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 The development of a wearable sensor device integrated into the internet of 

things (IoT) infrastructure is presented, with functionality aimed at 

continuous measurement of the user's physiological parameters and their 

intelligent processing for real-time stress level assessment. The system 

enables continuous monitoring of physiological parameters, allowing early 

detection of stress signals and supporting adaptive behavioral responses. The 

hardware platform is designed to consolidate various biomedical sensors, 

enabling continuous acquisition and intelligent processing of physiological 

data in real time. During testing, heart rate (HR) ranged from 68 to 89 beats 

per minute (bpm), respiratory rate varied from 11 to 15 breaths per minute, 

and skin conductivity ranged from 63 to 77 µS. Acquired physiological data 

were uploaded to a cloud-based infrastructure to enable advanced processing 

and analysis. The system achieved an overall stress detection accuracy of 

87%, and signal stability remained high even under changing conditions. 

The proposed wearable solution demonstrates strong potential for use in 

healthcare, education, and occupational environments. It also offers 

scalability through the integration of intelligent algorithms and additional 

sensor modules. 

Keywords: 

Healthcare 

Heart rate 

Internet of things 

Respiration rate 

Sensors 

Sustainable development 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Gulnur Tyulepberdinova 

Department of Artificial Intelligence and Big Data, Al-Farabi Kazakh National University 

Almaty, Kazakhstan 

Email: tyulepberdinova@gmail.com 

 

 

1. INTRODUCTION 

With the rapid advancement of digital technologies and the increasing demands of modern life, the 

issue of chronic stress is becoming ever more pressing. Prolonged exposure to stress has a detrimental impact 

on human health, increasing the risk of cardiovascular diseases, depressive disorders, anxiety, and cognitive 

decline. As a result, there is a growing need for modern solutions that enable continuous monitoring and 

effective management of stress levels in everyday life. Contemporary wearable devices and internet of things 

(IoT) technologies present vast opportunities for the development of intelligent systems that can track the 

physiological state of the human body in real-time. The integration of sensor components, physiological data 

processing algorithms, and wireless communication technologies enables the creation of personalized 

solutions for early stress detection and timely feedback to the user. According to Taskasaplidis et al. [1], it is 

noted that stress significantly affects human health and productivity. Modern wearable sensors enable non-

invasive monitoring of stress in daily life. The article reviews detection methods and technologies and 

outlines prospects for further research. The article [2] discusses allostatic load, the long-term wear on the 
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body caused by chronic stress responses. While allostasis helps maintain stability through change, prolonged 

activation of physiological systems such as the hypothalamic pituitary adrenal (HPA) axis and autonomic 

nervous system can harm overall health. In the study [3], it is shown that chronic exposure to stress hormones 

at different life stages affects brain structures related to cognition and mental health. The specific effects 

depend on the timing and duration of exposure, as well as genetic factors and environmental conditions. 

Stressors are recognized as key factors influencing human mood, behavior, and overall health [4]. Acute 

stress can be adaptive in healthy individuals, whereas prolonged or repeated exposure contributes to adverse 

health outcomes, with the effects shaped by genetic predisposition, coping mechanisms, and psychosocial 

resources. The article examines theoretical and empirical approaches to studying chronic stress through the 

allostatic load model [5]. In addition, it analyzes risk and protective factors and proposes strategies that 

contribute to successful aging. In article [6], the trier social stress test (TSST) is presented as an effective 

method for modeling psychological stress, inducing pronounced hormonal and physiological changes, 

including elevated cortisol levels and increased heart rate (HR). The findings demonstrate the influence of 

sex, genetics, and nicotine consumption on stress resilience, making this test a valuable tool for 

psychobiological research. 

In study [7], the TSST is presented as a validated tool for modeling acute stress under experimental 

conditions. It has revealed biological, genetic, and age-related differences in stress responses and remains the 

gold standard for investigating acute stress in humans. In article [8], an overview of the effects of various 

methods on stress responses (cortisol levels) is presented, along with a step-by-step guide for conducting the 

TSST. This format can serve as a useful resource to enhance the scientific validity of future psychobiological 

stress research. In review [9], conducted using the preferred reporting items for systematic reviews and meta-

analysis (PRISMA) methodology, the application of the TSST protocol was examined and variations across 

studies were identified. Standardization of procedures and reporting is recommended to enhance 

reproducibility and comparability of results. The article [10] summarizes current approaches to assessing 

heart rate variability (HRV) across different time scales and its importance for health and performance. It 

reviews time-domain, frequency-domain, and nonlinear measures, along with published normative values. 

The authors emphasize that HRV indicators depend on measurement context and are not directly 

interchangeable. In study [11], the foundations for standardizing the measurement and interpretation of HRV 

were established. This work, the result of collaboration among leading scientific societies, played a key role 

in advancing its application in both research and clinical practice. 

In article [12], a new wrist-worn sensor was developed for long-term assessment of electrodermal 

activity (EDA) outside the laboratory, demonstrating high correlation with an FDA-approved system under 

various stressors. Electrode material testing confirmed that the distal forearm is a viable alternative to palmar 

sites for EDA measurement. The device enables comfortable long-term monitoring and offers promising 

opportunities for the diagnosis and investigation of psychoneurological conditions. In article [13], an 

approach to developing a personal healthcare system for stress detection using EDA is presented. In a study 

with 33 participants in an office environment, a wearable device was used to differentiate between cognitive 

load and stress induced by time-pressured arithmetic tasks and social-evaluative threat. Data analysis showed 

that EDA peak characteristics reflect stress levels, and classifiers achieved an accuracy of up to 82.8%, 

confirming the feasibility of monitoring stress phases throughout the working day. 

This volume [14] presents updated data on brain imaging methods such as positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI), offering deeper insights into the 

neural mechanisms of EDA. It also summarizes hypotheses that have since been reliably tested. In article 

[15], a high-precision device for measuring EDA with 4 channels and a sampling rate of up to 100,000 

samples per second was developed. It is operated through the AcqKnowledge software, supports data export 

and video synchronization. The device is widely used in clinical practice, neuropsychology, and can also 

function as a 4-channel electroencephalography (EEG) sensor. In study [16], the accuracy of seven 

commercial wrist-worn devices for measuring HR and energy expenditure (EE) was evaluated, and a system 

for their assessment was proposed. Sixty volunteers participated, using the Apple Watch, Basis Peak, Fitbit 

Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2 under various activities. The devices 

measured HR more accurately than EE: the mean HR error during cycling was <5% for six models, while EE 

errors did not exceed 20%. The Apple Watch showed the highest overall accuracy, whereas the Samsung 

Gear S2 was the least accurate. The authors conclude that wearable devices are reliable for HR measurement 

but limited in EE estimation, and they propose reference standards for validating such technologies. 

In article [17], stress-related devices were developed. A total of 1,773 HR measurements  

(49–200 beats per minute (bpm)) were recorded, with 27 data points missing due to technical limitations. 

Compared with ECG, accuracy varied: basis peak tended to overestimate HR during moderate exercise, 

whereas Fitbit Charge underestimated HR at higher intensities. Bland–Altman analysis revealed considerable 

variability during exercise; for the Apple Watch and MioFuse, 95% of differences with ECG were within  

–27 to +29 bpm, for the Fitbit Charge HR within –34 to +39 bpm, and for the basis peak within  
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–39 to +33 bpm. Body mass index, age, and sex did not affect measurement accuracy. In study [18], a  

24-hour evaluation of the accuracy of the Apple Watch 3 and Fitbit Charge 2 was conducted under real-world 

conditions. Both devices demonstrated acceptable HR accuracy but tended to underestimate values and 

showed reduced precision at higher HRs and with unstable wrist movements. While they cannot replace ECG 

as the gold standard, they can serve as a supplement in clinical practice and research, particularly for  

large-scale data analysis. In study [19], the accuracy of the Polar OH1 was evaluated against ECG during 

moderate- and high-intensity exercise, and the feasibility of wearing it on the temple as an alternative to the 

forearm and upper body was examined. Twenty-four participants performed treadmill and cycling exercises 

while HR was recorded simultaneously by ECG and Polar OH1 at three body sites. Data were compared 

using Bland–Altman analysis and intraclass correlation. 

In study [20], the accuracy of the Polar OH1 and Fitbit Charge 3 in measuring HR at rest and during 

different levels of physical activity was evaluated. Twenty adults participated in two trials: the first included 

a sedentary period, cycling on an ergometer, and a treadmill graded exercise test; the second involved short 

sprints on both a cycle ergometer and a non-motorized treadmill. Device data were compared with the 

criterion Polar H10 using Bland–Altman analysis, Pearson’s correlation, and mean absolute percentage error. 

In study [21], a cloud-based vision of global IoT deployment is presented, discussing key technologies and 

application areas, as well as an implementation using Aneka based on the interaction of private and public 

clouds. The importance of converging WSN, the Internet, and distributed computing for future research is 

emphasized. 

In document [22], advancements in IoT-based healthcare are reviewed, covering architectures, 

applications, and industry trends. Security and privacy issues are analyzed, including requirements, threat 

models, and attack taxonomies, with a collaborative security model proposed. The paper discusses the role of 

big data, smart environments, and wearable devices, as well as global eHealth policies. It highlights IoT’s 

contribution to sustainable development and outlines future research directions. In article [23], a wearable 

healthcare system 2.0 is proposed for next-generation medical services. The core component is washable 

smart clothing with embedded sensors and electrodes that collect users’ physiological data, while cloud-

based machine intelligence analyzes their health and emotional status. The article [24] discusses wireless 

sensor network (WSN) technologies as the foundation of ubiquitous healthcare, providing continuous 

monitoring, contextual awareness, and alerts on abnormal conditions. These systems reduce the need for 

caregivers, support chronically ill and elderly individuals, and ensure quality care for children. Several 

modern examples are presented, along with an analysis of key requirements—such as unobtrusiveness, 

scalability, energy efficiency, and security/privacy—highlighting both the benefits and the remaining 

challenges. In article [25], key technologies—sensing, communication, and data analysis—are examined for 

their roles in healthcare, safety, home rehabilitation, treatment evaluation, and early diagnosis. The 

integration of wearable and environmental sensors is also discussed, along with future steps toward clinical 

implementation. In article [26], several low-cost and non-invasive systems for health and physical activity 

monitoring reported in recent years are presented and compared. The paper also reviews textile-based sensors 

with potential applications in wearable systems, the compatibility of different communication technologies, 

and future prospects and research challenges in remote monitoring systems. In article [27], a review of recent 

methods and algorithms for analyzing data from wearable sensors used in physiological monitoring within 

healthcare is presented. The paper discusses key data mining tasks such as anomaly detection, prediction, and 

decision support, with a focus on continuous time-series analysis. It also examines the suitability of specific 

machine learning (ML) techniques, reviews properties of datasets used for experimental validation, and 

identifies major challenges in applying these methods to health monitoring systems. In article [28], recent big 

data applications using physiological signals to support medical decision-making in both clinical and home 

settings are reviewed. The focus is on systems designed for continuous monitoring of patients in intensive 

care units, with a discussion of the challenges that must be addressed for clinical implementation. Once 

resolved, these systems have the potential to transform healthcare management in future hospitals. In article 

[29], a review of data fusion methods and algorithms for interpreting wearable sensor data in health 

monitoring applications is presented. The paper discusses applications in healthcare, including physical 

activity monitoring, ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. It also 

provides an overview of commercially available sensors with a focus on their capabilities and highlights gaps 

that must be addressed to bring research to market. In article [30], portable biosensors were evaluated for 

monitoring physiological changes and health status. The findings show their potential for detecting early 

disease markers, circadian variations, and insulin sensitivity differences, highlighting their role in improving 

health monitoring and accessibility of medical care. In study [31], wearable and stress affect detection 

(WESAD) is introduced as a multimodal dataset for stress and emotion recognition using wearable devices. It 

includes data from 15 participants and achieves up to 93% accuracy in stress classification. In article [32], the 

cStress model is presented, developed through all stages of computational modeling, from data collection and 
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preprocessing to training. The model was trained on laboratory data from 21 participants and validated on 

two independent datasets with 26 and 20 participants. It achieved 89% recall with 5% false positives in the 

lab and up to 72% accuracy in field studies. In study [33], recent works on stress detection in daily life using 

smartphones and wearable devices are reviewed. Unlike the numerous laboratory studies, such research is 

limited, and the studies are categorized by physiological methods and target environments such as office, 

campus, vehicle, and everyday settings. The paper also discusses promising approaches, mitigation strategies, 

and research challenges. In study [34], a context-based stress detection method was developed to enable 

continuous and unobtrusive monitoring in real life. The approach combines a laboratory-trained stress 

detector, an activity recognizer, and context-dependent analysis to make final decisions every 20 minutes. 

Experiments on 55 days of real-life data showed 70% recall of stress events with 95% precision. 

The objective of this research is to develop a wearable device integrated with IoT technology for 

measuring stress levels. 

 

 

2. METHOD 

Real-time monitoring and management systems (RPMS) play a vital role in medical monitoring and 

patient health management. Obtaining accurate and reliable patient data requires the use of sensors that meet 

medical standards and provide both precision and stability. Such sensors must be capable of detecting subtle 

physiological changes while reducing the likelihood of false readings. Common examples in medical practice 

include HR monitors, blood pressure sensors, glucose meters, and accelerometers for tracking physical 

activity [35]. 

 

2.1.  Research methodology 

An IoT-based stress monitoring system was developed in this study using a wearable device 

equipped with nine embedded sensors, including photoplethysmogram (PPG), galvanic skin response (GSR), 

EEG, electrocardiogram (ECG), electromyogram (EMG), temperature, pressure, HR, and glucose sensors. 

The core control unit of the device is a microcontroller based on an field-programmable gate array (FPGA) 

platform.  

In this approach, physiological signals such as HRV, skin conductance, and respiration rate are not 

only processed and transmitted to the cloud for advanced analysis but also enhanced through integrated noise 

suppression and ambient light compensation mechanisms of the MAX30102 sensor, which significantly 

improves the reliability of stress detection in real-world conditions. 

We employ a wrist-worn multimodal setup (PPG MAX30102, ECG, GSR, skin temperature, and  

3-axis IMU). Signals undergo band-pass filtering and detrending, motion-artifact reduction using IMU 

references, and per-subject z-score normalization. Features include HR/PR, HRV/PRV (RMSSD, SDNN, and 

pNN50), LF/HF, dPPG, GSR tonic/phasic indices (SCR count/amplitude), short-term skin-temperature trend, 

and activity cues. Stress is predicted by a Random Forest with mRMR feature selection and class-balance 

handling (logistic/SVM as baselines; LOSO cross-validation). Full step-by-step settings and ablations are 

provided in results and discussion to avoid redundancy. 

The system utilized multiple ML algorithms to classify physiological data. Among them, the 

random forest method demonstrated the highest classification accuracy, outperforming other models in both 

precision and consistency. To improve hyperparameters CCC and γ\gammaγ were optimized using a grid 

search approach. The evaluation of each model included two key performance metrics: overall classification 

accuracy and resistance to signal noise. Final results were visualized through a custom-developed web 

application built on the Firebase platform, which enabled real-time data acquisition, monitoring, and 

interactive graphical representation of stress-related parameters. 

The innovative aspect of this research lies in creating and deploying a wearable biomedical system 

architecture based on FPGA technology, enabling real-time parallel processing of data from a multi-sensor 

module. In contrast to conventional systems that predominantly depend on microcontroller-based data 

acquisition with limited computational resources, the proposed wearable solution is built on a programmable 

logic platform, offering significant architectural and functional advantages. This platform enables high-speed, 

hardware-level preprocessing of physiological signals, ensuring real-time performance with minimal latency. 

It supports energy-efficient operation by optimizing data flow and reducing computational overhead. 

Furthermore, the system integrates data from multiple biosensors—such as PPG, EMG, GSR, temperature, 

and acoustic sensors—to facilitate comprehensive, multifactor analysis of physiological states. A hybrid data 

management framework has been implemented, allowing simultaneous on-device signal visualization and 

storage while also providing remote access through a cloud-based web server and database interface. This 

architecture ensures scalability and enables seamless integration into existing telemedicine ecosystems and 

broader infrastructures. 
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This work proposes a framework for intelligent wearable devices that integrates hardware-based 

processing, adaptive sensor fusion, and secure data communication to enable continuous monitoring and 

early detection of stress-related conditions 

The proposed system provides a novel integration of parallel signal processing and hardware-level 

computation, enabling real-time physiological analysis even under restricted power and resource conditions. 

By aggregating and interpreting multiple biosignals— temperature, and electromyographic activity—it 

ensures a multifactor evaluation of psychophysiological states, thereby enhancing the reliability. This work 

contributes to the advancement of wearable biomedical electronics by shifting the paradigm from  

single-function devices to multifunctional, adaptive platforms capable of personalized health monitoring. 

Furthermore, the system lays the groundwork for future developments in intelligent healthcare technologies, 

including predictive diagnostics, cyber-physical healthcare systems, and artificial intelligence (AI)-driven 

personalized medicine. 

Thus, the proposed solution focuses on energy-efficient and intelligent wearable technologies 

capable of autonomous operation and seamless integration into digital healthcare ecosystems. 

The device is manually activated by the user. Biosignals from the photoplethysmographic (PPG) 

sensor are transmitted to a processing module in real time for feature extraction. The integration of sensors 

within a compact wearable platform allows for the simultaneous monitoring of cardiovascular activity and 

stress-related physiological changes. The PPG sensor illuminates the skin and measures variations in 

reflected light intensity, which correspond to fluctuations in blood volume and oxygen saturation—key 

indicators of circulatory function. In parallel, changes in skin conductance, driven by sympathetic nervous 

system activity and sweat gland response, are also recorded. Under stress conditions, elevated sympathetic 

arousal increases perspiration, resulting in measurable shifts in skin conductivity. By capturing both 

cardiovascular and electrodermal responses, the system provides a comprehensive view of the user’s 

physiological and emotional state (see Figure 1 [36]). 
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Figure 1. Block diagram of the wearable device with IoT integration for real-time stress monitoring 
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Figure 2 shows a wearable device designed for monitoring physiological parameters. It includes an 

ESP32 microcontroller, an OLED display for real-time data visualization, two Li-Po batteries, and a TP4056 

charging module. The device features a GSR sensor (for measuring skin conductance), a PPG sensor (located 

underneath for detecting blood volume), and a DS18B20 temperature sensor. All components are housed in a 

compact enclosure with Velcro straps for easy attachment to the body, and the system is controlled via a  

side-mounted switch. 
 

 

 
 

Figure 2. Design of the wearable device 
 
 

In contemporary wearable technologies, including smartwatches, fitness trackers, and medical 

bands, the MAX30102 and GSR sensors are frequently employed [36]. These sensors make it possible to 

continuously monitor critical physiological parameters such as HR, oxygen saturation, and stress indicators. 

A notable advantage of the MAX30102 is the integration of noise reduction and ambient light compensation, 

which ensures reliable signal acquisition even in dynamic environments, for instance, during physical activity 

or under fluctuating illumination. This characteristic underlines its relevance for both consumer and  

medical-grade devices [37]. Additionally, the sensor can be adapted to different skin tones and environmental 

settings, thereby improving measurement precision across diverse user groups. When combined with GSR 

technology, its incorporation into IoT-based platforms offers the potential for real-time physiological 

monitoring and cloud-supported data analytics [31]. 

Stress and respiration are closely related, as breathing typically accelerates during stressful 

situations to support circulation. This effect can worsen respiratory conditions such as asthma or emphysema. 

Increased sympathetic nervous system activity also enhances sweat gland function, leading to higher skin 

conductance. Figure 3 illustrates the relationship between respiration and conductance. 
 
 

 

 

Figure 3. A wearable device attached to the subject's forearm with a strap 
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Figure 3 illustrates a wearable device fastened to the subject's forearm with a strap. The device is 

connected to sensors attached to the fingers, such as PPG or GSR sensors. The connecting cables link the 

sensors to the main unit, which, equipped with a display, supports the collection, visualization, and 

potentially the transmission of physiological data. This type of device is employed to monitor stress-related 

parameters and cardiovascular activity. Stress can temporarily increase both HR and blood pressure, and 

sustained hypertension elevates the risk of heart attacks by damaging arteries and promoting blood clot 

formation. 

To accurately interpret HR data obtained from wearable sensors, it is essential to consider age-based 

physiological norms. The average resting HRs for different age groups are presented in Table 1. 

Table 1 provides brief physiological explanations. Newborns and infants exhibit the highest HRs 

(90–180 bpm and 100–160 bpm, respectively) due to rapid growth and developing systems. As children age, 

their HRs gradually decrease, reflecting the maturation of the cardiovascular system and greater efficiency. 

By adolescence and adulthood, the normal range typically stabilizes between 60 and 95 bpm. Well-trained 

athletes usually have even lower resting HRs (40–55 bpm), indicating enhanced cardiac efficiency and 

conditioning. 

 

 

Table 1. HR levels 
Age group Resting HR range (bpm) Typical condition/notes 

Newborn (0–1 month) 90–180 Rapid growth and high metabolic rate 
Infant (1–11 months) 100–160 Developing nervous system 

Toddler (1–2 years) 90–140 Active and mobile phase 

Preschool (3–4 years) 85–125 Increased physical activity 
Early school age (5–6 years) 80–115 More stable rhythms 

Middle childhood (7–9 years) 75–105 HR slows with age 

Adolescents and adults (10+ yrs) 60–95 Typical adult resting rate 
Well-trained athletes 40–55 An efficient cardiovascular system 

 

 

3. RESULTS AND DISCUSSION  

To develop application the FPGA, Firebase can be utilized as the backend for data storage and 

synchronization, as well as for data visualization.  

Figure 4 shows the architecture of a Firebase-based web application for displaying sensor data from 

an FPGA device. The FPGA uploads sensor data (such as HR or respiratory signals) via REST/HTTPS 

protocols. Firebase handles authentication (e.g., email and Google login), stores data in Firestore or Realtime 

Database, and optionally processes it using cloud functions. The web application retrieves this data in real-

time via the Firebase SDK, manages user settings, and sends push notifications using Firebase cloud 

messaging (FCM). Additional services, such as storage and analytics, support media handling and user 

behavior monitoring. 
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Figure 4. Cloud-driven web dashboard for displaying physiological sensor outputs 
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Figure 5 visually outlines the design of an experiment aimed at measuring physiological parameters 

under stress and rest conditions. It begins with the objective, followed by participant demographics, 

highlighting 30 healthy volunteers aged 20–45. The testing setup consists of three stages: rest, stress 

induction, and recovery, all conducted in a controlled laboratory environment using a wearable device. Data 

is collected at a rate of 1 Hz and stored in a real-time database. The final step involves control and validation 

using the perceived stress scale, as well as calibration with a reference HR monitor to ensure accuracy. 

 

 

 
 

Figure 5. The design of an experiment aimed at measuring physiological parameters under stress and rest 

conditions 

 

 

Figures 6(a) to (c) present the parameter values recorded over a 15-minute period. These results 

allow for the assessment and identification of potential fluctuations in physiological indicators influenced by 

various factors. 

Figure 6(a) shows the dynamics of HR over 10 minutes — from 11:00 to 11:10. Initially, the HR is 

approximately 80 bpm, peaking at around 97 bpm at 11:02. After a slight decline, it stabilizes in the range of 

82–88 bpm until 11:06, followed by another short rise. By the end of the observation period (1approximately 

11:10), the HR returns to approximately 80 bpm. This curve may indicate a physiological response to 

moderate stress or physical activity. Figure 6(b) presents the respiration rate (RR) over the same 10-minute 

period — from 11:01 to 11:10. At the beginning, the breathing rate remains at 17–18 breaths per minute, then 

increases to a maximum of around 24 breaths/min near 11:04. It then decreases to approximately 16 

breaths/min. It continues to fluctuate between 18 and 22 breaths per minute. By the end of the observation 

period (approximately 11:10), the value stabilizes at around 20 breaths per minute. This pattern may reflect a 

brief physical load or stress-related physiological response. Figure 6(c) shows the dynamics of skin 

conductance during the 10-minute period — from 11:01 to 11:10. At the start of the measurement, skin 

conductance is about 62 µS, rising to a maximum of approximately 74 µS around 11:02. After a short drop to 

60 µS at 11:03, periodic fluctuations occur between 61 and 73 µS. Toward the end of the observation, values 

stabilize in the range of 62–64 µS. Such fluctuations in skin conductance may indicate a transient stress 

response or changes in arousal level. 
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(a) (b) 

  

 
(c) 

 

Figure 6. Measured physiological parameters displayed over 15 minutes; (a) dynamics of HR over  

10 minutes; (b) respiration rate (RR) over 10 minutes; and (c) dynamics of skin conductance over 10 minutes 

 

 

Figure 7 displays glucose levels predicted using the double moving average method under normal 

conditions. Monitoring plasma glucose levels in older adults shows that pre-meal glucose levels typically fall 

within the range of 90 to 130 mg/dL, while post-meal levels can rise to as much as 180 mg/dL. According to 

the International Diabetes Federation, two groups are analyzed: independent patients and those who are 

functionally dependent. 

 

 

 
 

Figure 7. Glucose concentrations represented as averages in normal state 

 

 

Figure 8 shows an ECG signal recorded over 100 seconds, with an amplitude ranging from 55 to 

130 μV. Six distinct QRS peaks are visible, representing heart contractions occurring approximately at the 

9th, 38th, 46th, 56th, 66th, and 74th seconds. The average signal amplitude fluctuates within the range of  
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70–80 μV, which corresponds to the baseline level between the peaks. Analysis of such a signal can be used 

to assess heart rhythm and stress levels in health monitoring systems.  

 

 

 
 

Figure 8. Normal electrocardiographic readings 

 

 

It includes hardware integration of multiple biosensors, signal acquisition and processing, 

implementation of a custom stress monitoring algorithm (SMA), and ML-based classification. A detailed 

comparative analysis demonstrates the classification accuracy of the system’s technologies, indicating its 

potential as a promising tool for continuous stress assessment in daily life. 

Table 2 presents a performance comparison of the key characteristics of four different physiological 

monitoring systems. The proposed IoT-based wearable device demonstrates an accuracy of 87%, which is 

higher than that of commercial fitness bands (78%) and smartwatches with HR and GSR sensors (82%), but 

slightly lower than that of a chest strap heart monitor (90%). The device's response time is 250 ms, 

significantly faster than most competitors, including fitness bands (500 ms). Its power consumption is  

120 mW, placing it in a moderate range between more energy-efficient solutions and high-performance but 

power-intensive chest monitors (150 mW). Thus, the proposed system offers a well-balanced trade-off 

between accuracy, response time, and power efficiency. 

 

 

Table 2. Performance comparison (accuracy, response time, and power consumption) 
Device/system Accuracy Response times, ms Power consumption 

Proposed wearable (IoT-based) 87 250 120 

Commercial fitness bend  78 500 95 

Smartwatch with HR&GSR 82 400 110 
Chest starp HR monitor 90 300 150 

 

 

For the proposed IoT-enabled wearable device, a statistical evaluation of accuracy was conducted 

based on 10 measurements. The average accuracy was 87.05%, with a standard deviation of ±0.52%. 

According to the calculations, the 95% confidence interval ranges from 86.68% to 87.42%. This confirms the 

stability and reliability of the system’s accuracy under repeated measurement conditions. 

In real-world applications of wearable stress monitoring devices, two significant challenges often 

arise: motion artifacts and latency. Motion artifacts are distortions in biosignals caused by the user’s physical 

activity, such as walking, bending, or arm movements. These artifacts can significantly affect the accuracy of 

HR, pulse variability, or skin conductance measurements. To reduce the impact of such distortions, 

accelerometers and signal filtering algorithms are used. Latency occurs during the stages of data acquisition, 

processing, and transmission, and is particularly critical for systems operating in real-time. It can result from 

buffering, microcontroller computation time, or delays in wireless communication. To minimize latency, 

local data processing, algorithm optimization, and modern communication protocols (such as BLE 5.0) are 

applied. 

Hardware and network limitations for real-world deployment of wearable stress monitoring devices: 

a. Hardware limitations: 

− Limited computational resources: microcontrollers (e.g., ESP32) have limited performance, which makes 

it challenging to run complex ML models in real-time. 

− Limited memory capacity: restrictions on RAM and non-volatile memory hinder the storage of large 

datasets or long-term logging without data offloading. 
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− Power supply and autonomy: battery-powered operation requires energy optimization, limiting data 

acquisition frequency and the use of power-intensive sensors (e.g., infrared cameras). 

− Sensor quality: low-quality sensors can produce noisy data, particularly during movement, which reduces 

the accuracy of stress detection. 

b. Network limitations: 

− Low bandwidth: Bluetooth low energy (BLE) or other protocols may be insufficient for streaming high-

resolution data. 

− Transmission latency: data transfer to the cloud may be delayed due to unstable Wi-Fi or mobile 

networks. 

− Security concerns: transmitting sensitive biometric data requires encryption, which adds extra processing 

load on the device. 

− Lack of continuous connectivity: in real-world conditions, Wi-Fi or mobile network access may not 

always be available, especially in remote areas. 

Future improvements in stress monitoring systems involve the use of advanced networks to enable 

more accurate and automated stress detection. A promising direction is the analysis of multimodal biosignals 

(e.g., HR, skin temperature, and physical activity), which can increase the reliability of diagnostics. 

Additionally, the development of personalized models tailored to individual users, as well as the 

implementation of energy-efficient communication protocols and edge computing, is expected. Integration 

with cloud platforms and mobile applications will enable real-time data visualization, stress reduction 

recommendations, and remote support from healthcare professionals. 

Wearable devices developed for stress monitoring have the potential to be applied in a broader 

context of mental health care. For instance, they can be used for the early detection of anxiety disorders, 

depression, and burnout syndrome through long-term observation of physiological and behavioral 

parameters. hese devices can be integrated with telemedicine platforms, enabling physicians to monitor 

patient conditions and make informed adjustments. Additional applications include cognitive therapy, 

behavioral coaching, emotional state monitoring for children with ADHD or individuals with autism, as well 

as employee wellness and productivity systems in corporate environments. 

The real-world deployment of AI-powered wearable devices for stress monitoring faces several 

limitations. First, the limited computational resources on such devices make it difficult to implement complex 

AI models, such as neural networks. Second, the high energy consumption of AI algorithms reduces the 

battery life of these devices. Additionally, issues related to privacy and security arise when transmitting and storing 

sensitive biomedical data. Future improvements may involve the use of lightweight models (such as 

MobileNet and TinyML) and edge AI adaptation to support profile-based personalized development. 

Moreover, advancements in energy-efficient neuromorphic chips will enable more accurate analysis without 

increasing power consumption. Integrating AI with cloud and hybrid architectures will further enhance real-

time data analysis and interpretation capabilities. 

Table 3 presents a comparative analysis of existing wearable devices, showing that the Apple Watch 

and Samsung Galaxy Watch incorporate built-in AI algorithms for personalized recommendations. The Fitbit 

Sense also tracks stress and ECG, providing a basic level of analysis. Garmin Vivosmart 4 and Xiaomi Mi 

Band offer basic physical activity and sleep tracking, but have limited intelligent capabilities. Thus, 

premium-class devices provide more accurate and adaptive data analysis through the use of AI. 

 

 

Table 3. Comparative analysis of existing wearable devices 
Device Stress detection HR monitoring Sleep tracking AI/smart analysis 

Apple Watch Series Yes Yes Yes Advanced AI insights 

Samsung Galaxy Watch Yes Yes Yes Personalized health insights 

Fitbit Sense Yes Yes Yes Basic AI interpretation 

Garmin Vivosmart 4 Limited Yes Yes No smart interpretation 

Xiaomi Mi Band Limited Yes Yes Minimal/no AI integration 

 

 

In previous studies, various ML and AI methods have been widely applied to classify stress levels. 

Algorithms such as support vector machine (SVM), random forest, decision trees, CNN, and long short-term 

memory (LSTM) are widely adopted in stress detection research, demonstrating effectiveness in 

classification and prediction of physiological patterns. 

a. SVM: used for binary and multiclass classification; it provides high accuracy when well-selected features 

are used. 
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b. Random forest: offers robust classification through an ensemble of decision trees and handles noisy data 

effectively. 

c. Decision trees: interpretable rule sets, fast and lightweight, but prone to overfitting without regularization 

d. CNN: extract spatiotemporal patterns from physio-signals/images; require sufficient training data. 

e. LSTM: effectively model temporal dependencies and variability in physiological signals. 

This study's approach differs from previous works in several key aspects: 

a. Accuracy: the ML and/or neural network models were trained on an extended dataset that includes 

multichannel physiological signals (e.g., HR, GSR, and temperature), which significantly improves the 

classification accuracy of stress states compared to traditional single-sensor methods. 

b. Efficiency: the system is implemented on an energy-efficient wearable device capable of real-time data 

processing, reducing latency and eliminating the need for constant connection to external servers, as seen 

in cloud-based solutions. 

c. Usability: unlike bulky lab systems, the proposed solution features a compact form factor (e.g., 

wristband), a simple mobile application for users, and requires no special skills — it automatically 

collects, analyzes, and visualizes the data. 

Thus, the proposed system offers an improved balance between technical accuracy, response speed, 

and everyday usability for end users. 

The signal processing sequence in stress monitoring systems typically includes the following stages: 

a. Acquisition and synchronization: stable sampling and artifact markers reduce the proportion of “bad” 

windows → HRV dispersion shrinks at the raw-data level and inter-session reproducibility improves. 

b. Filtering and motion suppression: notch/band-pass filters plus IMU referencing increase PPG/ECG SNR 

→ MAE(HR) decreases and the share of correctly detected peaks rises; models receive cleaner features, 

yielding gains in F1/AUROC. 

c. Windowed segmentation: switching to short, overlapping windows stabilizes statistics (RMSSD, pNN50) 

and lowers system latency → less class jitter at state boundaries. 

d. Feature extraction: adding informative time–frequency descriptors (e.g., LF/HF, SCR dynamics, dPPG) 

improves class separability → AUROC/F1 increase without heavier inference. 

e. Normalization (inter- and intra-subject): personalized scaling suppresses inter-individual amplitude 

differences → variance of metrics across participants decreases and LOSO robustness improves. 

f. Multisensor fusion: combining HRV + GSR + temperature/activity yields complementary cues → 

performance in ambulatory scenarios exceeds any single-sensor setup. 

g. Classifier: after steps b–f, classical models (RF/SVM) provide a strong baseline, while neural models 

(CNN/LSTM) add further gains given sufficient data → better accuracy without brittleness to noise. 

h. Post-processing/hysteresis: smoothing prediction probabilities and applying threshold logic reduce 

spurious state switches → the UI receives stable decisions near class boundaries. 

This pipeline ensures accurate, robust, and interpretable real-time stress assessment. 

In this work, we distinguish three main directions of classification: i) machine learning models, ii) 

threshold-based rules, and iii) a hybrid approach: 

a. ML models: SVM: often used due to its robustness with small training datasets. Effective for binary 

classification: stress/no stress. 

b. Random forest and decision trees: interpretable models that perform well with various types of features 

(e.g., GSR, HR, and ECG). KNN: a simple model applicable when sufficient training data is available. 

Logistic regression: used to estimate the probability of a person being in a stress state. Deep learning 

(LSTM and CNN): Applied to time series and ECG images, offers high accuracy but requires large 

datasets. 

c. Threshold values: simple logic: for example, if GSR > 5 µS or HR > 90 bpm at rest, it is classified as 

stress. Can be set empirically or individually (based on calibration for a specific user). 

In real-world systems, a hybrid approach is often used: initial filtering based on thresholds, followed 

by refinement using an ML model. This method improves accuracy and reduces false positives. 

 

 

4. CONCLUSION  

An intelligent wearable system for real-time stress monitoring and management is presented. The 

developed system demonstrates high accuracy in stress detection (87%), as validated by experimental results 

utilizing nine integrated biosensors and advanced ML algorithms. The use of an FPGA platform enables the 

parallel processing of multi-channel biosignals, improving the device’s energy efficiency. Integration with 

the Firebase cloud platform ensures convenient data access and facilitates further analytics. The practical 

significance of this research lies in creating a universal tool for personalized psychophysiological monitoring, 

which can be applied in healthcare, educational, and corporate environments. The system enables the early 

diagnosis of stress, the prevention of chronic diseases, and the development of personalized health 
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management recommendations. Future research will focus on expanding the sensor module, implementing 

more advanced AI models, and integrating the system with mobile medical services. The method enhances 

adaptability and effectiveness in real-world scenarios, contributing to the advancement of digital healthcare 

and preventive medicine technologies. 
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