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 Power electronics-based nonlinear loads generate significant current 

harmonics, adversely affecting the efficiency and reliability of distribution 

networks. Active power filters (APFs), leveraging power electronics 

technology, provide an alternative to passive filters in mitigating harmonics. 

Multilevel inverter-based (MLI) APFs, particularly for high-power 

applications, offer numerous advantages but often suffer from increased 

component count and control complexity. In this article, a novel five-level 

MLI topology is proposed, featuring a reduced number of switches 

compared to the traditional cascaded H-bridge topology with eight switches. 

This research reduces system cost and simplifies controller design. To 

further enhance system performance, a fuzzy logic controller (FLC) is 

implemented for DC-link voltage control. Harmonics are identified using the 

instantaneous p-q theory, and switching signals are generated through 

multicarrier pulse width modulation (PWM) techniques. Study conducted in 

MATLAB for a single-phase balanced system demonstrate the effectiveness 

of the proposed topology. Results reveal a reduction in total harmonic 

distortion (THD) of the source current from 34.15% to 2.31%, meeting the 

IEEE-519 standard. The findings validate the proposed APF's capability to 

enhance power quality by mitigating harmonics. By integrating advanced 

MLI technology with artificial intelligence-based control, this work offers a 

cost-effective, efficient solution to improve the performance of polluted 

distribution networks. 

Keywords: 

Active power filter 

Fuzzy controller 

Harmonics 

Instantaneous p-q theory  

Multilevel inverter 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Pranita R. Chavan 

Department of Electrical Engineering, Sardar Patel College of Engineering, University of Mumbai 

Andheri West, Mumbai, Maharashtra 400058, India 

Email: pranitapramod44@gmail.com 

 

 

1. INTRODUCTION 

In modern distribution networks, harmonics are a major cause of poor power quality issues. This is 

due to rapid development in the domain of power electronics and its application in various industrial, 

commercial and residential purposes. These power electronics-based equipment are nonlinear in nature 

causing distorted current in the network. These current harmonics interact with system impedance and caused 

distortion in supply voltage affecting consumers connected at a common point of connection (PCC) [1]. 

The current harmonics severely damage the power system network. It promotes increases in losses 

in major equipment like transformers, and motors which result in temperature rise. Current harmonics reduce 

the power factor, cause maloperation of relays, failure of sensitive electronics components, damage to 

capacitor bank, and substation component lightning arrestor (LA). Briefly, harmonics cause technical as well 

https://creativecommons.org/licenses/by-sa/4.0/
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as financial losses to the consumer and utilities. Therefore, it is essential to eliminate the harmonics with a 

well-developed solution to increase system reliability and efficiency [2], [3]. 

In the literature, various techniques are listed for the reduction of harmonics. Traditionally passive 

filters made up of R, L, and C component are affordable and simple solution adopted by consumers. But it 

suffers from resonance problem resulting in overloading of components, large size, fixed compensation, slow 

response under dynamic situations, and its characteristic changes with the aging effect [4]-[6]. This 

increasing harmonic problem attracted researchers to find attractive solutions. With advancements in power 

electronics with new switching devices like insulated gate bipolar transistor (IGBT) and metal-oxide-

semiconductor field-effect transistor (MOSFET), the active power filter (APF) using inverter is well 

developed technology for mitigating harmonics. APFs are connected in series or shunt with the  

system [7]-[9].   

Conventional two-level inverters used in APFs have a smaller number of switches. But to get a 

sinusoidal waveform it requires switching at a high frequency which causes high switching losses. Also, the 

high inverse voltage applied across switches affects its characteristics. APF with two levels when used in the 

medium or high-power applications the system becomes costly and bulky due to high rating of a switch, 

snubber circuit, inverse voltage constraint and the need of high rating transformer. The multilevel inverter 

(MLI) based APF is a viable solution in medium and high-power applications as it eliminates the need for 

transformer and the required voltage level is obtained using low rating switches. Also, MLI generates high 

output voltage which is very close to sinusoidal using low rating switches with low switching frequency and 

stress. The most popular MLI topologies available are diode clamped, cascade H bridge and neutral point 

clamped. But these topologies have some limitations a greater number of diodes, capacitors and separate DC 

sources are required [10]-[14].  

The controller for ensuring the effective operation of the APF is a core part of it. The function of the 

control scheme of APF involves sensing essential signals, signal conditioning, gating reference compensating 

current, supervising and controlling voltage of the DC bus and providing switching pulses to the inverter 

switches. Diverse control techniques are mentioned in the literature and still research is beneath. For 

reference compensation current time domain and frequency domain methods are available to detect harmonic 

components [15]-[17]. Recently due to advancements in the artificial intelligence domain, the application of 

AI controllers has become popular in the control of APF. AI controllers like artificial neural network (ANN) 

controllers, fuzzy controllers, and ANN-fuzzy controllers are widely adopted for reference current 

generation, for DC voltage supervision and also for switching techniques [18]-[21]. 

In this study to overcome the limitation of popular MLI topologies modified five level inverter 

topology is suggested for APF application. The new modified topology reduces the number of diodes and 

capacitors and also reduces switch ratings. This is a recommended alternative for APFs for high power 

applications with less cost and reduction in complex control algorithms. This study focuses on the application 

of artificial intelligence techniques using the fuzzy logic controller (FLC) for DC voltage supervision. 

Proportional integral (PI) controller is common controller adapted to control the DC link voltage. The PI 

controller has limitations under variable load conditions as it requires tuning of PI gains. The fuzzy controller 

is suitable for the system having random information and the system is difficult to analyze mathematically. It 

is rule based system where control laws can be easily implemented in a human linguistic language in rule-

based system. Therefore, FLC is suitable for control of DC link voltage in APFs to handle imprecise and 

uncertain conditions. The FLC based shunt APF is useful under nonlinear and time varying situation without 

mathematical modeling. It provides adaptive and flexible approach to control APF for the reduction of 

harmonics. The pulse width modulation (PWM) multicarrier technique with four carrier waves is used for 

generating switching pulses for the switches of the filter [22]-[25].  

In section 2 describes the complete control block diagram of the proposed APF. The modified MLI 

topology is described in section 3 with the operation mode and switching control scheme. Control and 

operation of APF using fuzzy controller is discussed in section 4. Section 5 represents the simulation result of 

the system under study. Finally, in section 6 conclusion is represented with and without filter action followed 

by the references. 

 

 

2. SYSTEM DESCRIPTION  

The shunt APF is current controlled device realized by a voltage source inverter connected at the 

point of coupling. Figure 1 demonstrates the working view of the multilevel modified inverter topology 

applied for a shunt active filter. The system is composed of the AC source connected to the nonlinear load. 

The diode bridge rectifier is used as a nonlinear load. To reduce the harmonics drawn by the nonlinear load, 

the shunt APF is connected in shunt between the source and load at the PCC. The objective of an APF is to 

inject harmonic components in the system in phase opposition to cancel out system harmonics and keep 

supply purely sinusoidal. 
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Figure 1. Control block diagram of APF 

 

 

The block diagram illustrates that the operation of the APF consists of three primary components. 

The generation of the compensation current (Icomp) is accomplished through the application of the p-q theory 

as proposed by Akagi [26]. The implementation of DC link voltage control is achieved via a FLC, which 

ensures that the DC voltage remains at its reference value to offset switching losses [27]. The process of 

switching signal generation for the PWM inverter is executed to regulate the active filter current injected into 

the system, thereby effectively controlling the harmonics [28], [29]. Section 4 provides a comprehensive 

explanation of the control scheme for the APF. 

 

 

3. MODIFIED MULTILEVEL INVERTER 

Figure 2 shows the modified topology of five level inverter as substitute to cascade H bridge 

multilevel topology where more switching devices are required for generating five level. This structure 

becomes compact and can be independently connected in each phase of three phase system. The structure for 

each single phase has five bipolar switches with two DC sources. The required five level output voltage level 

(+V, +V/2, 0, -V/2, -V) are generated by using switching state described in Table 1.  

 

 

 
 

Figure 2. Modified five-level MLI configuration 
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Table 1. Switching control states for suggested inverter topology 
Voltage output SW1 SW2 SW3 SW4 SW5 

+V 1 0 0 1 0 
+V/2 0 0 0 1 1 

0 0 0 0 0 0 

-V/2 0 0 1 0 1 
-V 0 1 1 0 0 

 

 

The modified new topology of the inverter has five modes of operation corresponding to five voltage 

levels. The equivalent circuits for modes +V and +V/2 are shown in Figures 3 and 4 respectively. The same 

equivalent circuit can be constructed for other remaining levels by referring to the switching Table 1. 

 

 

 
 

Figure 3. Operation modes for +V voltage output 

 

 

 
 

Figure 4. Operation modes for +V/2 voltage output 

 

 

Table 1 describes the switching states for each switch (SW1, SW2, SW3, SW4, and SW5) in the 

suggested inverter topology to achieve specific output voltage levels (+V, +V/2, 0, −V/2, and −V). The table 

uses binary values, where 1 represents a switch in the ON state and 0 represents a switch in the OFF state. 

As illustrated in Figure 3, to achieve the maximum positive voltage +V, switch S1 is turned ON, 

connecting the load to the positive terminal of the DC link voltage. Simultaneously, switch S4 is turned ON, 

connecting the load to the negative terminal of the voltage, while all other switches remain OFF, as dictated 

by the switching Table 1. The current path corresponding to the +V voltage level is depicted with arrows in 

the figure. 

Figure 4 demonstrates that to attain the half-positive voltage level +V/2, switch S5 is activated, 

thereby linking the load to the positive terminal of the DC link voltage V/2 via diodes D1 and D4. At the 

same time, switch S4 is activated, establishing a connection between the load and the negative terminal of the 
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voltage V/2, while all other switches are in the OFF position, as specified in the switching table. The arrows 

in the figure denote the current path associated with the +V/2 voltage level. 

 

 

4. ACTIVE POWER FILTER CONTROL AND OPERATION 

The working steps of an APF comprise the generation of reference signal, DC capacitor voltage 

control, and creating of switching signal for switches. By assuming a balance system, the system is simulated 

for a single phase which can be independently controlled. 
 

4.1.  Creating harmonic compensation current using instantaneous p-q theory 

The reactive power theory proposed by Akagi [30] is one of the most studied in active filter systems. 

It was introduced for three phase system initially and later presented the single-phase system to take benefits 

of three phase p-q theory by representing the quantity in α-β coordinates. For a single-phase system supply 

voltage and load current transformed to α-β coordinates by providing a π/2 lead is given by (1) and (2). 

 

[
𝑉𝛼

𝑉𝛽
] = [

𝑉𝑆(𝜔𝑡)

𝑉𝑆(𝜔𝑡 +
𝜋

2
)
] (1) 

 

[
𝐼𝛼

𝐼𝛽
] = [

𝐼𝐿(𝜔𝑡)

𝐼𝐿(𝜔𝑡 +
𝜋

2
)
] (2) 

 

The instantaneous active and reactive powers by following three phase theory given by (3). 

 

[
𝑝
𝑞]=[

𝑉𝛼 𝑉𝛽

− 𝑉𝛽 𝑉𝛼
] [

𝐼𝛼

𝐼𝛽
] (3) 

 

The real and reactive power with fundamental and harmonic component is expressed as (4) and (5). 

 

𝑝 = 𝑝̅ + 𝑝 ̃ (4) 

 

𝑞 = 𝑞̅ + 𝑞 ̃ (5) 

 

where 𝑞̅, 𝑝̅ represented fundamental components and 𝑞 ̃, 𝑝 ̃ represented oscillating components related to 

harmonics. 

To get reference current for filter operation given by (6) the inverse of (3) is taken. 

 

[
𝑖𝑐𝛼

∗

𝑖𝑐𝛽
∗ ] =

1

𝑉𝛼
2+𝑉𝛽

2 [
𝑉𝛼 𝑉𝛽

𝑉𝛽 −𝑉𝛼
] [

−𝑝
−𝑞

 ] (6) 

 

Additional 𝑃𝐿𝑜𝑠𝑠  is needed to maintain DC bus voltage to its reference value due to switching loss and can be 

compensated by adding with harmonic component of active power as given by (7). 

 

[
𝑖𝑐𝛼

∗

𝑖𝑐𝛽
∗ ] =

1

𝑉𝛼
2+𝑉𝛽

2 [
𝑉𝛼 𝑉𝛽

𝑉𝛽 −𝑉𝛼
] [

−𝑝̃ + 𝑝𝐿𝑜𝑠𝑠

−𝑞
] (7) 

 

Actual reference signal is given by α-axis component, the 𝑖𝑐𝛼
∗  gives the required reference current signal and 

expressed as (8). 

 

𝑖𝑐𝛼
∗ =

1

𝑉𝛼
2+𝑉𝛽

2 [𝑉𝛼(𝑝 + p dc) + 𝑃𝐿𝑜𝑠𝑠 − 𝑉𝛽 
 

𝑞] (8) 

 

Figure 5 represent implementation of single-phase active and reactive power theory for reference 

current calculation in terms of block diagram. Source voltage and load current are converted in α-β 

component and then instantaneous real and reactive power is calculated. Harmonics and fundamental 

component ae separated using filter and finally reference compensation current is determined using single 

phase p-q theory described. 
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Figure 5. Block diagram representation of single-phase p-q theory 

 

  

4.2.  DC voltage control applied to shunt active filter 

The DC linked capacitor has to recompense the switching losses of APF converter along with active 

power need during dynamic load condition. This reduces Vdc from its reference value Vdc_ref. It is essential to 

regulate DC voltage to ensure effective operation of APF or else capacitor will remain discharged. To 

regulate real power loss component Ploss must be added in the final reference current. Thus, final reference 

signal should have harmonic component, reactive power component and loss component to control injected 

current by APF. 

Traditionally PI controller is used for DC voltage control which requires tuning of PI gains. In this 

work DC linked voltage is monitored by designing FLC [31]. The basic block diagram of FLC developed for 

APF is as shown in Figure 6. The error between Vdc ref and Vdc
 and the change in error is given as input to the 

FLC. For each input and output total seven fuzzy sets are formed with linguistic value like positive small 

(PS), positive medium (PM), negative small (NS) using gaussian and triangular membership functions for 

input and output respectively as shown in Figures 7 and 8. 

 

 

 
 

Figure 6. FLC designed for shunt active filter 

  

 

 
 

Figure 7. Input variable MF 
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Figure 8. Output variable MF 

 

 

The fuzzy control scheme is implemented in three steps of fuzzification, execution of rules and 

defuzzification. In fuzzification process, the numerical values are converted in fuzzy values. Fuzzy rule base 

system defines control rules mapping input and output relation using minimum AND operator. Fuzzy 

inference system (FIS) stored a total 49 rules. In fuzzy based system the control laws are presented in IF 

THEN rules. FIS activates the rules based on the input values and generates outputs. Table 2 represents the 

rule base crated in matrix form. The activated fuzzy rules generate fuzzified output which is essential to 

convert in the form required by real system. This is done with the defuzzification method. Here centroid 

defuzzification method is applied. In this work, Mamdani fuzzy model is used which is more popular. 

 

 

Table 2. Control rule base for proposed fuzzy controller 

CE 
E 

NB NM NS ZE PS PM PB 

NB NB NB NB NB PB NS ZE 
NM NB NB NM PB NS ZE PS 

NS NB NM NM NS ZE PS PM 
ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 
PB ZE PS PM PB PB PB PB 

 

 

4.3.  Generation of gate pulses for switching devices 

The current provided by the APF at the connection point is regulated by switching inverter switches. 

In this work, the current control loop is controlled by the phase opposition disposition pulse width 

modulation (POD-PWM) method. It compares reference signals and four carrier signals and generates signals 

HIGH(H) or LOW(L) for switching devices to generate corresponding voltage levels. The uppermost carrier 

wave above zero generates +Vdc and below zero by symmetry generates –Vdc. Similarly, the middle carrier 

waves above zero generate +Vdc/2 and below zero generate –Vdc/2 level. When the reference level is between 

middle carriers it generates a zero voltage level. Switching control conditions are stated Table 3. 

 

 

Table 3. Control signal for switching devices 
Conditions Switching states Voltage levels 

Iref ≥ C1 SW1 = H, SW2 = L, SW3 = L, SW4 = H, SW5 = L +Vdc 

Iref ≥ C2 SW1 = L, SW2 = L, SW3 = L, SW4 = H, SW5 = H +Vdc/2 

C3 < Iref<C2 SW1 = L, SW2 = L, SW3 = L, SW4 = L, SW5 = L 0 

Iref ≥ C3 SW1 = L, SW2 = L, SW3 = H, SW4 = L, SW5 = H −Vdc/2 

Iref ≥ C4 SW1 = L, SW2 = H, SW3 = H, SW4 = L, SW5 = L −Vdc 

 

 

5. RESULTS AND DISCUSSION 

The performance of the developed shunt active filter is demonstrated with the MATLAB/Simulink 

platform. Figure 9 shows the APF system developed for reducing current harmonics in the polluted 

distribution network due to nonlinear load.  
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Figure 9. Shunt active filter Simulink model 

 

 

Table 4 shows the values of the system components used for simulating the distribution system with 

APF. The simulation is done for single-phase system by assuming a balanced three-phase system. The system 

can be developed for three phases by adding ±1200 phase shift for other phases.  

 

 

Table 4. System parameters 
Name of the parameter Values 

Supply system 230 V, 50 Hz 

DC link voltage Vdc=440 V, C1=C2=3000 µF 

Nonlinear load (diode bridge rectifier with R-L type load) R=5 Ω L=20 mH 
Switching frequency for carrier signal 5 KHz 

 

 

Figure 10 shows the source current waveform, and Figure 11 shows distortion measurement of 

source current under nonlinear load condition in terms of total harmonic distortion (THD) without the 

application APF at the coupling point. It is seen that without filtering the current on the source side is 

distorted and the THD is 34.15%. It is seen that after the application of an active filter, the THD is reduced to 

2.31% from 34.15%. 

 

 

 
 

Figure 10. Supply current waveform before filtering action 
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Figure 11. Supply current with THD before filtering action 

 

 

Figure 12 shows the improved supply waveform which is near to sinusoidal shape and Figure 13 

shows a THD spectrum of source current becomes 2.31%. Figures 14 and 15 show the switching signal 

produced during POD-PWM techniques for SW1, SW2, SW3, and SW4. 
 

 

 
 

Figure 12. Supply current waveform after filtering action 
 
 

 
 

Figure 13. Supply current with THD after filtering action 
 

  

 
 

Figure 14. Switching signals during POD-PWM techniques for SW1 and SW2 
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Figure 15. Switching signals during POD-PWM techniques for SW3 and SW4 

 

 

6. CONCLUSION 

In this research, a shunt APF was successfully developed using a five-level inverter with a reduced 

number of switches to mitigate harmonics in the distribution network. By implementing artificial intelligence 

through a FLC, the APF demonstrated significant improvements in power quality, meeting the compliance 

requirements set by utilities and regulatory bodies. Harmonic identification was effectively achieved using 

the single-phase adaptation of the p-q theory originally designed for three-phase systems. The POD-PWM 

switching technique delivered satisfactory performance, reducing the THD of the source current from 

34.15% to 2.31%, in adherence to the IEEE-519 standard. The results confirm that the developed APF 

significantly reduces current harmonics. Moreover, the fuzzy logic control approach, leveraging human 

knowledge through IF-THEN rules, proved to be a robust alternative to complex mathematical modeling, 

making it an excellent choice for controlling the APF efficiently. This article highlights the potential of 

combining advanced inverter technology with intelligent control systems to enhance power quality in 

polluted distribution networks. 
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