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 Image quality is significantly influenced by noise, light, and artifacts, 

particularly in medical images where precision is essential for accurate 

diagnosis. Denoising is a significant pre-processing for enhancing the overall 

quality of images to enable efficient classification, feature extraction, and 

segmentation. Conventional denoising filters smooth out boundaries and lose 

texture because they are ineffective to process color images. To address 

these limitations, a weighted factor-based non-local means (WF+NLM) filter 

is proposed as an improvement over the non-local means (NLM) filter, with 

an additional weight factor based on pixel similarity. This addition reduces 

blurring while maintaining fine details, resulting in improved quality. The 

proposed filter performs effectively in blood smear images, with a peak 

signal-to-noise ratio (PSNR) of 39.6904, SSIM of 0.9551, and gradient 

SSIM of 0.9889. Statistical tests indicates that the WF+NLM filter improves 

image quality in terms of structure, gradients, and feature similarity. 

Statistical inference for a one-tailed paired t-test validates statistical 

significance with the highest t value of 9.323829 with p-value 0.00037 by 

the wavelet-based non-local moment mean (W-NMM) filter asserts higher 

image restoration quality. 
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1. INTRODUCTION 

The peripheral blood smear images are essential for hematological examinations and provide 

significant health-related recommendations. This diagnostic process forms a thin blood coating on a glass 

slide, followed by dyed and evaluated under a microscope. The size, shape, and categorization of white blood 

cells (WBCs), red blood cells (RBCs), and platelets can provide essential information to medical 

professionals. These images are an important screening tool for diagnosing abnormalities such as anemia, 

infections, leukemias, and autoimmune disorders, thereby improving treatment and monitoring [1]. The 

clarity and brightness of blood smears are affected by different factors. Smear quality is determined by 

accurate thickness, equal spreading, and edge smoothness. Proper collection and extraction processes are 

necessary for preserving blood cell structure. Improper spreading will result in cell clustering, and a 

significant number of overlapping cells could make it difficult to detect the disease [2]. Images are acquired 

using different types of processes that create noise and distortions in the image. Removing noise from images 

is essential for a reliable diagnosis in medical image analysis. Gaussian, poisson, speckle, salt-and-pepper, 

and Rician noise are common in microscopic, computed tomography (CT), and magnetic resonance imaging 

https://creativecommons.org/licenses/by-sa/4.0/
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(MRI) images resulting from sensor imperfections, low-dose acquisition, and external factors during image 

capture. Denoising methods attempt to remove noise from images while retaining fine details. The challenges 

in medical imaging include retaining anatomical details, maintaining diagnostic integrity, handling modality-

specific noise, and being compatible with tasks like segmentation and classification. Color image denoising is 

more challenging because of the complex spatial connections between the green, red, and blue channels. This 

technique aims to enhance the visual quality and color consistency by taking image texture, contrast, and 

illumination changes into consideration, and it also prevents unwanted impacts such as blurring. Traditional 

denoising methods, such as bilateral filtering, Gaussian, and median filters, are frequently used in the context 

of blood smear images but these methods are insufficient for color image denoising [3]–[7]. However, the 

non-local means (NLM) filter provides accurate interpretation by using dissimilarity measurements within 

particular regions to minimize noise in images [8]. The NLM filter was chosen because of its superior ability 

to preserve fine structural information by utilizing pixel similarity between non-local areas. The cellular 

structure in the image turns out to be smoothed, and the edges have been blurred when using the NLM 

denoising method. To overcome this challenge, this study proposes weighted factor-based non-local means 

(WF+NLM) enhancements in terms of intensity-spatial properties, effectively addressing issues such as color 

inconsistency and structural distortion. 

The proposed denoising filter successfully reduces noise while maintaining the characteristics and 

general composition of the image. The paper has the following organizational structure: section 2 contains a 

summary of relevant research. A detailed explanation of the proposed WF+NLM filter is provided in  

section 3. The experimental results, obstacles, and benefits of the proposed denoising filter are provided in 

section 4, followed by a summary presented at the end of section 5. 

 

 

2. RELATED WORK 

Researchers have several conventional denoising approaches to enhance image quality.  

Guan et al. [9] suggested a hybrid image denoising approach that successfully resolves noise distortions by 

applying local thresholding to differentiate between salt-and-pepper and Gaussian pixels. The mean and 

median filtering algorithms were employed to denoise the affected pixels. The NLM filter was used because 

it successfully decreased Gaussian noise while maintaining fine features. Several modifications of the NLM 

approach have been developed to establish a suitable equilibrium between feature retention and noise 

reduction [10]. Li et al. [11] improved the NLM denoising algorithm by developing the adaptive nonlocal 

means (ANLM) technique, which modifies denoising intensity locally by employing a noise map. General 

non-local denoising model based on multi-kernel-induced measures (GNLMKIM) is an NLM model that was 

developed by Sun et al. [12] using multi-kernel-induced measures. While NLM-based algorithms excel at 

removing Gaussian noise, they have longer computation durations and higher resource utilization, which can 

result in obstructive artifacts and image blurring. Wang et al. [13] integrated fuzzy membership values with 

the NLM filter to develop the fuzzy decision non-local means (FDNLM) approach, which combines the 

benefits of fuzzy decision filters with edge preservation and noise reduction. Chen et al. [14] suggested a 

quaternion-based NLM filter for color image denoising, with applications focused mainly on medical data. 

NLM and the bidirectional filter improved non-local means (INLM) were integrated by Wang et al. [15] to 

improve NLM filters for color images. Liu and Zhang [16] proposed a denoising approach wavelet-based 

non-local moment mean (W-NMM) that combines wavelet transform with non-local moment mean (NMM) 

filtering. To improve noise reduction, the method starts with a wavelet-based soft technique and then adds 

NMM. 

Deep learning advancements have enhanced the performance of image-denoising algorithms. A 

CNN-based denoising technique for low-dose “CT” was studied by Usui et al. [17] to determine its "dose-

dependent properties”. An enhanced method known as denoising convolutional neural networks (DNCNN) 

was presented by Wang et al. [18]. It effectively denoises images by “sub-region processing and transfer 

learning”. The stacked convolutional autoencoder (SCAE) technique is used in Ahmed et al. [19] innovative 

denoising system for medical pictures. CNNs and autoencoders are combined in a medical image-denoising 

style developed by Sudha et al. [20]. Solovyeva and Abdullah [21] used a “dual autoencoder with separable 

convolutional layers for image denoising and deblurring”. Conventional denoising techniques, such as 

median filtering, frequently result in image blurring, which limits their applicability to finely detailed color 

images. Sahu et al. [22] proposed the “dual convolutional medical image-enhanced denoising network 

(DCMIEDN)” based on the DudeNet model. Deep learning-based denoising is limited by its reliance on big, 

high-quality datasets, inadequate numbers of real noisy images, unsupervised challenges in the absence of 

clean references, cost of computation, and weak preservation of fine diagnostic detail. To address these 

problems, this study proposes an improved filtering technique which utilizes an NLM filter with modified 

weight calculations for efficient color image denoising. 
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3. METHOD 

3.1.  Conventional non-local mean filter 

The NLM filter was developed by Buades et al. [8] to minimize noise in the images by assigning 

weights based on the correlation between the central area patches and the neighboring patches in a specific 

search window. The color image is described as 𝑅𝐺𝐵𝑗 , which consists of an array of weight (w) and height 

(h) in the format of w×h×3. Each pixel intensity is described as a three-component vector of integers with 

values ranging from 0 to 255, where n indicates the method's three-color channels. 
 

𝐼(𝑑) =
1

𝑍(𝑑)
∑ 𝑤(𝑎, 𝑏) ∗ 𝐼(𝑑)𝑠𝜖𝛺  (1) 

 

𝑍(𝑑) = ∑ 𝑤(𝑎, 𝑏)𝑠𝜖𝛺  (2) 
 

𝑤(𝑎, 𝑏)𝑒𝑥𝑝 (−
(||𝑓(𝑎) − 𝑓(𝑏)||2

2ℎ2 ) (3) 

 

The NLM filter is expressed mathematically using (1) to (3). In (1) computes the filtered pixel 

intensity I(d) at location d using a weighted average of intensities in the neighborhood Ω. In (2) specifies Z(d), 

a normalization factor that ensures the weights are scaled properly. In (3) calculates the weight w(a,b) as an 

exponential function of the squared Euclidean distance between feature vectors f(a) and f(b) divided by 2ℎ2, 

where h is the filtering parameter. The weight decreases significantly as the dissimilarity between patches 

increases. This approach effectively denoises by comparing the similarities between a target patch and nearby 

patches in a search window. However, the computational cost of processing multi-channel (color) images 

remains significant due to their higher dimensionality. Furthermore, illumination variations and smooth color 

gradients frequently result in incorrect weight estimation, resulting in poor denoising performance. 

Additionally, the NLM filter is unable to handle spatially non-uniform noise, which can occasionally result in 

the removal of crucial structural elements like cell borders. Figure 1 illustrates the NLM filter's denoising 

capabilities on a blood smear image. Figure 1(a) exhibits the original image, whereas Figure 1(b) demonstrates 

effective noise removal; however, the structure and boundaries become smoothened. 
 

 

  
(a) (b) 

 

Figure 1. NLM filter performance on blood smear image; (a) source image and (b) denoised image 

 

 

3.2.  Proposed weight factor non-local mean filter 

The proposed WF+NLM filter addresses the shortcomings of traditional NLM denoising techniques 

by including an additional weight factor that captures spatial and intensity variations. The weight factor 

w1(p,q) is used to improve the similarity measurement by accounting for pixel intensity variance within local 

patches, as shown in (4). This weight term is computed by taking the squared Euclidean distance between the 

intensities of two patches: the central patch (I(p,q)) and the adjacent patch (I(m,n)) and it is represented 

mathematically by (5). The squared intensity difference between two image patches, represented as  

||I(m,n)-I(p,q)||2, is calculated by adding the squared intensity differences between corresponding pixels (i,j) 

in patches P and Q with centers at (m,n) and (p,q), respectively. The lower the value, the more similar the 

patches are in intensity; the higher the value, the more dissimilar. The F (⋅) function converts squared 

Euclidean distance to a weighting metric that prioritizes pixel intensity changes. The extra component is 

combined with the standard NLM weight function to form a hybrid weight, as shown in (6). 
 

𝑤1(𝑝, 𝑞)  =  𝐹(||𝐼(𝑚, 𝑛) − 𝐼(𝑝, 𝑞)||2) (4) 
 

||I(m, n) − I(p, q)||2 = ∑ [IP(i, j) − IQ(i, j)]
2

i,j
 (5) 

 

𝑤(𝑎, 𝑏) =  exp (−
(||𝑓(𝑎) − 𝑓(𝑏)||2

2ℎ2 )  𝑤1(𝑝, 𝑞) (6) 
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The weighted composite method combines spatial proximity and photometric dissimilarity. The 

exponential term calculates patch similarity using a Gaussian kernel, with w1(p,q) determining the weight 

based on pixel intensity gradients. This method is more effective at noise reduction and edge preservation, 

especially for images with strong boundaries or varying lighting. With the weight factor w1 for intensity 

similarity and the exponential factor for spatial weight, the proposed WF+NLM filter illustrates the 

significance of pixels adjacent to each other and having close spatial weights comparable in intensity. 

Algorithm 1 explains the entire denoising procedure step by step, from patch extraction to weight 

computation and normalization. Denoising was tested on colored images with a 3×3 patch size and search 

window size. These small sizes maintain computational efficiency while preserving structural details. The 

filtering parameter h was configured to 0.1 because it generates beneficial smoothing without excessive 

blurring while removing noise. The proposed method is not dependent on any specific dataset but is tested on 

images with varying lighting conditions to ensure generalizability. Selecting σ=0.1 aligns with previous 

research indicating that Gaussian-like noise patterns perform best when suppressed while retaining texture 

and edges. Experimentation with color images under changing illumination confirms the method's robustness 

and efficacy in maintaining sharpness and reducing noise. 

 

Algorithm 1: Proposed WF+NLM filter for color image 

Input: Image I, patch Size =3, Search window size =3, Filter parameter h= 0.1 

For each pixel (a, b) in image I: 

 Define a patch P centered at (a, b) with size patch Size  

 Initialize total Weight = 0 

 Initial Weighted Sum = 0  

 For each pixel (m, n) in the search window around (a, b): 

 Defining a patch Q centered at (m, n) with size patch Size 

 Use (3) to Calculate feature similarity f(a) and f(b) 

 Calculate squared Euclidean distance ||f(a) - f(b)||^2 

 Use (4) to Calculate w1(p, q)  

 Using (6) to Calculate w (a, b) using w1 and feature similarity: 

 Update weightedSum += w * I (m, n) 

 Update totalWeight += w 

 Use equation (1) to Calculate normalized denoised intensity at (a, b): 

 Output: Denoised image 𝐼 

 

 

4. EXPERIMENTAL ANALYSIS 

This study compares the WF+NLM filter's performance to existing methods in denoising color 

medical images, using both qualitative and quantitative analysis. 

 

4.1.  Dataset description 

This study makes use of several types of different medical image databases. Images of sickle cell 

peripheral blood smears were obtained from the ErythrocytesIDB1 database [23] with a Leica microscope at 

100x magnification and resized to 256×256 pixels for analysis. Additional images for testing the WF+NLM 

filter were obtained from Kaggle, such as the BreaKHis database [24], which contains breast cancer 

histopathological images of 700×460 pixels and 400x magnification, frequently with Gaussian noise. Body 

cavity fluid cytology images [25] 256×192 pixels, 40x magnification have been affected by Gaussian and 

speckle noise. Grayscale images of the Breast Ultrasound Dataset [26] (449×598 pixels) and the Large 

COVID-19 CT scan slice dataset [27] 512×512 pixels, both with Gaussian and Poisson noise, were also used 

to evaluate denoising. 

 

4.2.  Quality assessment techniques 

The quantitative evaluation was performed to evaluate the proposed denoising filter with existing 

methods. This evaluation consisted of metrics such as mean squared error (MSE), peak signal-to-noise ratio 

(PSNR), and normalized mean square error (NMSE), which are denoted by (7) to (9), respectively. Visual 

examination and analysis of structural variations were used to determine the overall similarity between the 

two images. The multi-scale structure similarity index method (MS-SSIM), gradient-based structure 

similarity index method (GSSIM), and feature similarity index matrix (FSIM) were used in this analysis of 

the structure similarity of the denoised images. In (10) to (13) [28]–[31] were applied to examine the image 

boundary features and structure, providing essential information and distinctive features of the denoised 

images. 
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𝑃𝑆𝑁𝑅 =
3∗2552

1

𝑋𝑌
∑ ∑ [𝑎̂(𝑝,𝑞)−𝑎(𝑝,𝑞)]2𝑌

𝑞=1
𝑋
𝑝=0

  (7) 

 

𝑀𝑆𝐸 =  
1

3𝑋𝑌
∑ ∑ [𝑎̂(𝑝, 𝑞) − 𝑎(𝑝, 𝑞)]2 𝑌

𝑖=1
𝑋
𝑗=0  (8) 

 

𝑁𝑀𝑆𝐸 =  
 ∑ ∑ [𝑎̂(𝑝,𝑞)−𝑎(𝑝,𝑞)]2𝑌

𝑞=1
𝑋
𝑝=0  

∑ ∑ [𝑎(𝑝,𝑞)]2𝑌
𝑞=1

𝑋
𝑝=0

  (9) 

 

𝑆𝑆𝐼𝑀(𝑖, 𝑗) =
(2𝜇𝑖𝜇𝑗+𝐶1)(2𝜎𝑖𝑗+𝐶2)

(𝜇𝑖
2+𝜇𝑗

2+𝐶1)(𝜎𝑖
2+𝜎𝑗

2+𝐶2)
 (10) 

 

𝑀𝑆 − 𝑆𝑆𝐼𝑀(𝑖, 𝑗) = 𝑙𝑋(𝑖, 𝑗) ⋅ ∏ 𝐶𝑥(𝑖, 𝑗)𝑆𝑥(𝑖, 𝑗) 𝑋
𝑥=1  (11) 

 

𝐺𝑆𝑆𝐼𝑀(𝑖, 𝑗) =
(2𝜇𝑖𝜇𝑗+𝐶1)(2𝜎𝑖,𝑗,+𝐶2)

(𝜇𝑖
2+𝜇𝑗

2+𝐶1)(𝜎𝑖,
2+𝜎𝑗,

2+𝐶2)
 (12) 

 

𝐹𝑆𝐼𝑀 (𝑆𝑀(𝑎)) = [𝑆𝑃𝐶 (𝑎)]𝛼 ⋅ [𝑆𝐺(𝑎)]𝛽 (13) 

 

The significant components of an image analysis process are detailed by (7) to (13). In these equations, 

the variables (i,j) define the positions of an image, a(p,q) represent the original images, and 𝑎̂(p,q) represent 

the filtered image. Besides, 𝜎𝑖
2 and 𝜎𝑗

2 denote the variances of i and j and the correlation coefficient of their 

covariance. Constants C1 and C2 are essential for reducing computational uncertainty once the denominator 

approaches zero. The two images are compared and determined by i and j using gradient-based distinction 

comparison maps. MS-SSIM denotes the original image as l and the scaling aspect as M. For the eth scale 

𝐶𝑖(𝑖, 𝑗) and 𝑆𝑖(𝑖, 𝑗) represents the contrast and structure findings at different levels. The notation 𝑙𝑝(𝑖, 𝑗) 

represents the brightness correlation in scale M. The FSIM method identifies peculiar phase congruency (PC) 

and gradient magnitude (G) requirements. The structural similarity index is employed in the range [0, 1], 

with higher standards indicating more significant image quality. The proposed approach reduces aberrations 

in blood smear color images, resulting in better outcomes. The WF+NLM denoising method is examined in 

decreasing noise and obtaining cell structure and color features. Using established techniques like NLM [8], 

ANLM [11], FDNLM [13], INLM [15], and W-NMM [16], the algorithm efficiency is evaluated. 

 

4.3.  Qualitative analysis 

The qualitative performance of various denoising techniques was tested on three types of medical 

images blood smears, cytology, and histopathology—using six filtering techniques: NLM, ANLM, FDNLM, 

INLM, WNMM, and the WF+NLM filter proposed in this paper. The denoised images are presented in  

Table 1. The WF+NLM filter outperformed the others as a denoiser, effectively removing noise while 

preserving important cellular architecture and color integrity. 
 

 

Table 1. Denoising comparison of different denoising methods on cytology and histopathology with NLM, 

ANLM, FDNLM, INLM, WNMM, and proposed method 
Source image NLM ANLM FDNLM INLM WNMM WF+NLM 
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However, only the WF+NLM filter consistently maintained clear cellular edges and accurate 

chromatic representation. The NLM filter reduced noise sparsely, but it sacrificed edge sharpness and 

chromatic details. ANLM reduced speckle noise but increased color distribution and over-smoothing. 

FDNLM improved color accuracy but resulted in blurred cellular edges. In contrast, WNMM was unable to 

eliminate any remaining noise and resulted in membrane distortion, while INLM produced excessive 

structural smoothing. WF+NLM, on the other hand, successfully restored erythrocyte morphology while 

preserving membrane definition and cell coloration. Traditional denoising techniques were tested in the 

second row using cytology images with complex cellular morphology and fine granularity. NLM reduced 

noise but improved cytoplasmic texture. ANLM maintained spatial information at the expense of color 

integrity. FDNLM balanced noise reduction and structure preservation, but micron-scale features were 

blurred. INLM softened the edges, while WNMM added the remaining patchy noise. The WF+NLM filter, 

on the other hand, successfully combined spatial and intensity information, improving subcellular detail and 

membrane definition, thereby increasing nucleocytoplasmic contrast without causing artifacts. 

In the third row, histopathology images revealed intricate tissue structures and stain heterogeneity, 

necessitating advanced denoising. Conventional filters such as NLM and FDNLM removed background 

noise while uniformly distributing stain intensities. ANLM introduced uneven artifacts, whereas INLM 

excessively blurred tissue boundaries. WNMM was ineffective in noise reduction. Conversely, the WF+NLM 

filter performed better by retaining significant stain gradients, improving tissue interface delineation, and 

establishing structural preservation across both homogeneous stromal and heterogeneous glandular areas 

without compromising diagnostic accuracy. A qualitative examination of the denoised grayscale images from 

Table 2 demonstrates that the WF+NLM filter proposed in the paper produces visually superior results than 

conventional approaches. WF+NLM can effectively suppress both Gaussian and Poisson noise in ultrasound 

and CT scan images while preserving essential anatomical structures and edge definitions. Conventional 

filters, such as NLM, ANLM, and INLM, smooth fine details while leaving residual noise artifacts behind. 

FDNLM retains structure moderately but at the expense of clarity, whereas WNMM does not effectively 

mask noise. The WF+NLM filter preserves textural detail and tissue boundary coherence in grayscale 

medical imaging, enhancing visual interpretability and diagnostic value. 

 

 

Table 2. Comparison of denoising methods on ultrasound and CT scan with NLM, ANLM, FDNLM, INLM, 

WNMM, and proposed method WF+NLM 
Source image NLM ANLM FDNLM INLM WNMM WF+NLM 

       

       

 

 

4.4.  Quantitative analysis 

The quantitative assessment across three microscopy modalities reveals that the proposed WF+NLM 

filter has a better denoising ability. For blood smear images, see Table 3, WF+NLM achieved a PSNR of 

39.69 dB, which was more than 7 dB higher than conventional NLM (32.46 dB) and ANLM (32.04 dB). It 

reduced MSE to 4.74 and NMSE to 0.00018, while NLM increased to 13.02 and 0.00051, respectively. 

Structural similarity measures increased significantly, with SSIM at 0.9551, MS-SSIM at 0.9422, and 

GSSIM at 0.9889, indicating improved edge and texture preservation. In images of cavity fluid cytology, see 

Table 4, WF+NLM produced PSNR of 41.68 dB, which was higher than NLM's 38.46 dB, with MSE down 

to 20.99 from 23.91 and NMSE down to 0.00051 from 0.00058. The proposed WF+NLM filter has better 

denoising capability, as evidenced by the quantitative assessment across three microscopy modalities. 
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WF+NLM achieved a PSNR of 39.69 dB in blood smear images, see Table 3, more than 7 dB higher than 

conventional NLM (32.46 dB) and ANLM (32.04 dB). 

 

 

Table 3. Denoising performance comparison of blood smear images with NLM, ANLM, FDNLM, INLM, 

WNMM, and proposed filter WF+NLM 
Filter methods PSNR MSE NMSE SSIM MS-SSIM GSSIM FSIM 

NLM [8] 32.4609 13.0162 0.00051 0.9228 0.8903 0.9324 0.9074 
ANLM [11] 32.0414 30.5319 0.0012 0.8847 0.8192 0.7444 0.8096 

FDNLM [13] 32.7631 14.8113 0.00059 0.9214 0.8884 0.9049 0.8982 

INLM [15] 31.0639 38.9835 0.00155 0.8652 0.7966 0.6924 0.8118 
WNMM [16] 22.0186 480.696 0.01916 0.4155 0.0351 -0.0102 0.4140 

WF+NLM 39.6904 4.7432 0.00018 0.9551 0.9422 0.9889 0.9430 

 

 

Table 4. Denoising performance comparison for cavity fluid cytology images with NLM, ANLM, FDNLM, 

INLM, WNMM, and proposed filter WF+NLM 
Existing methods PSNR MSE NMSE SSIM MS-SSIM GSSIM FSIM 

NLM [8] 37.8133 10.3586 0.00034 0.9407 0.9060 0.9318 0.9167 

ANLM [11] 38.0245 11.6255 0.00038 0.9462 0.9206 0.9231 0.9270 
FDNLM [13] 38.2108 9.9862 0.00033 0.9505 0.9322 0.9565 0.9434 

INLM [15] 36.2182 17.0770 0.00056 0.9264 0.8862 0.8555 0.9009 

WNMM [16] 22.7609 390.2984 0.0129 0.4979 0.1007 0.1377 0.4979 
WF+NLM 41.0948 6.3425 0.00034 0.9682 0.9548 0.9728 0.9583 

 

 

In contrast to NLM's 13.02 and 0.00051, respectively, it reduced MSE to 4.74 and NMSE to 

0.00018. The structural similarity index scores were significantly higher, with SSIM 0.9551, MS-SSIM 

0.9422, and GSSIM 0.9889, indicating better edge and texture preservation. Table 4 demonstrates that the 

WF+NLM technique denoised cavity fluid cytology images more effectively than traditional filters, with a 

maximum PSNR of 41.09 dB, a reduced MSE of 6.34, and an increased structural similarity index of 0.9682. 

The findings of histopathological pictures displayed in Table 5 indicate that the WF+NLM achieved a PSNR 

of 41.68 dB, exceeding NLM's 38.46 dB, with MSE decreasing to 20.99 from 23.91 and NMSE decreasing to 

0.00051 from 0.00058. 

 

 

Table 5. Denoising performance comparison for histopathology images with NLM, ANLM, FDNLM, INLM, 

WNMM, and proposed filter WF+NLM 
Existing methods PSNR MSE NMSE SSIM MS-SSIM GSSIM FSIM 

NLM [8] 38.4627 23.9072 0.00058 0.9575 0.9325 0.9906 0.9542 

ANLM [11] 34.2336 35.2182 0.00086 0.9443 0.9145 0.9675 0.9281 
FDNLM [13] 36.2685 27.5218 0.00067 0.9443 0.9475 0.9853 0.9578 

INLM [15] 29.7679 84.5754 0.00208 0.9143 0.8719 0.8986 0.9024 
WNMM [16] 15.3447 2117.776 0.0521 0.3960 0.0414 0.0363 0.3959 

WF+NLM 41.6788 20.9883 0.00051 0.9832 0.9357 0.9954 0.9816 

 

 

Tables 6 and 7 show quantitative evaluations of grayscale breast cancer ultrasound and COVID-19 

CT images, demonstrating the WF+NLM filter's more accurate denoising performance. In ultrasound images, 

WF+NLM obtained a maximum PSNR of 42.97 dB, compared to 40.87 dB for NLM and 40.88 dB for 

FDNLM, minimizing MSE to 3.27 and NMSE to 0.00018. The structural similarity indices are SSIM 0.9787, 

MS-SSIM 0.9658, and GSSIM 0.9709, indicating superior texture and boundary preservation. In grayscale 

COVID-19 CT images, WF+NLM achieved 40.87 dB PSNR, exceeding NLM's 39.41 dB and FDNLM's 

36.39 dB, with an MSE of 5.32 and an NMSE of 0.00025. SSIM improved to 0.9515, MS-SSIM to 0.9333, 

and GSSIM to 0.9915, ensuring effective noise removal while preserving important anatomical details. 

Compared to traditional methods, WF+NLM provided reliable edge preservation, noise reduction, and 

structural robustness. 
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Table 6. Denoising performance comparison of breast cancer ultrasound images with NLM, ANLM, 

FDNLM, INLM, WNMM and proposed filter WF+NLM 
Filter methods PSNR MSE NMSE SSIM MS-SSIM GSSIM FSIM 

NLM [8] 40.8763 5.3271 0.0003 0.9658 0.9421 0.9519 0.9550 
ANLM [11] 37.4221 11.7724 0.00066 0.9410 0.9020 0.9452 0.9005 

FDNLM [13] 40.8809 5.3291 0.00030 0.9787 0.9590 0.9771 0.9595 

INLM [15] 33.7214 27.6017 0.00155 0.8894 0.8203 0.8613 0.8343 
WNMM [16] 20.2277 617.0371 0.03475 0.2687 0.0215 0.0826 0.2685 

WF+NLM 42.9726 3.2795 0.00018 0.9787 0.9658 0.9709 0.9695 

 

 

Table 7. Denoising performance comparison of COVID-19 CT scan images with NLM, ANLM, FDNLM, 

INLM, WNMM and proposed filter WF+NLM 
Filter methods PSNR MSE NMSE SSIM MS-SSIM GSSIM FSIM 

NLM [8] 39.4084 7.4357 0.00035 0.9413 0.9185 0.9889 0.9295 

ANLM [11] 34.1524 24.9941 0.00118 0.8825 0.8436 0.9549 0.8424 

FDNLM [13] 36.3922 14.9251 0.00070 0.9207 0.8996 0.9781 0.9024 

INLM [15] 28.0071 102.889 0.00489 0.8085 0.7409 0.8185 0.7549 

WNMM [16] 15.8933 1673.96 0.07956 0.3935 0.0608 0.0055 0.3934 
WF+NLM 40.8687 5.3235 0.00025 0.9515 0.9333 0.9915 0.9411 

 

 

4.5.  Statistical evaluation of denoising performance 

The performance comparison of the proposed WF+NLM filter and other denoising methods NLM, 

ANLM, FDNLM, INLM, and WNMM is statistically evaluated through four image quality measures SSIM, 

MS-SSIM, GSIM, and FSIM in Table 8. A one-tailed paired t-test was employed to compare the performance 

improvement of the proposed denoising filters over the conventional methods assuming normality in the 

differences employing (14). Statistical significance was ascertained at 95% confidence (α=0.05). Results 

indicate that all the proposed filters performed better than conventional methods regarding SSIM. In the 

statistical calculation, D is the difference between any two observations, N is the number of paired observations, 

∑D is the sum of all the differences, and ∑ 𝐷2 is the sum of the square of each difference. For instance, the  

t-value for NLM filter was 5.038318 while the p-value was 0.00365, which represents a notable enhancement. 

Similarly, the ANLM filter showed a t-value of 5.007947 and a p-value of 0.00372, confirming its efficiency. 

 

𝑡 =
(∑𝐷)∕𝑁

√
∑ 𝐷2−(

(∑𝐷)2

𝑁 )

(𝑁−1)(𝑁)

 (14) 

 

 

Table 8. Statistical significance analysis of the proposed WF+NLM filter compared to traditional methods 
Metrics NLM ANLM FDNLM INLM WNMM 

SSIM 5.038318 5.007947 4.896924 5.714129 9.323829 

MS-SSIM 5.087125 4.95939 3.389371 6.244257 52.007462 

GSIM 3.108303 2.268464 2.8102 4.305715 29.942231 
FSIM 4.492921 4.329255 4.181874 5.192905 14.239511 

 

 

The FDNLM filter yielded a t-value of 4.896924 with a p-value of 0.00403, confirming the 

effectiveness of the proposed filters. The INLM filter reported a t-value of 5.714129 and a p-value of 

0.00232, indicating a significant influence. The proposed WF+NLM filter has a higher time complexity than 

NLM and ANLM because it has more processing steps. However, compared to INLM, WNMM, and 

FDNLM filters, it is computationally more efficient. The model was trained on a high-performance setup 

using a Tesla V100 PCIe GPU and CUDA 12.5, with processing times of 12.3 s for NLM, 13.1 s for ANLM, 

18.7 s for WF+NLM, 20.58 s for INLM, 26.1 s for WNMM, and 25.3 s for FDNLM. The WNMM filter had 

the highest statistical significance t-value of 9.323829, and p-value of 0.00037, demonstrating the proposed 

method's excellent performance. These findings support the effectiveness of the proposed denoising 

techniques in significantly improving image quality when compared to conventional methods. 

The integrated NLM filter, which combines spatial and intensity weight elements, enables improved 

denoising performance. The proposed weight factor 𝑤1(𝑝, 𝑞) prioritizes preserving pixel intensity changes, 

significantly facilitating decreased noise while preserving visual details, especially in regions with sharp 

intensity transitions. Employing the squared Euclidean distance for pixel intensity similarity, the proposed 
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weight calculation approach reliably enhances denoising across different images. Multiplying spatial weight 

w(a,b) by intensity weight 𝑤1(𝑝, 𝑞) magnifies the effect of similar patches, accentuating edges, decreasing 

blurring, and improving overall image quality. The outcomes of evaluating color and grayscale images 

demonstrate that NLM, ANLM, and FDNLM techniques effectively reduce noise. However, they have 

restrictions in maintaining cell structure and borders in cytology, histopathology, ultrasound, and CT scan 

images. The WNMM approach must provide more outcomes for color and grayscale images, while INLM 

filters perform efficiently for histopathology images. The proposed WF+NLM denoising filter performs more 

effectively than conventional algorithms on different types of images. 

 

 

5. CONCLUSION 

The WF+NLM filter outperforms traditional denoising techniques, particularly color image 

denoising, by adding an extra weight component to effectively manage spatial variation and pixel value 

variation. The filter makes significant improvements in both color and grayscale medical images, with color 

image PSNR values ranging from 2 to 6 dB and structural similarity (SSIM) improving by 2 to 4 points. For 

grayscale images, PSNR scores rise by 2 dB, while SSIM increases by 2 to 3 points. These findings 

demonstrate the WF+NLM filter's superiority in preserving critical image features, making it an effective tool 

for image segmentation and classification. Statistical analysis also validates its performance, with the 

WF+NLM filter outperforming traditional methods, as evidenced by significant SSIM, MS-SSIM, GSIM, 

and FSIM improvements. The WNMM filter had the highest statistical significance, with a t-value of 

9.323829 and a p-value of 0.00037. Future work will focus on increasing the computational efficiency of this 

method in order to further reduce processing time. 
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