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In robotic operation, an autonomous operation for a mobile robot is needed 

to operate smoothly, hence, a control system is needed. Numerous 

architectures for robotics control systems have been put forth. Regretfully, 

creating a control system architecture is very challenging and occasionally 

results in inaccuracy in control. An alternative to conventional mobile robot 

control has emerged to address this issue: behavior-based control system 

architectures. This paper addresses the behavior of an autonomous mobile 

robot (AMR) control system in an outdoor rescue operation. The AMR 

behavior will be governed by the neural network methods, which are a 

computational intelligence to generate a dependable control algorithm. The 

architecture is used to coordinate behavior, especially to localize the victims, 

and for speed control to find the victim location with fast timing. In 

localization parameters to find the victim in the disaster area, this neural 

network adaptive model has the smallest error, which is 3.27, compared with 

other models such as free space model 43.46, and empirical model 4.735. 

While in robot speed parameter has a low error value, which is 1.47. With 

this small error, we can conclude that the neural network adaptive behaviour 

control architecture model for rescue mobile robot operation has been 

successfully developed. 
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1. INTRODUCTION 

Robotics is one of the technologies that keeps evolving in Industrial 4.0. One of the most popular 

robots would be a robotics-based platform called the autonomous mobile robot (AMR) [1]. This AMR can 

move by utilizing several driving motors and auxiliary sensors [2]. An AMR can navigate, compute, and map 

the path that the robot will follow [3]. The AMR's sensors and other useful parts enable the robot to 

comprehend its surroundings and tailor its movements accordingly. Applications of AMR include handling 

and material processing in manufacturing, hospital services, and so forth [4]. 

A rescue mobile robot can be used as a specialized robot designed to assist in search and rescue 

operations [5]. This mobile robot can be use is particularly in environments that are hazardous or inaccessible 

to humans [6]. These robots are equipped with various technologies such as arm manipulator to extract 

victims [7], [8], lidar for path planning [9], and many others [10]. 

Before we rescue the victims, we need to locate them in a disaster area. This can be done using 

several localization equipment such as GPS [11], Lidar [12], [13], electromagnetic waves [14], and others 

https://creativecommons.org/licenses/by-sa/4.0/
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[15], and methods such as simultaneous localisation and mapping (SLAM) [16]. The use of GPS, Lidar, and 

SLAM methods requires an additional sensor device installed in the robot, hence need an additional cost. 

However, using electromagnetic waves, this can be used existing communication device installed at the 

robot, and the victim can use wireless body sensor network (WBSN) to emit electromagnetic waves [17] as 

their beacon. The localization using electromagnetic waves is to hear or detect the missing victims using their 

electromagnetic wave signature, calculate their distance based on the signature, and determine their location 

based on its calculation [18]. The localization can be found using a lateration method that uses received 

signal strength indicator (RSSI) as a radio electromagnetic signature to range the distance to the beacon [19]. 

In this research output, the model was only used to localize the victims with fast timing, hence the limitation 

of the model. 

Several methods can be used in control, such as proportional integral derivative (PID),  

fuzzy systems, neural network, evolutionary algorithms, and reinforcement learning. However, there is no 

single "best" method for all robotic control applications. Instead, the optimal control method depends on 

system complexity, environment dynamics, available data, and computational resources. Research by 

Popescu et al. [20] compare PID with fuzzy systems in mobile robot control applications, with the best 

method belonging to the fuzzy system. This is because the fuzzy system doesn't rely on the mathematical 

model of the system, while PID does. While Lakhmissi [21] compares fuzzy with neural network and anfis 

for mobile robot path tracking, anfis and neural network are faster compared with fuzzy systems. Research by 

Neruda et al. [22] compare neural network with reinforcement learning for small mobile robots. Neruda 

implies that it provides a straightforward mapping from input signals to output signals and is robust to noise 

compared with reinforcement learning. Research by Li and Yang [23] propose to implement a neural network 

for a topologically adaptable rescue mobile robot. Beckerleg compares the evolvable hardware (EH evolved 

using a genetic algorithm) with the neural network method. Based on the research, Beckerleg [24] states that 

the neural network provides a robust controller while EH provides an excellent controller. Research by 

Firmansyah et al. [25] propose to implement neural networks for localization and positioning using 

ultrasonic, rangefinder, and compass sensors. Based on the literature studies above, in this paper, we present 

the following contributions compared with other research: i) we address the need for navigation and 

localization for victim rescue using electromagnetic wave signature, in this case RSSI parameter for the 

rescue mobile robot and ii) the use of computational intelligence, such as neural network, to build an adaptive 

behaviour control model for rescue autonomous mobile robot operation with speed and RSSI parameters. 

 

 

2. METHOD 

In this section, we would like to explain the experimental setup and method that we used in this work. 

The experimental setup (field measurement equipment and environment) was designed to collect data (data 

measurement) that will be used as point of reference by the robot using neural network method to identify the 

needed speed and the distance between the robot and the victims. The research step can be seen in Figure 1. 
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Figure 1. Research block 

 

 

2.1.  Field measurement equipment 

In this research, a dataset needs to be generated to develop a neural network model. Unfortunately, 

although many datasets are available on the internet, they are image-based datasets which for SLAM [16]. 

This dataset is different from what we need, which is an electromagnetic wave signature. Hence, to imitate 
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mobile robot operation in the disaster area, we propose to do measurement using a long range (LoRa) radio 

transceiver. The LoRa radio transceiver was used in pairs (transmitter and receiver). The microcontroller was 

added as a data pre-processing and data transmission control for both the transmitter and receiver. On the 

transmitter side, the microcontroller was programmed so that it could command the LoRa transceiver to send 

packet data every 100 microseconds. On the receiver side, the microcontroller was programmed so that it 

could command the LoRa transceiver to receive incoming packet data, extract the RSSI value, and forward it 

directly to our recording device. The walk test method was used for every 5-meter measurement point, from 

5 meters to 100 meters (please see Figure 2). The LoRa transceiver pair was put on top of the soil. The 

maximum antenna height from the soil for the LoRa transceiver pair was less than 30 cm [26]. The 

equipment parameter detail configurations can be seen in Table 1. 
 

 

 
 

Figure 2. LoRa measurement equipment 

 

 

Table 1. LoRa setting 
Parameter Value 

Frequency 920 MHz 
Bandwidth 125 KHz 
Spreading factor 12 
Antenna gain 0 dBi 
Tx-power 20 dBm 
Measurement parameter RSSI 

 

 

2.2.  Field measurement environment 

We chose an open dirt road with vegetation growing on the left and the right sides of the road. This 

site was chosen to simulate a disaster that occurred in the area. The open dirt road environment is located in 

the western suburbs of Jakarta at GPS coordinates −6.214478, 106.747576. The open dirt road environment 

situation can be seen from Figure 3. 
 

 

 
 

Figure 3. Open dirt road site 
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2.3.  Received signal strength indicator field measurement result 

Figure 4 shows us the result of electromagnetic wave signature measurement in the open dirt road 

environment (see Figure 3). In Figure 4, we can see the field measurement result. The electromagnetic wave 

signature uses RSSI methods with decibels millivolt (dBm) as its unit. RSSI measurement in an open dirt 

road environment using LoRa 920 MHz frequency, 125 KHz bandwidth, and spreading factor 12. From 5 

meters to 100 meters, we will take 20 measurements. If we carefully look at the RSSI value has many 

fluctuations. This fluctuation can be caused by many things, from the Fresnel zone [27] or multipath fading 

as a side effect of wireless communication [28]. 

 

 

 
 

Figure 4. Open dirt road RSSI field measurement 

 

 

2.4.  Free space pathloss model 

To do localization, we need to do lateration using the RSSI signal as a measurement of distance. We 

need to model the electromagnetic wave. Because a drone is flying, the most suitable electromagnetic wave 

signal propagation model would be the free space path loss (FSPL) propagation model. This model was 

suitable only when there were no obstacles between the radio receiver and radio transmitter [29]. This 

environment was suited to drone operation, which is high altitude, hence no obstacle between the drone 

receiver and the victim's beacon transmitter. 

FSPL propagation model is a propagation model that comes from the transmission derivative 

function of 2 transmitting and receiving antennas (transmission friss) as seen in Figure 3. This function states 

that the relationship between the power received and the power transmitted between two antennas separated 

by a fairly large distance r. The friss transmission function is an application of the antenna's far field, with the 

limitation that the distance must be greater than the wavelength [30]. 

The gain on the transmitting antenna can be written as (1): 

 

𝑆 =
𝑃𝑖𝑛𝐺𝑡

4𝜋𝑑2  (1) 

 

Then the power that will be received by the receiving antenna is (2): 

 

𝑃𝑟 =
𝑃𝑖𝑛𝐺𝑡

4𝜋𝑑2 .
λ2

4𝜋
𝐷𝑟  (2) 

 

Because the efficiency of the receiving antenna also influences the output power received by the receiving 

antenna [9], we can write (3): 

 

𝑃𝑜𝑢𝑡 = 𝑃𝑟 η𝑒𝑟 =
𝑃𝑖𝑛𝐺𝑡

4𝜋𝑑2 .
λ2

4𝜋
𝐷𝑟η𝑒𝑟 =

𝑃𝑖𝑛𝐺𝑡

4𝜋𝑑2 .
λ2

4𝜋
 𝐺𝑟 = (

λ

4𝜋𝑑
) 2 𝐺𝑡𝐺𝑟𝑃𝑖𝑛 (3) 

 

So that the transmission function is the power received by the receiving antenna based on the power 

transmitted by the transmitting antenna, the distance traveled, and the function of the electromagnetic waves 

on the surface of the transmitting and receiving antennas. 
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𝑃𝑟

𝑃𝑡
= (

λ

4𝜋𝑑
) 2 𝐺𝑡𝐺𝑟 (4) 

 

Being a function of electromagnetic waves in free air, called free space path loss (FSPL) (5): 

 

𝐹𝑆𝑃𝐿 =
𝑃𝑡

𝑃𝑟
= (

4𝜋𝑑

λ
) 2 𝐺𝑡𝐺𝑟 (5) 

 

Because the gain of a transmitter power is very difficult to calculate in the usual way, each power at the 

transmitter and the receiver is then converted into decibels. So we can write (6): 

 

𝐹𝑆𝑃𝐿 =
𝑃𝑡

𝑃𝑟
= 10 log10 ((

4𝜋𝑑

λ
)

2

) + 𝐺𝑡 + 𝐺𝑟  (6) 

 

If we use an isotropic antenna, the gain on the transmitting and receiving antennas is 0, so we can write (7): 

 

𝐹𝑆𝑃𝐿 = 20 log10 (
4𝜋𝑑𝑓

c
) (7) 

 

Or we can write [31], [32] (8): 

 

𝐹𝑆𝑃𝐿 = 20 log10(𝑑) + 20 log10(𝑓) + 32.45 (8) 

 

where: d is distance in kilometer unit, and f is frequency in MHz units. 

 

2.5.  Mobile robot speed 

For the mobile robots speed, we would like to use data provided by Lenain et al. [33]. Their 

experimental mobile robot was classified as a terrain mobility wheeled robot. Their robot are capable of 

climbing slopes up to 45° with a maximum speed of 8 ms-1. However, we would like to reduce the speed to 1 

ms-1 when the robot is at least 10 meters near the beacon. This speed reduction was needed so the robot 

would have enough time to put the brake in front of the victims. 

 

2.6.  Neural network method 

Artificial neural network (ANN) is a computational intelligence that mimics the biological neural 

network behavior of living things [34]. ANN methods have been used to solve many problems, such as 

control [35], detection [36], [37], and forecasting [38]. The method does its job by processing and calculating 

previously accepted data training [39]. ANN is a collection of nodes called artificial neurons, which model 

the neurons in the biological brain. Each neuron can send signals to other neurons using synapses, just like in 

the biological brain [40]. The receiver neuron receives the signal, then processes it, and then signals the next 

neurons using a synapse that is connected to it. ANN consists of neurons that work as processing elements. 

These neurons, which are connected to other neurons, are ruled by bias and weights. Its signal calculation is 

then passed through an activation function to produce an output [41]. One layer of an ANN neuron can be 

written with a simple (9): 

 

𝐶𝑖=f 𝑖(𝐼𝑊𝑖p+𝑏𝑖) (9) 

 

where: 𝐼𝑊𝑖  is scalar weight; p is scalar input; 𝑏𝑖 is scalar bias; 𝑓𝑖 is transfer function; and 𝐶𝑖 is scalar output. 

 

 

3. RESULT AND DISCUSSION 

3.1.  Empirical model based on received signal strength indicator field measurement result 

In this section, we would like to derive the model from the FSPL model to become an empirical 

model for localization. The comparison between the field measurement result and versus empirical model can 

be seen in Figure 5. 

In Figure 5, we can see the comparison of the empirical model with the measurement result, which 

shows little difference. This is because the FSPL model in (8) has a different 43.21 dB in average with the 

field measurement result, then based on that comparison, we derive the FSPL model to become an empirical 

model as we stated in (10): 

 

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 = 20 log10(𝑑) + 20 log10(𝑓) + 32.45 + 43.21 (10) 
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Figure 5. Comparison between the empirical model versus field measurement for localization 

 

 

3.2.  Neural network adaptive model 

In this section, we would like to present our proposed model, which is the neural network adaptive 

behaviour control architecture rescue mobile robot. To do this, we need to input field measurement data as 

training data for the neural network. The data training was based on field measurement in the open dirt road, 

as we can see in Figure 3, which is the average RSSI measurement versus distance and speed. The data has 

been divided to become 70% for training, 15% for validation, and 15% for testing, and its output produces 

mean squared error (MSE) with a value of 6 for training and validation using 8 hidden neurons. The neural 

network adaptive behaviour control architecture model for the rescue mobile robot can be shown in Figure 6. 

 

 

 
 

Figure 6. The neural network adaptive behaviour control architecture model for the rescue mobile robot 

 

 

In Figure 6, we can see the neural network architecture used in this research. The neural network has 

3 layers, which are the input, the hidden layer that acts as a processing neuron, and the output layer. The 

input layer has 2 parameters, which are speed and RSSI, while the output neuron has a range parameter. For 

the rescue mobile robot adaptive model, we can write a new mathematical model using (9), such as (11): 
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𝐶𝑖 = 𝑡𝑎𝑛𝑠𝑖𝑔(∑ (𝐼𝑊𝑖,𝑛𝑝𝑖+𝑏𝑖)𝑛𝑖
𝑖=1  (11) 

 

Therefore, for the output layer, we can write (12): 

 

𝐶𝑖 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝐼𝑊𝑖,𝑛 ∑ (𝑡𝑎𝑛𝑠𝑖𝑔(∑ (𝐼𝑊𝑖,𝑛𝑝𝑖+𝑏𝑖)
𝑛𝑖
𝑖=1 ))+𝑏𝑖)

𝑛𝑖
𝑖=1  (12) 

 

where: 𝐼𝑊𝑖  is scalar weight; 𝑏𝑖 is scalar bias; p is scalar input such as average RSSI; and 𝐶𝑖 is scalar output 

such as distance for localization, and robot movement speed. 

The neural network model performance compared with field measurement is presented in Figure 7. 

In Figure 7 we can see the comparison from neural network model with measurement result that has little in 

difference. This because the neural network model in (12) has different 0.245 dB in average with field 

measurement result. Therefore compare with free space pathloss model and empirical model, this neural 

network model is very accurate. 

 

 

 
 

Figure 7. Comparison between neural network model versus field measurement for localization 

 

 

3.2.  Comparison between models for localization and robot speed based on proposed design 

In this section, we would like to compare the free space model, the empirical model, and the neural 

network model for victim localization based on the RSSI signal. The comparison between each model will be 

presented in Figure 8. 

 

 

 
 

Figure 8. Comparison between each model for localization 
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In Figure 8, we present our proposed (neural network) model for locating the victim using the RSSI 

signal level. We compare our neural network model with field measurement, FSPL model, and empirical 

model. In this comparison, we are using 20 test points of RSSI from the beacon victim's transmitter. To 

validate our simulation, we would like to calculate the error using the root mean square (RMSE) method. The 

RMSE was popular in statistics to validate model evaluation [42]. Based on Table 2 data, the RMSE 

validation can be presented in Table 2. 

 

 

Table 2. RMSE comparison for the localization parameter of each model 
No Item RMSE 
1 Free space model 43.46 
2 Empirical model 4.735 
3 Neural network adaptive model 3.27 

 

 

Based on the RMSE shown in Table 2, we can see that on the robot localization parameter, the 

neural network adaptive model has a low error value, which is 3.27, compared with other models. The small 

error compared with other models indicates that the localization parameter of the neural network adaptive 

model is more accurate compared with other models. After we finish comparing localization control then we 

compare robot control for speed concerning distance with the victim with our proposed design. The RMSE 

for robot speed can be seen in Table 3. 

 

 

Table 3. RMSE for speed parameter based on design 
No Item RMSE 
1 Neural network adaptive model 1.47 

 

 

Based on the RMSE shown in Table 3, we can see that the simulation on the robot speed parameter 

has a low error value, which is 1.47. The small error for the robot speed parameter was because it only has 2 

values, which are 1 m/s in distance between 0 to 10 meters and 8 m/s in distance between 15 to 100 meters, 

hence it produces very low error. Based on the simulation validation on robot speed parameter and robot 

localization to find the victim in the disaster area, we can conclude that the neural network adaptive 

behaviour control model for rescue mobile robot has been successfully developed. 

 

 

4. CONCLUSION 

In this paper, we propose the neural network adaptive behaviour control model for rescue mobile 

robot ground operation. This model control architecture was developed to localize and find the disaster 

victims with haste by using electromagnetic wave signatures generated from victims' beacons. This model 

has been tested successfully using simulation. The neural network adaptive behaviour control model consists 

of 2 main parameters, which are localization and speed robot control. In localization parameters to find the 

victim in the disaster area, this neural network adaptive model has the smallest error, which is 3.27, 

compared with another model, such as free space model 43.46, and empirical model 4.735. The robot speed 

parameter has this model has a low error value compared with our proposed design, which is 1.47. Although 

we can conclude that the neural network adaptive behaviour control model for rescue mobile robot has been 

succesfull develope, however in the future there the needs to add SLAM feature to the model, and another 

additional parameter to be insert into the model so the robot not just only to find victims in the open ground 

but also buried in the ruins of buildings or buried in the ground also obstacle detection, and real-world trials. 
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