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 Contemporary data centers implement hybrid storage systems that consist of 

layers from solid-state drives (SSDs) and hard disk drives (HDDs). Due to 

their high data retrieval speed, SSDs layer is used to store important data 

blocks that have features like high frequency of access. To boost their 

security level, many of such systems implement self-encryption algorithms 

like advanced encryption standard (AES), Blowfish, and triple data 

encryption standard (3DES) with different key sizes that vary in their 

complexity and their decryption latency whenever a block is requested for 

read. Frequently accessed data blocks with increased decryption latencies are 

better to be migrated to the SSDs layer to decrease their retrieval latency. In 

this paper, we introduce a linear complexity algorithm hybrid self-encryption 

storage data migration (HSESM) that migrates important data blocks that 

requires long decryption latencies from the HDDs layer to the SSDs one. 

Performance evaluation shows that HSESM data migration process can 

reduce data blocks read latencies in 13.71%-23.61% under worst-case 

scenarios. 
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1. INTRODUCTION 

Distributed systems in today’s world including cloud systems use distributed data centers to store 

data that increases rapidly in terms of size. Most of data centers are designed in a hybrid approach where they 

consist of array of hard disk drives (HDDs) and solid-state drives (SSDs) [1]. The SSDs are known of their 

high data read/write speed performance in comparison to the HDDs, but in the same, their cost per storage 

unit is high. Hence, data centers will need for HDDs as a lower cost storage to enable the data center to 

accommodate the huge amount of data [2]. SSDs are used to store data blocks that are continuously needed to 

be retrieved by users’ applications in the read operations, whereas HDDs store less needed data blocks [1].  

When it comes to the security and privacy for those data blocks stored in the data centers, symmetric 

self-encryption devices (SEDs) is implemented on both layers of the hybrid system by using variant 

symmetric encryption algorithms [3]. The data blocks that are written on or read from either the HDDs or the 

SSDs layer are encrypted or decrypted using a supplementary processing engine attached with the devices 

[4]. This boosts the security level for the data stored on the storage system. However, data decryption latency 

creates extra overhead when a particular data block is requested to be retrieved. 

Due to the significant speed difference between the SSDs and the HDDs, SSDs will be the best 

place to store the continuously requited data blocks by the users’ applications. So, when these data blocks are 
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requested, the total read latency time that includes their decryption and reading will be significantly less in 

comparison to the case if they allocated on the HDDs. For this reason, it is important to continuously assess 

data blocks stored on the hybrid system using features like their access frequency, if they belong to real-time 

or foreground applications, and if they use complex encryption algorithms that take longer time in decryption 

in order to indicate if each particular data block is more important to be read faster. This assessment helps 

making important data blocks that are highly accessed and take long time in decryption process to be 

migrated from the HDDs layer to the SDDs one in case if they were not originally located on the SSDs. In 

fact, the chance of finding that a data block is originally allocated on the HDDs layer is higher due to their 

significant volume [5]. However, moving the data blocks that are classified as important from the HDDs to 

the SSDs and those that are classified as less important in the opposite direction may consume the available 

bandwidth of the hybrid storage system. This is because there exists a maximum number of I/O requests that 

may take place concurrently in any storage system without being congested [1], [5]. 

Based on this introduction to our research, it is worthwhile to list its primary motivations that 

underscore its significance: 

a. Hybrid storage systems are widely used in todays distributed data centers to provide high storage capacity 

and data retrieve performance.  

b. There exists a significant gap in data read performance between SSDs and HDDs implemented in such 

systems. Hence, data migration is important to move important data to the SSDs layers that show faster 

read performance. 

c. Hybrid storage systems implement self-encryption algorithms to boost security level for the stored data. 

Data decryption latency creates extra overhead when a particular data block is requested to be retrieved. 

d. Migrating important data blocks, those that are highly accessed by users and take longer time to be 

decrypted, to the SSDs layer will reduce data retrieve latency. However, this is restricted by the I/O 

bandwidth available in the hybrid storage system. 

e. Other researchers have not provided in any means solutions that perform data migration in self-encryption 

hybrid storage system to improve data retrieve performance. They just provided performance evaluation 

of different encryption algorithms on such systems. 

f. The importance for a having a simple complexity algorithm for migrating important data to the SSDs 

layer in such systems is significant. 

In order to address the above mentioned research motivation, we introduce in this paper a linear 

complexity algorithm for migrating data between the hybrid storage system layers. The algorithm called 

hybrid self-encryption storage data migration (HSESM) keeps assessing the encrypted data blocks stored on 

the hybrid storage system to determine for each block if it has a significant importance for the users’ 

applications to be placed on the SSDs layer. The model also takes into consideration the complexity of the 

decryption process in terms of time and if it has high significance of the total data block reading time. The 

algorithm then keeps adaptively moving the data blocks between the two storage layers by considering the 

available I/O bandwidth that is affected by the current use of the storage system. Up to our best knowledge, 

our research is the first that performs data migration for symmetric encrypted data based on the available I/O 

bandwidth in hybrid storage systems. Other researchers have examined the performance of different 

symmetric encryption algorithms using different storage devices [3]. 

The remaining parts of this paper as follow: section 2 illustrates the related work, section 3 proposes 

our HSESM algorithm, section 4 provides simulation and performance evaluation, and section 5 provides a 

research conclusion. 

 

 

2. RELATED WORK 

Here we discuss some topics related to our research including hybrid storage systems and symmetric 

self-encryption. 

 

2.1.  Hybrid storage systems 

Data storage devices have developed during the past decades with different types of hardware. 

Magnetic HDDs are the oldest types of storage that are still used in big data centers as they can accommodate 

large amount of data with less cost per storage unit. SSDs were developed as a new type of storage devices 

that are much faster and energy efficient. Thery use flash NAND technology that has proven high read/write 

speed and low power consumption in comparison to HDDs [6]. As of their ability to handle huge volume of 

I/O requests per second (IOPS), they are still much expensive in comparison to HDDs and have not 

completely replaced them. Some research provided solutions to increase the number of I/O requests that can 

be processed in a second IOPS in non-volatile SSDs where it can reach to one million IOPS [7].  

Hybrid storage systems use several layers of storage devices such as HDDs and SSDs. The 

important data that are expected to be accessed soon tend to be stored in the upper SSDs layer to facilitate 
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their access [1]. For large data centers, researchers suggest adding SSDslayer on the top of HDDs one to 

buffer users’ frequently requested data block in the SSDs. Data blocks prefetching solutions were proposed to 

bring the data from HDDs to the SSDs before they are being actually requested by the users’ applications. So, 

more data will be found in the SSDs [1]. As there exists high volume of I/O requests in such systems, [8] 

suggest using a small part of the SSDs in order to easy the scheduling process of the desk requests and to 

reduce the challenges on the HDDs storage. 

Data centers tend to be parallel hybrid storage systems as they have multi-levels of storage devices 

where each level is in a form of an array. This provides high I/O bandwidth and helps in reading and writing 

many data blocks in parallel, preform data migration, and facilitating data prefetching. Data migration helps 

in moving hot data blocks that are highly requested for reads to the SSDs level [9]. Some research focused in 

reducing the unnecessary migration for data between the HDDs and the SSDs for the dying data to improve 

the performance of the hybrid storage system [10]. Many researchers proposed prefetching tools to leverage 

the available I/O bandwidth in parallel hybrid storage systems in order to make important data to be available 

in the SSDs level either by informed or predictive approach [11], [12]. 

 

2.2.  Self-encryption systems and encryption algorithms 

Self-encryption drives (SEDs) have hardware capabilities that enable them to perform the 

encryption and decryption process internally. Encryption engines that are integrated to the drivers’ controllers 

are used for the cryptography process [11]. Cloud Data centers that use hybrid storage systems use SEDs 

system for data protection and security as they have many advantages when compared with software 

encryption. Advantages includes speed, less complexity high adoption, and device durability [13]. In 

addition, it uses many symmetric encryptions with different key sizes that do not need to be shared over the 

network.  

Symmetric encryption algorithms perform the encryption/decryption process using a known key 

value that might be with different sizes and does not need to be shared over the network. There exist several 

symmetric encryption algorithms including advanced encryption standard (AES), data encryption standard 

(DES), triple data encryption standard (3DES), and Blowfish. They vary in performance especially in terms 

of encryption speed while using different data blocks sizes [14]. 

Many researchers suggest using hybrid encryption techniques that combine several encryption 

algorithms to leverage their capabilities and to improve the encryption strength [15]-[17]. Others have 

introduced hybrid encryption using chaotic system [18]. Asymmetric encryption algorithms such as Rivest-

Shamir-Adleman (RSA) involve using a public and private key to secure the data transmission over the 

network. Symmetric encryption shows faster performance in terms of execution time in comparison to the 

asymmetric approach [19], [20]. Some algorithms used asymmetric encryption to protect the key of the 

symmetric encryption [21]. Symmetric encryption is more energy efficient and resilient for attacks based 

from quantum computers [22]. In study [23], authors have introduced a data security novel for hybrid cloud 

systems to ensure the protection of the user’s data using three symmetric encryption approaches that are 

provided as-a-service. This indeed show the importance of such symmetric encryption solutions in cloud data 

centres. The authors of [24] have proposed a symmetric double encryption mechanism for securing the data 

sent and received in cloud systems in a form of two layers of cryptography. Some researcher found that there 

are some weaknesses that may exist in SSDs self-encryption and might be compromised due the specification 

and design issues. Hence, they recommend using more security measures and not only relying on hardware 

security [25]. 

For hybrid storage systems, researchers have only examined the performance of symmetric self-

encryption algorithms performance on different layers. No research has investigated the possibilities of 

migrating self-encrypted data blocks among the different layers to leverage the high performance provided by 

the SSDs layer and to reduce the total data read latencies that include the decryption cost that might vary 

based on the complexity of the used algorithm and the key size. 

 

 

3. PROPOSED SOLUTION 

Hybrid storage systems consist of layers of HDDs and SDDs to provide variety of storage layers to 

store different types of data. They implement symmetric self-encryption mechanism to boost the security of 

the stored data. When requesting a data block that is already encrypted in such systems, the total read latency 

includes the time latency needed to have it decrypted. This latency may increase due to the complexity of the 

cryptography algorithm and the key size. Many sensitive data blocks require using more complex 

cryptography algorithms and extra long key sizes to increase their security level. This will increase the total 

read latency whenever a particular block is requested by the users’ applications. As mentioned previously, 

the possibility of finding a data already placed in the HDDs layer is more due to their significant size. In 
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order to leverage the capabilities of hybrid storage systems, important data blocks have to be continuously 

assessed and migrated from the HDDs layer to the SSDs one in order to reduce the total data retrieve latency 

and the effect of the decryption process. This should take into consideration the available I/O bandwidth in 

the hybrid storage system that constrains the amount of data blocks that can be migrated among the two 

layers. HSESM algorithm is introduced to assess the important data blocks that are highly frequently 

accessed, belong to foreground processes, and show extended decryption latencies, in order to migrate them 

to the SSDs layer by leveraging the available I/O bandwidth of the storage system. Other research has only 

examined the performance of such symmetric algorithms on different types of storage systems [3]. 

In a hybrid storage system, there exits many I/O read requests that are continuously issued by users’ 

applications for data blocks stored on the system during their execution. For each requested block, HSESM 

algorithm makes an assessment if a data block that is stored on the HDDs layer is important and should be 

moved to the SSDs one. Then it performs the migration process by taking into consideration the available I/O 

bandwidth between the two layers. In case the SSDs layer reached to its maximum capacity, the opposite 

should take place and the less accessed data blocks are moved to HDDs.  

To efficiently perform the above-mentioned data migration process, HSESM algorithm consists of 

four threads that keep executing concurrently: i) assessment thread (TAssmt), ii) data migration from HDD to 

SSD thread (TMig_hdd_ssd), iii) SSD full capacity assessment (TFull_SSD), and iv) data migration from SSD to 

HDD thread (TMig_ssd_hdd). Before their execution, there exists some global data structures and variables that 

are declared to facilitate the work of the threads. 

 

3.1.  Global data structures and variables 

HSESM threads require the declaration for several global data structures and variables to function. 

There exists a list that contains information for each data block stored on the hybrid storage system (LB_info). 

Each data block is allocated a node in this list and contains the following variables: (VBlock_number) to store a 

unique number for the data block, (VAccess_Freq) initialized to zero and contains the total number of times it 

was requested for reading, (VTDecpt) initialized to zero and contains the recent latency of time it took to be 

decrypted an it is usually in milliseconds, (Vin_SSD) Boolean variable where true value indicates that the block 

is allocated in the SSDs layer, (VPriority) Boolean variable where a true value indicates that the block belongs 

to a real-time or foreground application rather than a background one, (VSSDs_scheduled) Boolean variable 

initialized to false where true value indicates that the block is scheduled for migration from the SSDs layer to 

the HDDs one, and (VHDDs_scheduled) Boolean variable initialized to false where true value indicates that the 

block is scheduled for migration from the HDDs layer to the SSDs one. 

In addition, there exists global variables declared to be used for calculations related to accessed data 

blocks. (VHgst_Freq) initialized to zero to store the highest recorded (VAccess_Freq) for the requested data blocks, 

(VLst_Freq) initialized to zero and to store the lowest recorded (VAccess_Freq) for the requested data blocks, 

(VHgst_TDecpt) initialized to zero to store the highest recorded (VTDecpt) for the requested data blocks, and 

(VLst_TDecpt) initialized to zero and to store the lowest recorded (VTDecpt) for the requested data blocks. 

Let the global variable (VTotalSize) be the total size of the hybrid storage system in term of data blocks 

assuming fixed size data blocks will be stored on both layers. Let (VSSDsSize) be the SSDs layer size using the 

same fixed size data blocks. The ratio of the SSDs layer size in respect to the total size of the storage system 

is calculated in global variable (VR_SSDs) using (1). Up to (VR_SSDs) ratio of the entire data blocks will be 

stored on the SSDs layer. 

 

𝑉𝑅_𝑆𝑆𝐷𝑠 = 𝑉𝑆𝑆𝐷𝑠𝑆𝑖𝑧𝑒 ÷ 𝑉𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒   (1) 

  

A global queue structure (QMigHDDs_SSDs) is declared to queue the data blocks that are scheduled for migration 

from the HDDs layer to the SSDs one by enqueuing each (VBlock_number). (QMigSSDs_HDDs) is the same for the 

opposite direction.  

In a hybrid storage system, there exists a maximum bandwidth value that represents the number of 

data blocks that can be read from the SSDs layer to the HDDs one and the opposite from the HDDs layer to 

the SSDs during the normal operation of the system while it is responding to the users I/O read and write 

requests [1], [5]. In case this number was exceeded, the read and writes operations on both layers will exceed 

their normal latencies. Let a global variable (VBW_SSDsHDDs) be the maximum bandwidth for moving data from 

SDDs to the HDDS and a global variable (VBW_HDDsSSDs) to be the one from the HDDs to the SSDs. The 

bandwidth increases in non-peak times as the pressure on the storage system decreases. Maximum bandwidth 

was measured by other research by sensing whenever the storage system reaches to an increased latency 

higher than an expected level during the process of performing the I/O requests [1]. In addition, most storage 

systems provide information on the maximum bandwidth in the specifications documents. In this algorithm, 

we will assume fixed values of maximum bandwidth in the performance evaluation section. However, the 
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algorithm is flexible for any variable values for the maximum bandwidth that can change over the execution 

time. Table 1 summarises the global data structures and variables. 
 
 

Table 1. Summary of the global data structures and variables 
Identifier Description Identifier Description 

LB_info-
VBlock_number 

Unique data block number VHgst_TDecpt Current highest value of LB_info-VTDecpt 

LB_info-

VAccess_Freq 

Data block read requests VLst_TDecpt Current lowest value of LB_info-VTDecpt 

LB_info-VTDecpt Recent decryption latency in time VTotalSize Total size of the storage system two 

layers in data blocks 

LB_info-Vin_SSD Is the block in SSDs VSSDsSize SSDs layer size in data blocks 
LB_info-VPriority Real-time/foreground block VR_SSDs SSDs layer size ratio to the total size of 

the entire storage system 

LB_info-
VSSDs_scheduled 

The block scheduled for migration to 
SSDs 

QMigHDDs_SSDs Queue of scheduled data blocks for 
migration to the SSDs 

LB_info-

VHDDs_scheduled 

The block scheduled for migration to 

HDDs 

QMigSSDs_HDDs Queue of scheduled data blocks for 

migration to the HDDs 
VHgst_Freq Current highest value of LB_info-

VAccess_Freq of the entire data blocks 

VBW_SSDsHDDs Maximum bandwidth of data block that 

can be moved from SSDs to the HDDs 

VLst_Freq Current lowest value of LB_info-
VAccess_Freq of the entire data blocks 

VBW_HDDsSSDs Maximum bandwidth of data block that 
can be moved from HDDs to the SSDs 

 

 

3.2.  Assessment thread (TAssmt) 

This thread continuously evaluates each requested data block by the users’ applications to decide if 

it is eligible for migration from the HDDs to the faster SSDs layer based on its importance. For each 

requested data block, it updates variables on how often it is accessed and how long it takes to have it 

decrypted, calculating these in global maximum and minimum variables. If the block is already in the SSDs 

layer, no further action takes place. For those requested data blocks allocated in the HDDs layer and belong 

to foreground or real-time processes, the thread calculates the percentiles for both, access frequency and 

decryption time latency based on the size of the SSDs layer relatively to the total size of the storage system. 

It also considers in this calculation the mentioned maximum and minimum values of the access frequencies 

and the decryption latencies. These percentiles are used to identify thresholds that indicate which blocks have 

the importance to be migrated to the SSDs. If a block’s access frequency and decryption latency exceed these 

percentiles, it’s scheduled for migration to the SSDs layer to improve its retrieval speed. 

For each data block requested by the users’ applications from the hybrid storage system regardless 

in which layer it is initially stored, this thread first retrieves its information node from the blocks information 

list (LB_info). First, it increments its access frequency variable (VAccess_Freq). Then, it updates the two global 

variables: highest access frequency (VHgst_Freq) and lowest access frequency (VLst_Freq). Their update is a 

simple comparison, where if the updated value (VAccess_Freq) of the block is more than or equals (VHgst_Freq), it 

will replace its value. Same thing happens if it is less than or equals (VLst_Freq). At the same time, the thread 

calculates the latency that the block took to be self-decrypted using its symmetric encryption algorithm, and 

store that value in (VTDecpt). The calculation of the self-decryption process latency is done by simple timer. 

Then, maximum and minimum decryption latency global variables (VHgst_TDecpt and VLst_TDecpt respectively) 

are updated similarly to the approach done with access frequency variables. 

At this point, the thread reads the values (Vin_SSDs), (VSSDs_scheduled), and (VPriority) of the data bock. 

(Vin_SSDs) indicates if the block is already allocated in the SSDs layer, (VSSDs_scheduled) indicated if it was 

already scheduled for migration to the SSDs layer, and (VPriority) indicates if the block belongs to a real-time 

or foreground application. In case both (Vin_SSDs) or (VSSDs_scheduled) were true or (VPriority) was false, the thread 

will not continue its remaining part on the current block and waits for the next requested one as the current 

data block is either already scheduled for migration to the SSDs layer or it is already allocated over there, or 

it belongs to a background application where its reading speed efficiency is not an issue. Otherwise, the 

thread continues to the next steps as the data block might be eligible for migration since it is allocated in the 

HDDs layer, not scheduled for migration, and belongs to a priority application. 

Based on the ratio of the SSDs layer size in respect to the total size of the storage system (R_SSDs), 

the percentile (PAccess_Freq) is calculated using (2) that represents the minimum value of (VAccess_Freq) where 

data blocks who have at least this value are important be migrated to the SSDs layer. This is assuming that 

the data blocks access frequency values (VAccess_Freq) are uniformly distributed. This assumption is valid as in 

any system, there exists many data blocks that are much frequently accessed, others that are rarely accessed, 

and many others that are accessed with normal frequencies. 
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𝑃𝐴𝑐𝑐𝑒𝑠𝑠_𝐹𝑟𝑒𝑞 = 𝑉𝐿𝑠𝑡_𝐹𝑟𝑒𝑞 + 𝑉𝑅_𝑆𝑆𝐷𝑠 × (𝑉𝐻𝑔𝑠𝑡_𝐹𝑟𝑒𝑞 − 𝑉𝐿𝑠𝑡_𝐹𝑟𝑒𝑞)  (2) 

 

Similar to (2), the percentile (PTDecpt) is calculated using (3) that represents the minimum value of 

(VTDecpt) where data blocks who have at least this value are important to be migrated to the SSDs layer as 

they have the highest decryption latency. So, finding them in the SSDs layer is more important to speed up 

their reading process. We make here the same assumption where decryption time values of the data blocks 

(VTDecpt) are uniformly distributed.  

 

𝑃𝑇𝐷𝑒𝑐𝑝𝑡 = 𝑉𝐿𝑠𝑡_𝑇𝐷𝑒𝑐𝑝𝑡 + 𝑉𝑅_𝑆𝑆𝐷𝑠 × (𝑉𝐻𝑔𝑠𝑡_𝑇𝐷𝑒𝑐𝑝𝑡 − 𝑉𝐿𝑠𝑡_𝑇𝐷𝑒𝑐𝑝𝑡)  (3) 

 

After the calculation of the two percentiles local variables, the thread compares if the data block 

access frequency (VAccess_Freq) is greater than or equals the percentile (PAccess_Freq) and if the decryption time of 

the data block (VTDecpt) was more than or equals the percentile (PTDecpt). In this case, the data block is 

considered an important block that must be migrated to the SSDs layer to have the latencies of all of its future 

read requests minimized. The block number (VBlock_number) is enqueued to the end of the queue (QMigHDDs_SSDs) 

so it is scheduled to be moved to the SSDs layer by the thread (TMig_hdd_ssd) whenever a slot of the storage 

system bandwidth allows. The variable (VSSDs_scheduled) is set to true so if it was requested again by the user’s 

application before it is migrated to the SSDs layer, the thread will not add it again to the queue. Algorithm 1 

shows a pseudocode for (TAssmt) thread that was explained. 

 

Algorithm 1. (TAssmt) pseudocode 
while (true) 

    for each accessed data block do 

        retrieve (LB_info) node 

        increment (VAccess_Freq) 

        update (VHgst_Freq) and (VLst_Freq) based on (VAccess_Freq) 

        calculate (VTDecpt) self-decryption latency 

        update (VHgst_TDecpt) and (VLst_TDecpt) based on (VTDecpt) 

        if (Vin_SSDs == False and VSSDs_scheduled == False and VPriority == True) 

            calculate (PAccess_Freq) based on (2) 

            calculate (PTDecpt) based on (3) 

            if (VAccess_Freq >= PAccess_Freq and VTDecpt >= PTDecpt) 

                enqueue (VBlock_number) to the end of (QMigHDDs_SSDs) 

                set (VSSDs_scheduled) to True 

            end if 

        end if 

    end for 

end while 

 

3.3.  Data migration from hard disk drive to solid-state drive thread (TMig_hdd_ssd) 

This thread performs the migration process for important data blocks to the SSDs layer that were 

determined by (TAssmt) thread. It keeps monitoring the current number of ongoing I/O reads from the HDDs 

and I/O writes on the SSDs to determine if the value (VBW_HDDsSSDs) was not reached. The number of these 

ongoing I/O requests are considered a consumption of the bandwidth, and it is recorded in a local variable 

(VBCon_HDDs_SSDs). The HDDs to SSDs migration size that represents the number of data blocks scheduled for 

migration in (QMigHDDs_SSDs) and can be moved immediately based on the available bandwidth is calculated by 

(4), stored in local variable (VMigSize_HDDsSSDs). 

 

𝑉𝑀𝑖𝑔𝑆𝑖𝑧𝑒_𝐻𝐷𝐷𝑠𝑆𝑆𝐷𝑠 = 𝑉𝐵𝑊_𝐻𝐷𝐷𝑠𝑆𝑆𝐷𝑠 − 𝑉𝐵𝐶𝑜𝑛_𝐻𝐷𝐷𝑠_𝑆𝑆𝐷𝑠  (4) 

 

Then, the first (VMigSize_HDDsSSDs) count of data blocks in the front of (QMigHDDs_SSDs) will be moved 

from the HDDs layer to the SSDs one. There nodes in (QMigHDDs_SSDs) will be dequeued. In addition, each 

block (Vin_SSDs) and (VSSDs_scheduled) variables in (LB_info) are set to True and False respectively. Algorithm 2 

shows a pseudocode for (TMig_hdd_ssd) thread that was explained. 

 

Algorithm 2. (TMig_hdd_ssd) pseudocode 
while (true) 

    VBCon_HDDs_SSDs = ongoing HDDs read and SSDs write requests 

    if VBCon_HDDs_SSDs < VBW_HDDsSSDs 

        calculate VMigSize_HDDsSSDs using (4) 

        for each of the first VMigSize_HDDsSSDs nodes in QMigHDDs_SSDs 

            copy block number VBlock_number to SSDs Layer 

            delete block number VBlock_number from HDDs Layer 

            update block Vin_SSDs in LB_info to True 

            update block VSSDs_scheduled in LB_info to False 
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            dequeue block node from QMigHDDs_SSDs 

        end for 

    end if 

end while 

 

3.4.  Solid-state drives full capacity assessment (TFull_SSD) 

This thread keeps calculating the number of data blocks written to SSDs layer to check if it has 

reached its maximum capacity (VSSDsSize) especially that SSDs layer is significantly less in size than the 

HDDs one. It uses a local variable (VSSD_Blocks_Count) to calculate the number of data blocks in the SSDs. To 

initialize the variable, the thread goes through (LB_info) for one time and increments (VSSD_Blocks_Count) 

whenever (Vin_SSDs) is found true. The thread then keeps monitoring whenever a block is written on the SSDs 

layer to increment (VSSD_Blocks_Count). If the maximum size is reached, a data block in the SSDs layer must be 

scheduled for migration from the SSDs to the HDDs. The least complex approach to perform that is to 

linearly go through (LB_info) list and to keep finding the data blocks that are allocated in the SSDs layer where 

(Vin_SSD) is true and have value of access frequency (VAccess_Freq) that became less than the percentile 

(PAccess_Freq) which is calculated here using (2). As percentile (PAccess_Freq) keeps changing while data blocks 

are accessed, there must be data blocks in the SSDs layer that their access frequency become less than the 

percentile and become less important. Hence, these blocks will be moved to the HDDs layer to open a space 

for new important data blocks. Whenever a block is found, it (VBlock_number) will be enqueued to the end of 

(QMigSSDs_HDDs) and the value of (VSSD_Blocks_Count) is decremented. The block (VHDDs_scheduled) is set to true so it 

will not be rescheduled again before its migration. Algorithm 3 shows a pseudocode for (TFull_SSD) thread that 

was explained. 

 

Algorithm 3. (TFull_SSD) pseudocode 
for all blocks in LB_info do 

    if Vin_SSDs == True 

        increment VSSD_Blocks_Count 

    end if 

end for 

while (true) 

    if a new block written on the SSDs Layer 

        increment VSSD_Blocks_Count 

        calculate percentile PAccess_Freq using (2) 
 

        if VSSD_Blocks_Count == VSSDsSize 

            for each node in LB_info 

                if Vin_SSD == True and VHDDs_scheduled == False 

                    if VAccess_Freq < PAccess_Freq 

                        enqueue VBlock_number to the end of QMigSSDs_HDDs 

                        decrement VSSD_Blocks_Count 

                        set VHDDs_scheduled to True 

                    end if 

                end if 

            end for 

        end if 

    end if 

end while 

 

3.5.  Data migration from solid-state drive to hard disk drive thread (TMig_ssd_hdd) 

This thread performs the migration of the data blocks to the HDDs layer whenever the SSDs are full 

for those data block determined by thread (TFull_SSD). Similar to (TMig_hdd_ssd), it keeps monitoring the current 

number of ongoing I/O reads from the SSDs and I/O writes on the HDDs to determine if the value of the 

bandwidth (VBW_SSDsHDDs) was not reached. It also records the consumption of the bandwidth in a local 

variable (VBCon_SSDs_HDDs). Similarly, the size of SSDs to HDDs migration that represents the number of data 

blocks scheduled for migration in (QMigSSDs_HDDs) and can be moved immediately based on the available 

bandwidth is calculated by (5) in a local variable (VMigSize_SSDsHDDs). 

 

𝑉𝑀𝑖𝑔𝑆𝑖𝑧𝑒_𝑆𝑆𝐷𝑠𝐻𝐷𝐷𝑠 = 𝑉𝐵𝑊_𝑆𝑆𝐷𝑠𝐻𝐷𝐷𝑠 − 𝑉𝐵𝐶𝑜𝑛_𝑆𝑆𝐷𝑠_𝐻𝐷𝐷𝑠  (5) 

 

Then, the first (VMigSize_SSDsHDDs) count of data blocks in the front of (QMigSSDs_HDDs) will be moved 

from the SSDs layer to the HDDs one. There nodes in (QMigSSDs_HDDs) will be dequeued. In addition, each 

block (Vin_SSDs) and (VHDDs_scheduled) variables in (LB_info) are both set to False. Algorithm 4 shows a 

pseudocode for (TMig_ssd_hdd) thread. 
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Algorithm 4. (TMig_ssd_hdd) pseudocode 
while (true) 

    VBCon_SSDs_HDDs = ongoing SSDs read and HDDs write requests 

    if VBCon_SSDs_HDDs < VBW_SSDsHDDs 

        calculate VMigSize_SSDsHDDs using (5) 

 

        for each of the first VMigSize_SSDsHDDs nodes in QMigSSDs_HDDs 

            copy block number VBlock_number to HDDs Layer 

            delete block number VBlock_number from SSDs Layer 

            update block Vin_SSDs in LB_info to False 

            update block VHDDs_scheduled in LB_info to False 

            dequeue block node from QMigSSDs_HDDs 

        end for 

    end if 

end while 

 

3.6.  Hybrid self-encryption storage data migration algorithm complexity analysis 

As mentioned previously, HSESM to our best knowledge and review to the literature is the only 

algorithm that performs data migration for important data blocks in self-encryption hybrid storage systems. 

Analysing its complexity is important to show if it will be able to achieve its goals with minimal steps and 

time. The thread (TAssmt) in each iteration evaluates (n) blocks access frequency and decryption latency and 

updates the global variables. Hence, it has a time complexity of O(n) per iteration in the worst-case scenario. 

(TFull_SSD) thread also has a complexity of O(n) in the worst-case scenario when assessing all the data blocks 

in the SSDs layer. The two data migration threads (TMig_hdd_ssd and TMig_ssd_hdd) move data blocks between the 

two layers based on the available I/O bandwidth. In case (k) data blocks will be moved from the HDDs to the 

SSDs and (m) data blocks will be moved in the opposite direction, the complexity of the threads per 

execution cycle will be O(k) and O(m) respectively considering the worst-case scenario. In fact, the size of 

(m) is expected to be less than the size of (k) due to the increased volume of the HDDs layer. The overall 

algorithm’s complexity with its four threads hence will be in O(n). This indicates that the algorithm is 

computationally light, quick to execute, and highly scalable. Figure 1 shows the algorithm complexity 

asymptotic notation per thread. 

  

 

 
 

Figure 1. Algorithm complexity asymptotic notation per thread, overall complexity: O(n) 

 

 

4. PERFORMANCE EVALUATION 

Due to the migration process of the important data blocks that HSESM perform to the SSDs by 

using the available I/O bandwidth, it leverages the high speed of the SSDs layer and reduces the data retrieve 

time in a significant amount. This improves the performance of users’ applications. In this section, we 

present a simulation for the HSESM to evaluate its performance benefits that can be achieved in hybrid 

storage systems implementing symmetric self-encryption.  

The performance metric that is used to measure the performance of HSESM algorithm is the total 

read latency for the entire data blocks that were requested by the users’ applications during their execution 

over a particular period of time. The comparison will be in the case of using HSESM Algorithm with the case 
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of not putting it in use. The difference ratio represents how much the algorithm contributed in optimizing 

data retrieve performance of the hybrid data center that implements symmetric self-encryption. Whenever 

more requested data blocks are founded in the SSDs layer, their total reading latency will be less under the 

presence of decryption process latency. 

For that purpose, we built a simulator using python that implements HSESM algorithm and execute 

it on a randomly generated trace that reflects real-world scenarios for records of users’ applications requests 

for data blocks. There exist many factors that affects the performance evaluation of the algorithm. First, the 

locality of reference where if the users’ applications read request tend to be more for the data blocks that are 

initially in the SSDs layer, hence, less migration will be needed. Second, the size of the SSDs layer in 

comparison to the HDDs one and the initial placement of the data blocks, indeed less SSDs size will decrease 

the amount of data blocks founded in the SSDs layer. Next, the ratio of the requested data blocks in the 

HDDs layer that were classified as important blocks and need to be migrated to the SSDs layer during a 

particular period of the system execution time. More important blocks will lead to extra need for data blocks 

to be migrated. In addition, the available bandwidth for moving the data blocks from the HDDs layer to the 

SSDs one whenever a block is scheduled for migration and the opposite whenever the SSDs layer becomes 

full in capacity. More consumed bandwidth in both directions will reduce the speed of the migration process 

and the chance of finding more data blocks in the SSDs layer. Both the randomly generated trace and the 

simulator consider different scenarios of the mentioned factors. The trace consists of 2000 records of users’ 

applications read requests, where we found this number is enough to simulate our algorithm and to prove its 

performance over enough duration of time. 

We assume a conservative assumption that the size of the SSDs layer is 30% of the total hybrid 

storage system and the size of the HDDs one is 70%. This is due to reasons that we mentioned previously. 

For data reference locality, we can simulate different scenario, due to the space limitation, we simulated a 

worst-case scenario when only 30% of the requested data blocks in the trace are initially in the SSDs layer. 

Similar to Assaf et al. [5], we set the size of each data block stored in the hybrid storage system to 

10 MB for the purpose of performance evaluation as data centers tend to use relatively large data blocks to 

improve the systems performance. However, our solution is flexible under the case of using different sizes of 

data blocks.  

We implemented the following symmetric self-encryption algorithms for encrypting the data blocks 

in the system: AES-128, AES-256, Blowfish-128, Blowfish-256, and 3DES. Table 2 shows the range of 

decryption latencies in seconds that we got while decrypting the data blocks each of size 10 MB during the 

simulation using a normal speed processor (1.6 GHz Dual-Core Intel Core i5). In fact, the choice of the 

encryption algorithm is related to the application and the nature of the sensitive data need to be protected. 

 

 

Table 2. Ranges of decryption latencies for AES, blowfish, and 3DES for data blocks of size 10 MB 
Decryption algorithm Latency range in (s) 

AES-128 0.035465-0.058096 
AES-256 0.039253-0.049405 

Blowfish-128 0.108130-0.142406 

Blowfish-256 0.120671-0.149756 
3DES 0.474093-0.630230 

 

 

Regardless of processing unit used in the self-encryption system, both AES and Blowfish show 

increased decryption latency when using larger key size. 3DES shows more complexity and high decryption 

latency in comparison to the others. Hence, data blocks that tend to be frequently used, their decryption 

latency is high, and belongs to real-time or foreground applications will be classified as important blocks that 

are subject for migration to the SSDs layer in case they exceed the updated value of the percentiles calculated 

in (2) and (3). 

For the ratio of the important data blocks, we programmed our trace generator to take different 

scenarios of the amount of data blocks to be classified as important. We simulated three scenarios were 50%, 

40%, and 30% of the trace requested data blocks that are initially in the HDDs layer are classified as 

important. We assume that 50% is a good upper limit for that ratio due to the increased volume of the HDDs 

layer as well as for the fact that most of the important data blocks tend to be initially allocated in SSDs layer. 

For the bandwidth available for migrating the data between the two layers, we assume a 

conservative assumption that it will reach to 70% of consumption during the peak times and then it relaxes to 

60% and 50% when there becomes less pressure on the storage system. Higher consumption rate of the 

available bandwidth will reduce the system efficiency and raise the need for scalability. 
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The final input needed in the simulation is the disk read latencies in seconds from the HDDs 

(LatencyHDDs) and SSDs (LatencySSDs) as well as the latency in seconds for reading a data block from the 

HDDs and have it written in the SSDs or the opposite direction (LatencyHDDs-SSDs) when using a block size of 

10 MB. We used the validated values in [5] where the ranges of these values are illustrated in Table 3. 

 

 

Table 3. Validated values of disk latencies parameters 
Disk latency parameter Latency range in (s) 

LatencyHDDs 0.075-0.12 
LatencySSDs 0.045-0.052 

LatencyHDDs-SSDs 0.115-0.122 

 
 

After executing the simulator using the different scenarios, we found that the total disk read latency 

without using HSESM is (199.1s) as the locality of the requested data blocks is set to be 30% in the SSDs. 

Implementing HSESM will always result reduced total disk read latencies under different scenarios mentioned 

above of consumed bandwidth and the amount of data blocks being classified as important. Figure 2 shows that 

HSESM data migration process has contributed in improving the performance of the hybrid storage system 

between 13.71% and 23.61% of total disk read latency reduction. HSESM also has contributed in reducing 

the effect of the decryption latency for those data blocks frequently requested by the users’ applications 

especially when they tend to use more complex symmetric encryption algorithms with larger key sizes. It 

clearly shows that whenever the consumed bandwidth is less and the number of the encrypted data blocks 

that were classified as important are more, the ratio of improvement is higher. For some short period of time, 

the case of bandwidth consumption of 60% shows less improvement ratio when 50% of data blocks were 

classified as important. This was due to the increased opposite migration to the HDDs that took place in that 

period during the simulation. But in general, the curve follows the mentioned general performance trend. As 

we mentioned in the introduction that after thorough research, our research is the first that provides data 

migration solution for important symmetric encrypted data blocks in hybrid storage systems. Hence, our 

results and findings can offer a valuable baseline for any potential similar future research. 

 

 

 
  

Figure 2. Improvement ratio of total disk read latency in (%) provided by HSESM under different scenarios 

of the amount of important data blocks and the consumed I/O bandwidth for data migration 

  

 

5. CONCLUSION  

In this paper, we introduced a data migration algorithm (HSESM) for symmetric self-encryption 

data centers that implement hybrid storage systems of SSDs and HDDs layers. It keeps migrating frequently 

used data blocks that belong to real-time or foreground processes and require more decryption latency to the 

SSDs layer in order to take advantage of its increased speed performance. The algorithm leverages the 

available I/O bandwidth of the storage system to perform the migration process aiming to decrease the total 

data read latencies. HSESM was simulated under different scenarios when the data blocks were encrypted 

using AES, blowfish, 3DES with different key sizes. It was able to decrease the total read latency of the 

requested data blocks by the users’ applications in 13.71%-23.61%. One important future work that we 

would like to investigate is the effect of data migration on power consumption in self-encryption hybrid 

storage systems considering the energy efficiency of SSDs layer. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 2288-2299 

2298 

FUNDING INFORMATION  

Authors state no funding involved. 

 

AUTHOR CONTRIBUTIONS STATEMENT  

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Maen M. Al Assaf ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  

Mohammad Qatawneh  ✓  ✓ ✓ ✓ ✓   ✓     

AlaaAldin AlRadhi ✓  ✓   ✓  ✓  ✓ ✓    

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT  

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY  

The data that support the findings of this study were generated and used through a python based 

simulation that was carefully built to reflect real-world scenarios. No external data sets were used in this 

research. The data that support the findings of this study are available from the corresponding author, [AA, 

MA, MQ], upon reasonable request. 

 

 

REFERENCES 
[1] M. M. Al Assaf, X. Jiang, X. Qin, M. R. Abid, M. Qiu, and J. Zhang, “Informed Prefetching in Distributed Multi-Level Storage 

Systems,” Journal of Signal Processing Systems, vol. 90, pp. 619–640, 2018, doi: 10.1007/s11265-017-1277-z. 
[2] A. F. Mhdawy and M. M. Al Assaf, “An Energy Efficient Approach for Big Data Mass Storage Systems Using A Sequential 

Cache,” Journal of Theoretical and Applied Information Technology, vol. 100, no. 23, pp. 6882-6890, 2022. 

[3] B. A. Sassani (Sarrafpour), M. Alkorbi, N. Jamil, M. A. Naeem, and F. Mirza, “Evaluating Encryption Algorithms for Sensitive 
Data Using Different Storage Devices,” Scientific Programming, vol. 2020, pp. 1-9, 2020, doi: 10.1155/2020/6132312. 

[4] J. Kim et al., “Self-Encrypting Drive Evolving Toward Multitenant Cloud Computing,” Computer, vol. 57, no. 2, pp. 79-90, Feb. 

2024, doi: 10.1109/MC.2023.3308955. 
[5] M. M. Al Assaf, X. Jiang, M. R. Abid, and X. Qin, “Eco-Storage: A Hybrid Storage System with Energy-Efficient Informed 

Prefetching,” Journal of Signal Processing Systems, vol. 72, no. 3, pp. 165-180, 2013, doi: 10.1007/s11265-013-0784-9. 

[6] H. Riggs, S. Tufail, I. Parvez, and A. Sarwat, “Survey of Solid State Drives, Characteristics, Technology, and Applications,” 2020 
SoutheastCon, 2020, pp. 1-6, doi: 10.1109/SoutheastCon44009.2020.9249760. 

[7] J. Zhang, M. Kwon, M. Swift, and M. Jung, “Manycore-based scalable SSD architecture towards one and more million IOPS,” 

Annual Non-Volatile Memories Workshop (NVMW), 2021. 
[8] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to Improve Disk Scheduling for High-performance I/O,” 2012 IEEE 

26th International Parallel and Distributed Processing Symposium, 2012, pp. 715-726, doi: 10.1109/IPDPS.2012.70 

[9] J. Niu, J. Xu and L. Xie, “Hybrid Storage Systems: A Survey of Architectures and Algorithms,” in IEEE Access, vol. 6, pp. 
13385-13406, 2018, doi: 10.1109/ACCESS.2018.2803302. 

[10] M. Lin, R. Chen, J. Xiong, X. Li, and Z. Yao, “Efficient Sequential Data Migration Scheme Considering Dying Data for 

HDD/SSD Hybrid Storage Systems,” in IEEE Access, vol. 5, pp. 23366-23373, 2017, doi: 10.1109/ACCESS.2017.2766667. 
[11] M. M. Al Assaf, A. Rodan, M. Qatawneh, and M. R. Abid, “A Comparison Study between Informed and Predictive Prefetching 

Mechanisms for I/O Storage Systems,” International Journal of Communications, Network and System Sciences, vol. 8, no. 5, pp. 

181-186, 2015, doi: 10.4236/ijcns.2015.85019. 
[12] M. Al Assaf, “Performance Optimization for Distributed Hybrid Storage Systems Using a Predictive Approach,” International 

Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 4819-4826, 2020, doi: 

10.30534/ijatcse/2020/91942020. 
[13] T. Coughlin, “Solid security: The rise of self-encrypting solid state drives,” SNIA (Solid State Storage Initiative), 2011. 

[14] M. N. Alenezi, H. Alabdulrazzaq, and N. Q. Mohammad, “Symmetric encryption algorithms: Review and evaluation study,” 

International Journal of Communication Networks and Information Security (IJCNIS), vol. 12, no. 2, pp. 256-272, 2020. 
[15] P. Kuppuswamy, S. Q. Y. A. K. Al-Maliki, R. John, M. Haseebuddin, and A. A. S. Meeran, “A hybrid encryption system for 

communication and financial transactions using RSA and a novel symmetric key algorithm,” Bulletin of Electrical Engineering 

and Informatics (BEEI), vol. 12, no. 2, pp. 1148-1158, 2023, doi: 10.11591/eei.v12i2.4967. 
[16] P. Bharathi, G. Annam, J. B. Kandi, V. K. Duggana, and A. T., “Secure File Storage using Hybrid Cryptography,” 2021 6th 

International Conference on Communication and Electronics Systems (ICCES), 2021, pp. 1-6, doi: 

10.1109/ICCES51350.2021.9489026. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Linear algorithm for data retrieval performance optimization in self-encryption … (Maen M. Al Assaf) 

2299 

[17] V. Sharma, A. Chauhan, H. Saxena, S. Mishra and S. Bansal, “Secure File Storage on Cloud using Hybrid Cryptography,” 2021 
5th International Conference on Information Systems and Computer Networks (ISCON), 2021, pp. 1-6, doi: 

10.1109/ISCON52037.2021.9702323. 

[18] M. Hamdi, J. Miri, and B. Moalla, “Hybrid encryption algorithm (HEA) based on chaotic system,” Soft Computing, vol. 25, pp. 
1847-1858, 2021, doi: 10.1007/s00500-020-05258-z. 

[19] R. B. Marqas, S. M. Almufti, and R. R. Ihsan, “Comparing Symmetric and Asymmetric cryptography in message encryption and 

decryption by using AES and RSA algorithms,” Journal of Xi'an University of Architecture & Technology, vol. 12, no. 3, pp. 
3110-3116, 2020. 

[20] M. A. Al-Shabi, “A survey on symmetric and asymmetric cryptography algorithms in information security,” International Journal 

of Scientific and Research Publications (IJSRP), vol. 9, no. 3, pp. 576-589, 2019, doi: 10.29322/IJSRP.9.03.2019.p8779. 
[21] Q. Zhang, “An Overview and Analysis of Hybrid Encryption: The Combination of Symmetric Encryption and Asymmetric 

Encryption,” 2021 2nd International Conference on Computing and Data Science (CDS), 2021, pp. 616-622, doi: 

10.1109/CDS52072.2021.00111. 
[22] B. Halak, Y. Yilmaz and D. Shiu, “Comparative Analysis of Energy Costs of Asymmetric vs Symmetric Encryption-Based 

Security Applications,” in IEEE Access, vol. 10, pp. 76707-76719, 2022, doi: 10.1109/ACCESS.2022.3192970. 

[23] A. A. Fairosebanu and A. C. N. Jebaseeli, “Data security in cloud environment using cryptographic mechanism,” Bulletin of 
Electrical Engineering and Informatics (BEEI), vol. 12, pp. 462-471, 2023 doi: 10.11591/eei.v12i1.4590. 

[24] M. Nadeem, A. Arshad, S. Riaz, S. W. Zahra, S. S. Band, and A. Mosavi, “Two Layer Symmetric Cryptography Algorithm for 

Protecting Data from Attacks,” Computers, Materials & Continua, vol. 74, no. 2, 2023, doi: 10.32604/cmc.2023.030899. 
[25] C. Meijer and B. van Gastel, “Self-Encrypting Deception: Weaknesses in the Encryption of Solid State Drives,” 2019 IEEE 

Symposium on Security and Privacy (SP), 2019, pp. 72-87, doi: 10.1109/SP.2019.00088. 

  

  

BIOGRAPHIES OF AUTHORS  
 

 

Maen M. Al Assaf     is an Associate Professor of Computer Science at the 

University of Jordan. He received his Ph.D. in Computer Science from Auburn University in 

the State of Alabama, USA in 2011. He published several research works in Distributed 

Storage Systems. His research interests are in many fields including distributed systems, 

operating systems, cloud computing, IoT systems, and edge computing. He can be contacted at 

email: m_alassaf@ju.edu.jo. 

 

    

 

Mohammad Qatawneh     is a Professor of Computer Science at the University of 

Jordan and Al-Ahliyya Amman University. He received his Ph.D in Computer Engineering 

from Kiev University in 1996. He published several papers in the areas of parallel algorithms, 

networks and embedding systems. His research interests include blockchain, cybersecurity, 

IoT, and digital forensics. He can be contacted at email: mohd.qat@ju.edu.jo. 

  

 

AlaaAldin AlRadhi     is a Professor at Sheridan College, in Toronto, Ontario, 

Canada. He received his Master’s degree in Computer Information and Network Security from 

DePaul University in 2008. His research and teaching interests are in IPv6, cyber security, 

AWS/Azure/GCP clouds, and AI/data science. He is an IPv6 certified trainer and administrator 

(gold). Recently he received many awards including Seneca college “research influencer” 

award and Sheridan college “teaching character award” 2022. He also was nominated for 

Ontario Minister of Colleges/Universities “awards of excellence”. He can be contacted at 

email: Alaaaldin.alradh@sheridancollege.ca. 

 

  

https://orcid.org/0000-0002-0708-8389
https://scholar.google.com/citations?user=eK4zRzwAAAAJ&hl=id
https://orcid.org/0000-0002-4917-3418
https://scholar.google.com/citations?user=V6iTZ-4AAAAJ&hl=en
https://orcid.org/0009-0000-5299-1262

