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 Spectrum sensing (SS) is a fundamental function in cognitive radio (CR) 

networks, enabling efficient spectrum utilization by identifying available 

channels. However, existing SS methods face challenges such as low 

accuracy in dynamic and low signal-to-noise ratio (SNR) environments, as 

well as high computational complexity. To address these issues, this paper 

presents a distributed SS technique that combines multiple-input multiple-

output (MIMO) technology with a diffusion-based (DB) cooperative 

algorithm. MIMO enhances spatial diversity to improve detection 

performance, while the DB algorithm enables efficient collaboration among 

secondary users, reducing both sensing time (ST) and computational time 

(CT). Simulations over Rayleigh (RL) and Rician (RC) fading channels 

evaluated metrics such as probability of detection and false alarm. Results 

demonstrate that the proposed MIMO-DB method outperforms existing 

approaches, including honey badger remora optimization (HBRO)-AlexNet, 

by reducing ST by 18 seconds and CT by 45 seconds at 5 dB SNR, while 

achieving higher detection accuracy across varying SNR levels. These 

findings highlight the method’s robustness and efficiency, making it a 

promising solution for dynamic spectrum management in 5G, internet of 

thing (IoT) and other next-generation wireless systems. 
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1. INTRODUCTION 

Cognitive radio (CR) networks have been developed to enhance spectrum efficiency by allowing 

secondary users (SUs) to access licensed spectrum when primary users (PUs) are not actively utilizing it. A 

critical function in CR networks is spectrum sensing (SS), which enables accurate identification of available 

spectrum resources. Traditional SS techniques, such as energy detection (ED), are simple to implement but 

often perform poorly in low signal-to-noise ratio (SNR) environments [1]. CR technology is expected to 

significantly influence wireless communications by optimizing spectrum utilization. However, SS remains a 

considerable challenge. Various techniques have been explored to improve sensing accuracy ranging from 

matched filtering (MF) and cyclostationary detection (CD) to eigenvalue-based methods. Cooperative SS, 

which aggregates observations from multiple receivers, has also been investigated, particularly for its ability 

to operate effectively with minimal prior knowledge of signal or channel characteristics. Additionally, 

https://creativecommons.org/licenses/by-sa/4.0/
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practical issues such as noise uncertainty have been addressed with solutions proposed to improve threshold 

determination and test statistic distributions [2], [3]. 

Current wireless networks face spectrum inefficiency due to static allocation policies, resulting in 

highly variable usage rates depending on time and location. This inefficiency has led to the emergence of 

next generation (xG) networks or dynamic spectrum access (DSA) systems, which promote opportunistic 

spectrum use. CR networks are foundational element of xG networks, with their architecture designed to 

dynamically adapt to available spectrum [4]. ED remains one of the most widely used SS techniques in CR 

networks because of its simplicity and low computational overhead. However, in orthogonal frequency 

division multiplexing (OFDM)-based systems, a key modulation scheme in modern wireless communication, 

environmental factors such as SNR levels and channel fading significantly affect detection accuracy. 

Analyzing detection thresholds have highlighted the need to balance the probability of detection (Pd) and 

probability of false alarm (Pfa) to optimize SS in dynamic environments [5], [6].  

Recent research has also focused on improving energy efficiency in CR networks using multiple-

input multiple-output (MIMO) technology. The dynamic nature of cognitive radio networks (CRNs), where 

SUs continuously sense and access the spectrum, presents unique energy consumption challenges. By 

optimizing MIMO configurations and SS techniques, researchers have demonstrated reductions in energy 

demands while maintaining reliable performance [7]. Further advancements involve the integration of 

communication and sensing in wireless systems through hybrid beamforming architectures. These systems 

employ MIMO technology and optimized OFDM waveforms to simultaneously perform data transmission 

and environmental sensing. This hybrid approach ensures efficient spectrum utilization while minimizing 

power consumption [8]–[10]. Additionally, SS and resource allocation strategies for 5G communication 

systems have been developed. These strategies emphasize efficient spectrum use to meet the high data rate 

and low latency requirements of 5G networks [11], [12]. Hybrid cooperative SS algorithms have also been 

developed to address noise uncertainty and fading effects, enhancing the accuracy of spectrum resource 

detection in dynamic environments [13], [14]. The current literature on distributed sensing in CR networks 

using MIMO-based SS with a diffusion-based (DB) and cooperative (CO) algorithm are surveyed along with 

their advantages and limitations. 

Dewangan et al. [15] introduced a hybrid approach that integrates the honey badger remora 

optimization (HBRO) technique with AlexNet, a deep learning model, to improve cooperative SS in CR 

networks. This method combines the strengths of both the honey badger algorithm (HBA) and the remora 

optimization algorithm (ROA) to optimize the training of AlexNet, utilizing key signal parameters like signal 

energy and eigenvalue statistics. However, the focus on the RC channel model restricts its application in 

more varied wireless environments, such as Rayleigh (RL) or Nakagami fading channels. Additionally, the 

method faces challenges related to processing time and computational complexity. Relying on a single deep 

learning model like AlexNet may also limit its adaptability to dynamic network conditions. 

Usman et al. [16] developed an additive white gaussian noise (AWGN) model, demonstrating that 

integrating ED with electromagnetic (EM) enhances performance in low-SNR conditions. Their findings, 

validated through simulation plots based Pfa and Pd accuracy, confirm the effectiveness of this approach. 

Future studies could expand upon this by exploring other channel models, like RL and Rician (RC) fading 

channels, and investigating cognitive officers (CO) detection methods to improve SS accuracy further. In 

addition various optimization algorithms have been paired with deep learning methods to boost SS 

performance. This approach leverages critical signal features such as energy and eigenvalue statistics to 

enhance SS capabilities. 

Xu et al. [17] developed a cooperative spectrum sensing (CSS) technique utilizing a multifeatures 

combination network that incorporates convolutional neural networks (CNNs) to extract spatial features and 

gate recurrent unit (GRU) models to capture temporal information. This approach enables the network to 

integrate local features from multiple nodes, thereby enhancing detection performance. Despite its 

advantages, the multifeatures combination network encounters challenges in terms of computational 

complexity. 

Algriree et al. [18] proposed a SS technique specifically designed for 5G-MIMO systems, 

enhancing spectrum availability and signal clarity through the use of an ED algorithm paired with a cosine 

law to filter traffic signals. The process then incorporates partitioning using the welch algorithm and 

windowing via the Hann algorithm, aiming to reduce excessive power delivery to the MIMO system. This SS 

technique is applied in both CO and non CO setups to efficiently manage multiple waveforms. However, 

while it focuses on SS performance across varying SNR conditions, it does not thoroughly address other 

important factors such as resource allocation, throughput optimization, or the computational complexity. 

Cai et al. [19] introduced an innovative SS approach utilizing a spectrogram-aware convolutional 

neural network (S-CNN), where the CNN receives the spectrogram of signal samples- created using short-

time Fourier transform (STFT)-as input. This technique aims to extract both temporal and frequency 
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characteristics from the spectrogram. However, the method mainly concentrates on enhancing detection 

performance in offline environments, while significant challenges such as computational complexity and 

scalability remain unaddressed. 

Jothiraj et al. [20] proposed an adaptive threshold-based dragonfly optimization algorithm for CSS 

in CR networks. This approach aims to enhance detection accuracy and spectrum efficiency by dynamically 

adjusting the sensing threshold, allowing more efficient identification of spectrum holes. The dragonfly 

optimization algorithm strikes a balance between exploration and exploitation to optimize SS performance. 

However, the model mainly focuses on static or semi-dynamic environments, and does not fully investigate 

the algorithms robustness or adaptability in highly dynamic conditions, such as fluctuating SNR, rapidly 

changing user activity or unpredictable interference patterns. 

Gomaa et al. [21] introduced a hybrid detection method for CSS, integrating additive wavelet 

transform (AWT) and Haar discrete wavelet transform (HDWT) with homomorphic decomposition to reduce 

noise prior to the decision making process. Their study examines the effectiveness of various fusion rules 

(OR, AND, and majority) for CO sensing, utilizing fixed-time sensing intervals. However, the research does 

not fully investigate how the models perform in different fading environments such as RL and Nakagami 

channels or in rapidly changing wireless conditions. Additionally, the trade-off between detection accuracy 

and energy consumption remains a key aspect that has not been thoroughly addressed. 

Bani and Kulkarni [22] proposed that hybrid SS methods, which integrate ED and matched detector 

(MD) are highly effective in boosting performance, especially in low-SNR and heterogeneous environments. 

CSS further improves detection accuracy by utilizing collaboration among multiple CR users. Future 

advancements could aim at lowering the computational complexity of these methods and investigating the 

incorporation of additional detectors such as CD, to better manage situations where only partial information 

about PUs is available. 

Kumar et al. [23] suggested hybrid SS models that combine various detection methods to improve 

the performance of 5G and 6G waveforms. These models including hybrid matched filter (HMF) algorithms, 

show better performance compared to conventional techniques like MF especially in RL and RC channels 

under noisy conditions. However, these advanced methods typically demand higher computational resources 

and real-time channel estimation, which lead to system complexity. With the growing need for spectrum in 

5G and 6G, future research should prioritize balancing performance gains with system efficiency and 

manageable computational requirements. 

Mabrook et al. [24] proposes an adaptive neuro-fuzzy inference system (ANFIS) for optimizing 

cooperative SS in CR networks. The ANFIS model is trained using identity numbers, repetition parameters 

and channel power levels to accurately detect free spectrum channels. It integrates adaptive methods to 

improve sensing performance under varying SNR levels. Simulations demonstrate the method’s efficiency in 

overcoming fading and shadowing challenges, outperforming traditional detection methods. However, the 

study assumes relatively static network conditions and a limited number of users, which may hinder 

scalability. Additionally, the computational demands of the ANFIS model could face challenges for real-time 

deployment in large-scale or dynamic networks. 

In Lorincz et al. [25] introduced square-law combining techniques in MIMO-OFDM CR networks, 

showing that multi-antenna configurations enhance detection performance. However, the use of OFDM 

showing synchronization complexity and increases computational demands, making it less suitable for 

lightweight distributed sensing environments. 

Budati and Valiveti [26] proposed a CR sensing method that utilizes the generalized likelihood ratio 

test (GLRT) and Neyman Pearson (NP) detection rules to improve user sensing detection. While their 

approach increases accuracy under known signal models, it requires prior information and produces higher 

computational overhead, which may limit flexibility in dynamic spectrum environments. 

Many current SS techniques encounter difficulties when dealing with complex fading environments 

such as RL and RC channels, often struggling in low-SNR scenarios. In this study, to address the inefficiency 

of traditional SS methods in dynamic and low-SNR environments. While methods such as HBRO-AlexNet 

[15] and ED with entropy [16] have made significant contributions, to face limitations, including high 

computational complexity, scalability issues and poor performance in low-SNR conditions. To overcome 

these challenges, to propose a novel MIMO-DB SS technique. The approach leverages MIMO for enhanced 

spatial diversity and DB algorithm to enable efficient collaboration among SUs. This approach that reduces 

sensing time (ST) and computational time (CT) while maintaining high detection accuracy. 

The key findings of this research are as follows: 

− The proposed DB algorithms facilitates efficient collaboration among SUs. By iteratively refining local 

energy estimates through cooperative process, it reduces the Pfa while maintaining a high Pd. 

− The system achieves reduced ST and CT by optimizing detection performance through iterative 

cooperation, making it well-suited for large-scale CR networks. The inclusion of MIMO technology 
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enables quicker local SS and the DB algorithm ensures faster convergence compared to traditional 

consensus-based methods, improving both detection accuracy and computational efficiency. 

− The proposed system is highly scalable, capable of handling numerous SUs without the need for 

centralized control, and it performs effectively in both static and dynamic spectrum conditions. 

The rest of this paper is structured as follows: section 2 presents the methodology, section 3 

discusses the results, and section 4 concludes with the implications and future directions. 
 

 

2. PROPOSED METHOD 

This research presents a novel approach that combines MIMO-Based SS with a DB cooperative 

algorithm for distributed sensing in CR networks. Figure 1 illustrates the block diagram of the proposed 

distributed MIMO and DB SS system. 

 

 

 
 

Figure 1. Block diagram of distributed MIMO and DB SS 

 

 

The MIMO-DB SS technique was implemented in MATLAB using the configurations outlined in 

Table 1. Simulations were performed with 10–50 SUs, a range of SNR values and specified iteration settings. 

To model real-world scenarios, both RL and RC fading channels were included to assess robustness under 

dynamic wireless conditions. MIMO technology was selected for its capability to provide spatial diversity 

and enhance detection performance in fading environments. The DB algorithm followed an adapt-then-

combine (ATC) approach, iteratively refining local energy estimates. This approach is recognized for its 

efficiency in distributed sensing, its ability to coverage under dynamic conditions and its enhanced detection 

accuracy. 
 

 

Table 1. Simulation parameters of the proposed method 
Parameters Values 

Number of transmit antennas Mt (MIMO configuration)  2,4 

Number of receive antennas Mr (MIMO configuration) 2,4 

N number of samples for ED 500 to 1000 
Number of iterations for diffusion 50 to 100 

Number neighbors Ni for diffusion 3 to 5 

Number of SUs 10 to 50 
RL fading coefficient Mean 0, variance 1 

RC K factor K 0 to 10 

Pfa and Pd range [0 to1] 
SNR range (dB) -20 to 10 

 

 

2.1.  System model 

Consider a CR network comprising multiple SUs, each equipped with MIMO antennas. The SUs 

perform distributed SS to detect the presence of a PU. Each SU operates locally and enhances detection 

accuracy by collaborating with neighboring SUs through a DB algorithm. The system leverages MIMO for 

spatial diversity, which improves detection performance in fading environments. Both RL and RC fading 

channels are used to model various wireless propagation conditions. 

 

2.2.  Channel modeling 

The PU signal travels through either RL or RC fading channels, depending on the surrounding 

environments. The RL channel represents a non-line-of-sight (NLOS) scenario with multiple scattered paths, 

commonly found in urban or indoor settings. 

PU signal 

transmission 
Channel model 
(RL/RC fading 

channel) 

MIMO-based SS 
(received signal 

processing and local 

energy estimation) 

DB cooperative 

sensing (ATC 

diffusion 
algorithm) 

Decision making 

(compare energy 

estimate to 
threshold and local 

decision) 
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𝐻𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝑡) = √
1

2
(𝐺1 + 𝑗𝐺2)  (1) 

 

Where G1 and G2 represent independent Gaussian random variables and j is the imaginary unit. The 

RC channel models a line-of-sight (LOS) scenario, characterized by both a discrete signal path and scattered 

components. The RC K-factor determines the balance between the LOS and NLOS elements. 
 

𝐻𝑅𝑖𝑐𝑖𝑎𝑛(𝑡) = √
𝐾

𝐾+1
𝐻𝐿𝑂𝑆 + √

1

𝐾+1
𝐻𝑁𝐿𝑂𝑆 (2) 

 

Here, HLOS denotes the deterministic LOS component, while HNLOS represents the RL fading 

component. The RC factor K reflects the power ratio between the direct path and the scattered paths. 

 

2.3.  Multiple-input multiple-output-based spectrum sensing 

Each SU utilizes its MIMO antenna array to conduct local SS in order to detect the presence of the 

PU. The detection method employed is ED, which assesses the energy of the received signal. 

 

2.3.1. Received signal model 

The received signal yi(t) at SU i at time t over the MIMO channel is: 
 

𝑦𝑖(𝑡) = 𝐻𝑖(𝑡)𝑠(𝑡) + 𝑛𝑖(𝑡)  (3) 
 

where, Hi(t) is MR × MT channel matrix (RL or RC), s(t) is the transmitted signal from the PU, ni(t) is the 

AWGN vector with variance 𝜎𝑛
2. 

 

2.3.2. Energy detection 

Each SU calculates the energy of the incoming signal within a specific time frame, denoted as T, to 

ascertain whether the PU is active. The energy estimates Ei for the i-th SU can be expressed as (4): 
 

𝐸𝑖 =
1

2
∑ ‖𝑦𝑖(𝑡)‖2𝑇

𝑡=1   (4) 

 

Where ‖𝑦𝑖(𝑡)‖2 represents the Euclidean norm (energy) of the received signal at time t. The MIMO 

advantage improves the detection performance by increasing the effective SNR, which can be modeled as: 
 

𝑆𝑁𝑅𝑀𝐼𝑀𝑂 =
𝑀𝑅𝑀𝑇𝑃𝑆

𝜎𝑛
2   (5) 

 

where Ps is the power of the PU signal. 

 

2.3.3. Detection decision 

The SU makes a local decision, based on the energy estimate Ei. This is done by comparing Ei to a 

predefined detection threshold λ. 
 

Decision: 𝐸𝑖  {
>  λ PU is present (𝐻1)
≤  λ PU is absent (𝐻0)

   (6) 

 

The threshold λ can be determined based on the desired Pfa and noise variance: 
 

𝜆 = 𝜎𝑛
2 (1 + √

2𝑆𝑁𝑅

𝑀𝑅
)  (7) 

 

2.4.  Cooperative sensing via diffusion algorithm 

After each SU completes its local sensing, to collaborate using a DB algorithm to boost detection 

precision and robustness. A significant benefit of the diffusion method is its capacity to manage 

communication failures and offer greater reliability component to conventional consensus-based algorithms. 

 

2.4.1. Adapt-then-combine diffusion algorithm 

In the ATC diffusion algorithm, each SU refines its individual energy estimates by integrating its 

own observations with the estimates shared by neighboring SUs. 

a. Adaptation step: each SU adjusts its local energy 𝐸𝑖(𝑘) at time k as (8): 
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𝐸̂𝑖(𝑘 + 1) = 𝐸̂𝑖(𝑘) +  𝜇𝑖 (𝐸𝑖(𝑘) − 𝐸̂𝑖(𝑘))  (8)  

 

where, 𝜇𝑖 is the step-size parameter that controls the rate of adaptation. 𝐸𝑖(𝑘) is the local energy estimate of 

SU i at time k. 𝐸̂𝑖(𝑘) is the current estimate of SU i. 

b. Combination step: after adaptation, each SU combines its updated energy estimate with the estimates 

from its neighboring nodes.  
 

𝐸̂𝑖(𝑘 + 1) = 𝐸̂𝑖(𝑘) +  ∑ 𝜔𝑖𝑗𝑗𝜖𝑁𝑖
𝜇𝑖 (𝐸𝑖(𝑘) − 𝐸̂𝑖(𝑘))  (9) 

 

where Ni is the set of neighboring SUs for SU i. 𝜔𝑖𝑗  is the weight assigned to the neighbor j based on link 

quality. This diffusion process continues iteratively until the energy estimates of all SUs. Coverage, leading 

to more accurate global decisions.  

c. Convergence: the diffusion process iterates until the energy estimates converge to stable values. Each SU 

then uses its final energy estimate to make a decision about the presence of the PU. 

d. Pd: the probability that the system correctly detects the presence of the PU given by (10). 
 

𝑃𝑑 = 𝑃(𝐸̂𝑖 > 𝜆 ⎸𝐻1)  (10) 
 

e. Pfa: the probability that the system falsely detects the presence of the PU when no PU is present. 
 

𝑃𝑓𝑎 = 𝑃(𝐸̂𝑖 > 𝜆 ⎸𝐻0)  (11) 

 

f. ST: ST TS refers to the time each SU spends on performing local SS, including signal collection and ED. 

It depends on the number of samples N, the sampling period 𝛥𝑡, and the complexity of the MIMO system. 
 

𝑇𝑠 = 𝑁 ×  𝛥𝑡  (12) 
 

g. CT: the CT TC is the total time taken for the DB algorithm to converge. It is influenced by the number of 

iterations K, the step size μi, and the number of neighbors involved in the information exchange. 
 

𝑇𝑐 = 𝐾 × 𝐼 × 𝑇𝑢𝑝𝑑𝑎𝑡𝑒  (13) 

 

where I is the number of information exchanges in each iteration and 𝑇𝑢𝑝𝑑𝑎𝑡𝑒  is the time required for each 

update step. 

 

 

3. RESULTS AND DISCUSSION  

This section outlines the experimental analysis conducted to evaluate the proposed approach under 

different scenarios. The method was implemented using MATLAB software, with the system configuration 

consisting of an Intel i7 processor, Windows 11 operating system and 8 GB RAM. The simulation parameters 

for the proposed approach are detailed in Table 1. 

 

3.1.  Testing scenarios 

Performance is evaluated under both RL and RC fading conditions and results are measured using 

Pd, Pfa, ST, and CT. Comparative benchmarks include HBRO-AlexNet and ED with EM methods. No 

external datasets are used, all signal and noise samples are synthetically generated using MATLAB based on 

standard SS models, including MIMO ED with fading channels.  

 

3.2.  Performance analysis 

In this section, the proposed method effectiveness is assessed using various parameters outlined in 

Table 1. Figures 2(a) and (b) illustrates the performance analysis over a RL fading channel, showing the 

relationship between the Pd and the Pfa. To evaluate the proposed approach, its performance is compared 

against an existing SS technique based on HBRO-AlexNet [15] model. Figure 2(a) presents the Pd at various 

SNR levels. In the existing technique SNR values ranged from -20 dB to 5 dB and corresponding Pd values 

were recorded. At lower SNRs especially below -10 dB, the detection performance was suboptimal. For 

instance at -20 dB the detection probability was 0.14, gradually improving to 0.93 at 0 dB. In contrast, the 

proposed MIMO-DB algorithm demonstrates significantly better detection performance at all SNR levels. 

Even at low SNRs such as -20 dB, the proposed method achieves a Pd of 0.15, slightly outperforming the 
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existing technique. As the SNR increases, the Pd steadily improves, reaching 0.99 at 0 dB and maintaining 

consistency at higher SNR levels. 

Similarly, Figure 2(b) illustrates the Pfa, which remains significantly lower across all tested SNR 

levels. The proposed MIMO-DB algorithm with a RL fading channel exhibits a lower Pfa at all SNR levels 

when compared to the HBRO-AlexNet [15] method. 

 

 

  
(a) (b) 

  

Figure 2. Performance analysis with RL channel: (a) Pd and (b) Pfa 
 

 

For example, at an SNR of -20 dB, the Pfa was reduced to 0.06, in contrast to the 0.10 Pfa observed 

with the HBRO-AlexNet [15] technique. Even though this method Pfa reached 0.80 at 5 dB, it still remained 

below that of the HBRO-AlexNet [15] approach.  

Figures 3(a) and (b) presents the performance analysis with a RC channel in terms of Pd and Pfa. 

The detection performance of the MIMO-DB algorithm with the RC channel was assessed and compared to 

the HBRO-AlexNet [15] based method. Figure 3(a) illustrates the primary metric for comparison was the Pd 

across various SNR levels. The results indicate consistent improvements with the offered method, which 

shows significant gains in detection performance at all SNR levels. Notably, the presented approach achieves 

a Pd of 0.99, outperforming the 0.95 achieved by HBRO-AlexNet [15]. Figure 3(b) depicts the Pfa, 

indicating a lower rate across varying SNR levels. These results validate the robustness of the proposed 

approach in both low and high SNR conditions. 
 

 

  

(a) (b) 
 

Figure 3. Performance analysis with RC channel: (a) Pd and (b) Pfa 
 

 

Figures 4(a) and (b) illustrates the performance analysis in terms of ST and CT over a RC. In  

Figure 4(a) shows the proposed MIMO-DB SS technique was evaluated against the existing HBRO-AlexNet 

[15] method by examining the ST across various SNR levels. ST is a vital metric in CR networks, as it 
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influences the systems ability to detect the PU promptly and efficiently. The proposed MIMO-DB technique 

showed a marked improvement in ST within the tested SNR range. At an SNR of -20 dB, the ST was reduced 

to 234 seconds, indicating a faster detection process compared to the HBRO-AlexNet [15] method. As the 

SNR improved, the ST continued to decrease, reaching 197 seconds at 5 dB. This highlights the efficiency of 

the introduced method, especially in low-SNR conditions, where swift SS is crucial for maintaining the 

systems overall responsiveness. 

In Figure 4(b) shows the computational efficiency of the MIMO-DB SS technique was evaluated in 

comparison to the existing HBRO-AlexNet [15] method by examining the CT across different SNR levels. 

The MIMO-DB technique showed a notable reduction in CT over the entire SNR of 5 dB. This consistent 

decline in CT across all SNR levels highlights the enhanced efficiency of the proposed method. 
 

 

  

(a) (b) 
 

Figure 4. Performance analysis with RC channel: (a) ST and (b) CT 

 

 

3.3.  Comparative analysis 

The comparative results presented in Table 2 clearly indicate that the developed MIMO-DB method 

with RL and RC fading channel outperforms the HBRO-AlexNet-based [15] approach across all SNR levels. 

At higher SNR values (above -5 dB), both methods converge toward high Pd, though the MIMO-DB still 

maintains a slight advantage, achieving a Pd of 0.99. Additionally, the proposed method demonstrates a more 

controlled increase in Pfa, with a maximum of 0.80 at 5 dB, compared to 0.95 in the HBRO-AlexNet [15] 

method. 
 
 

Table 2. Evaluation of MIMO-diffusion vs HBRO based AlexNet [15] 
Performance 

metrics 
Methods Types of channel 

SNR 

-20 -15 -10 -5 0 5 

Pd HBRO based AlexNet [15] RL 0.14 0.38 0.77 0.93 0.93 0.93 
RC 0.07 0.34 0.91 0.93 0.95 0.96 

MIMO-diffusion RL 0.24 0.45 0.81 0.98 0.99 0.99 

RC 0.16 0.4 0.96 0.99 0.99 0.99 
Pfa HBRO based AlexNet [15] RL 0.1 0.35 0.68 0.79 0.92 0.95 

RC 0.09 0.2 0.79 0.88 0.94 0.97 

MIMO-diffusion RL 0.06 0.27 0.3 0.45 0.56 0.8 
RC 0.06 0.16 0.32 0.33 0.66 0.85 

ST HBRO based AlexNet [15] RC 255 250 248 240 238 215 

MIMO-diffusion 234 222 216 208 202 197 
CT HBRO based AlexNet [15] RC 580 572 568 565 563 562 

MIMO-diffusion 556 546 539 530 523 517 

 

 

Furthermore, the comparison shows that the developed MIMO-DB SS technique consistently 

reduces ST when compared to the HBRO-AlexNet [15] approach across all SNR levels. At higher SNRs, 

such as 5 dB, the method further reduces the ST by 18 seconds (215 s to 197 s). Additionally, the CT of the 

proposed framework at 5 dB is 45 seconds less than that of the HBRO-AlexNet [15] approach (from 562 s to 

517 s). These reductions in CT and ST highlight the superior efficiency of the proposed method in managing 

the computational demands of detecting the PU, particularly in challenging low-SNR environments. 
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To assess the effectiveness of the introduced MIMI-DB SS technique, it was compared to the 

existing ED with EM method [16]. The comparison was based on the Pd at fixed Pfa of 0.1 and 0.2 across 

varying SNR levels. The MIMO-DB technique showed significant improvements in Pd at all SNR levels, 

particularly at lower SNRs. For instance, at -20 dB, the Pd reached 0.40, which is higher than the 

corresponding value achieved by the ED with EM method. This trend persisted throughout the SNR range 

with this method achieving a Pd of 0.75 at -13 dB, consistently outperforming the existing method across all 

SNR levels, as shown in Table 3. 
 
 

Table 3. Evaluation of MIMO-diffusion vs ED with EM [16] for different Pfa for the Pd 

Pfa Method 
SNR 

-20 -17 -15 -13 -10 -9 -7 -5 -3 0 

Pfa=0.1 ED with EM [16] 0.32 0.41 0.51 0.66 0.94 0.97 0.99 1 1 1 
MIMO-diffusion 0.4 0.56 0.65 0.75 0.97 1 1 1 1 1 

Pfa=0.2 ED with EM [16] 0.42 0.51 0.61 0.75 0.95 0.91 0.98 1 1 1 

MIMO-diffusion 0.48 0.6 0.74 0.85 0.96 0.98 1 1 1 1 

 
 

Table 4 presents the structured comparison clearly demonstrates that proposed MIMO-DB technique 

offers a balanced and efficient solution compared to more complex modern methods, particularly in low SNR 

environments. 
 

 

Table 4. Evaluation of MIMO-diffusion vs modern SS techniques 
Method Key features Detection accuracy Sensing/CT Limitation 

ED with EM [16] Statistical; iterative estimation Modern Low to moderate Sensitive to noise; slow at 

low SNR 

HBRO-AlexNet [15] Deep learning+metaheuristic 
optimization 

High High High overhead, poor for real 
time applications 

Proposed MIMO-

DB 

MIMO+diffusion (distributed, 

cooperative) 

Very high Low to moderate Lightweight, robust, scalable 

 

 

3.4.  Discussion 

Previous studies have primarily focused on SS techniques such as HBRO-AlexNet [15] and ED with 

entropy [16]. However, these approaches face challenges in dynamic environments, particularly in achieving 

low ST and CT without compromising detection accuracy. To study aims to address these limitations through 

the proposed MIMO-DB technique achieved a Pd of 0.99 at 0 dB, significantly outperforming HBRO-

AlexNet [15], which achieved 0.95 under the same conditions. Additionally, ST was reduced by 18 seconds 

and CT decreased by 45 seconds compared to HBRO-AlexNet [15] at 5 dB, highlighting the efficiency of 

this approach. Results indicate that the integration of MIMO spatial diversity and DB algorithms improves 

detection accuracy and convergency speed. In comparison to HBRO-AlexNet [15], which relies on deep 

learning models with high computational demands, the MIMO-DB technique reduces overhead without 

sacrificing performance. 

While the simulation results demonstrate the effectiveness of the proposed method, real-world 

testing is necessary to confirm its scalability and performance under unpredictable interference patterns. The 

finding suggest that MIMO-DB SS can significantly improve dynamic SS in next-generation networks. 

Future research could investigate integrating this approach with adaptive machine algorithms to enhance 

decision-making in more complex environments, explore implementation in large-scale wireless networks. It 

provides evidence that the proposed MIMO_DB SS technique addresses critical gaps in CR networks, 

offering higher detection accuracy, reduced ST and greater efficiency. These advancements contribute to the 

development of robust SS methods for next-generation networks. 

The proposed MIMO-DB method offers high scalability through its fully distributed design, 

requiring each node to exchange information only with the neighbors. Unlike centralized methods with 

complexity, this approach keeps low communication overhead and ensures linear computational growth, even 

in large networks. 

 

 

4. CONCLUSION  

This paper presented a MIMO-DB SS framework aimed at addressing key challenges in CR 

networks, particularly spectrum utilization and the detection of PU activity. By integrating MIMO 

technology with a DB cooperative algorithm, the proposed method demonstrated superior performance 

compared to conventional techniques such as ED with EM and HBRO-AlexNet. It achieved higher detection 
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accuracy across various SNR levels, with marked improvements in low- SNR conditions where traditional 

methods often underperform. Additionally, the approach significantly reduced both ST and CT, enhancing 

efficiency in dynamic and resource-constrained environments.  

The methods distributed architecture ensures scalability and robustness, making it a strong candidate 

for real time deployment in emerging wireless systems such as 5G and IoT. Future research will focus on 

implementing the technique in real-world settings using software-defined radios (SDRs), evaluating its 

performance in high-mobility environments and extensions to multi-band and wideband SS. Integrating 

lightweight machine learning models may further improve responsiveness through real-time threshold 

adjustment in rapidly changing conditions. 
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