems and Computer Networks (ISCON), 2021, pp. 1-6, doi:

10.1109/ISCON52037.2021.9702323.

[18] M. Hamdi, J. Miri, and B. Moalla, “Hybrid encryption algorithm (HEA) based on chaotic system,” Soft Computing, vol. 25, pp.
1847-1858, 2021, doi: 10.1007/s00500-020-05258-z.

[19] R. B. Marqas, S. M. Almufti, and R. R. Ihsan, “Comparing Symmetric and Asymmetric cryptography in message encryption and

decryption by using AES and RSA algorithms,” Journal of Xi'an University of Architecture & Technology, vol. 12, no. 3, pp.
3110-3116, 2020.

[20] M. A. Al-Shabi, “A survey on symmetric and asymmetric cryptography algorithms in information security,” International Journal

of Scientific and Research Publications (IJSRP), vol. 9, no. 3, pp. 576-589, 2019, doi: 10.29322/IJSRP.9.03.2019.p8779.
[21] Q. Zhang, “An Overview and Analysis of Hybrid Encryption: The Combination of Symmetric Encryption and Asymmetric

Encryption,” 2021 2nd International Conference on Computing and Data Science (CDS), 2021, pp. 616-622, doi:

10.1109/CDS52072.2021.00111.
[22] B. Halak, Y. Yilmaz and D. Shiu, “Comparative Analysis of Energy Costs of Asymmetric vs Symmetric Encryption-Based

Security Applications,” in IEEE Access, vol. 10, pp. 76707-76719, 2022, doi: 10.1109/ACCESS.2022.3192970.

[23] A. A. Fairosebanu and A. C. N. Jebaseeli, “Data security in cloud environment using cryptographic mechanism,” Bulletin of
Electrical Engineering and Informatics (BEEI), vol. 12, pp. 462-471, 2023 doi: 10.11591/eei.v12i1.4590.

[24] M. Nadeem, A. Arshad, S. Riaz, S. W. Zahra, S. S. Band, and A. Mosavi, “Two Layer Symmetric Cryptography Algorithm for

Protecting Data from Attacks,” Computers, Materials & Continua, vol. 74, no. 2, 2023, doi: 10.32604/cmc.2023.030899.
[25] C. Meijer and B. van Gastel, “Self-Encrypting Deception: Weaknesses in the Encryption of Solid State Drives,” 2019 IEEE

Symposium on Security and Privacy (SP), 2019, pp. 72-87, doi: 10.1109/SP.2019.00088.

BIOGRAPHIES OF AUTHORS

Maen M. Al Assaf is an Associate Professor of Computer Science at the

University of Jordan. He received his Ph.D. in Computer Science from Auburn University in

the State of Alabama, USA in 2011. He published several research works in Distributed

Storage Systems. His research interests are in many fields including distributed systems,

operating systems, cloud computing, IoT systems, and edge computing. He can be contacted at

email: m_alassaf@ju.edu.jo.

Mohammad Qatawneh is a Professor of Computer Science at the University of

Jordan and Al-Ahliyya Amman University. He received his Ph.D in Computer Engineering

from Kiev University in 1996. He published several papers in the areas of parallel algorithms,

networks and embedding systems. His research interests include blockchain, cybersecurity,

IoT, and digital forensics. He can be contacted at email: mohd.qat@ju.edu.jo.

AlaaAldin AlRadhi is a Professor at Sheridan College, in Toronto, Ontario,

Canada. He received his Master’s degree in Computer Information and Network Security from

DePaul University in 2008. His research and teaching interests are in IPv6, cyber security,

AWS/Azure/GCP clouds, and AI/data science. He is an IPv6 certified trainer and administrator

(gold). Recently he received many awards including Seneca college “research influencer”

award and Sheridan college “teaching character award” 2022. He also was nominated for

Ontario Minister of Colleges/Universities “awards of excellence”. He can be contacted at

email: Alaaaldin.alradh@sheridancollege.ca.

https://orcid.org/0000-0002-0708-8389
https://scholar.google.com/citations?user=eK4zRzwAAAAJ&hl=id
https://orcid.org/0000-0002-4917-3418
https://scholar.google.com/citations?user=V6iTZ-4AAAAJ&hl=en
https://orcid.org/0009-0000-5299-1262

