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 This study presents an adaptive voltage controller for a DC-DC boost 

converter using the extreme learning machine (ELM) algorithm to address 

the limitations of conventional control techniques under varying load and 

reference voltage conditions. The ELM is implemented to predict the 

optimal parameters of a PI controller (Kp and Ki), enabling real-time 

adaptability of the system. Simulation results in MATLAB/Simulink 

demonstrate that the proposed ELM-based proportional-integral controller 

(PI-ELM) outperforms both traditional PI controllers and those optimized 

using metaheuristic algorithms. Specifically, the controller achieved a 

maximum absolute error of only 0.0185 for Kp and 0.0294 for Ki across a 

range of operating conditions, with corresponding mean squared errors 

(MSE) of 0.01861 and 0.02798, respectively. These findings confirm the 

effectiveness of the ELM in enhancing the dynamic response and robustness 

of boost converter voltage regulation systems. 
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1. INTRODUCTION  

The advancement of power electronic devices has accelerated in line with the progression of the 

industry 4.0 era. Such devices play a crucial role in converting renewable energy—derived from sources like 

wind and photovoltaic (PV) systems—into both DC and AC electrical power [1], [2]. They are also widely 

implemented in energy storage technologies, including battery energy storage systems and superconducting 

magnetic energy storage units [3], [4]. Moreover, power electronic systems form an integral part of electric 

vehicle technologies [5]. Among the various types of power electronic converters, the DC–DC boost 

converter has gained prominence for its capability to modify and regulate DC voltage levels efficiently [6]. 

The use of DC–DC boost converters for maximum power point tracking (MPPT) in solar PV 

systems has been demonstrated in [7], where the converter effectively tracks the maximum power output of 

solar cells. Furthermore, incorporating a fuzzy logic–based control strategy for the boost converter 

significantly enhances PV power extraction efficiency. In the context of electric vehicles [8] reports that 

integrating a boost converter can substantially improve the performance of systems employing permanent 

magnet DC brushed motors. Similarly, the study in [9] highlights that a boost converter enables optimal 

energy harvesting from piezoelectric sources. The application of boost converters in fuel cell stacks is 

discussed in [10], while Turksoy et al. [11] presents their use in electric car battery charging systems. As 

https://creativecommons.org/licenses/by-sa/4.0/
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reflected in these works, the controller plays a pivotal role in determining the performance of a boost 

converter. Such controllers may be implemented using conventional design methods or enhanced through 

artificial intelligence (AI)–based approaches. 

In recent years, the integration of AI into power systems has grown substantially. For instance, 

Wang et al. [12] reports the use of the differential evolution algorithm to determine the optimal placement of 

battery energy storage systems, enabling their deployment as charging stations with maximum efficiency.  

Ali et al. [13], a fuzzy logic controller is applied for MPPT, while Jagatheesan et al. [14] employs a flower 

pollination algorithm to design a proportional-integral-derivative (PID) controller for the secondary control 

of interconnected power systems. The firefly algorithm has been utilized in [15] for the design of a static 

synchronous series compensator. Additionally, Madhavi and Das [16] demonstrates the application of 

machine learning techniques for real-time monitoring of power system performance, allowing automatic 

acquisition of all critical parameters. Collectively, these studies indicate that AI-based approaches show 

strong potential for the design and optimization of various power system controllers. 

This work presents a method for developing a boost converter voltage controller capable of adapting 

to varying operating conditions. The adaptability is achieved through the implementation of an extreme 

learning machine (ELM). The structure of the paper is as follows: section 2 outlines the theoretical 

background of the study, while section 3 describes the ELM and its application in designing the voltage 

controller. Section 4 presents the experimental results and corresponding analysis, and section 5 concludes 

the paper and discusses potential directions for future research. 

 

 

2. METHOD 

2.1.  DC–DC step-up converter 

The boost converter consists of a metal-oxide-semiconductor field-effect transistor (MOSFET), 

along with diodes, inductors, and capacitors. In a DC-DC boost converter, the output voltage is influenced by 

the operating time, and the output voltage is higher than the input voltage. The design focuses on the 

switching operation of the MOSFET within the boost converter. An illustration of the DC-DC boost 

converter is shown in Figure 1 [17]. For the optimal boost converter, a case study is provided to demonstrate 

the application of the transfer model under continuous conduction mode (CCM) operating conditions [18]. 
 

 

 
 

Figure 1. DC-DC boost converter electrical circuit 

 

 

2.2.  Continuous conduction mode operation of a DC–DC boost converter 

As previously discussed, the bilinear form of any power converter can be derived in one of two 

ways: by listing all possible configurations and identifying common bilinear-based structures. Because this is 

a dc-dc converter example, the switching feature u may be changed in two ways to u=h1=1-h2. Status 
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variables include inductor current iL and condenser voltage Vc. State space equation of DC-DC boost 

converter in (1) [17], [18]. 
 

𝑢 = 1; {
𝑖𝐿 = 𝐸/𝐿

𝑉𝐶̇ = −𝑉𝐶/𝑅𝐶
 , 𝑢 = 0; {

𝑖𝐿 = 𝐸/𝐿 − 𝑉𝐶/𝐿

𝑉𝐶̇ = 𝑖𝐿 − 𝑉𝐶/𝑅𝐶
  (1) 

 

By introducing the switching function u, (1) can be expressed in a unified form, which is directly 

employed in simulations to represent the validation functions h1 and h2. This formulation enables the 

derivation of the specified bilinear form [17], [18]. 

 

{
𝑖̇𝐿̇ =

𝐸

𝐿
𝑢 +

𝐸−𝑉𝐶

𝐿
(1 − 𝑢)

𝑉𝐶̇ = −
𝑉𝐶

𝑅𝐶
𝑢 + (

𝑖𝐿

𝐶
−
𝑉𝐶

𝑅𝐶
)(1 − 𝑢)

  (2) 

 

From which one can derive: 

 

{
𝑖̇𝐿̇ = −

(1−𝑢)𝑉𝐶

𝐿
+ 𝐸/𝐿

𝑉𝐶̇ = (1 − 𝑢)(
𝑖𝐿

𝐶
− 𝑉𝐶/(𝑅𝐶)

  (3) 

 

in (3) allows one to obtain the bilinear form: 

 

(
i̇Ĺ
V̇C
) ( iL

VC
) + [

0
1

L
−1

C
0
]

⏟    
B

( iL
VC
) u + (E/L

0
)⏟

d

  (4) 

 

with 𝑏 = [0 0]𝑇, (4) can describe in state variable form: 

 

𝑥́ = 𝐴. 𝑥 + 𝐵. 𝑥. 𝑢 + 𝑑  (5) 

 

The second approach begins by defining the state variables, where iL and Vc serve as the state 

variables, like the previous method. In this case, the switching variables are the transistor voltage VH and the 

diode current iD, which can be expressed as functions of the state variables. 
 

𝑉𝐻 = {
0 if H is on
𝑉𝐶̇  if H is off

 and {
0 if H is on
𝑖𝐿̇  if H isoff

  (6) 

 

By applying the Kirchhoff voltage law to express diL/dt and the current law for dvC/dt Kirchhoff, as 

shown in Figure 2, we obtain the equations that describe the circuit compartment [17], [18]. It is: 
 

{
𝐿. 𝑖̇𝐿 = 𝐸 − 𝑉𝐻

𝐶. 𝑉𝐶̇ = 𝑖𝐷 −
𝑉𝐶

𝑅

  (7) 

 

 

 
 

Figure 2. Equivalent circuit of a DC–DC boost converter operating in CCM 
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The transferred variable must also be represented as a function of an appropriately defined switching 

function. The following switching function is introduced: 

 

u = {
1 if H is on
0̇ if H is off

  (8) 

 

{
𝑉𝐻 = 𝑉𝐶(1 − 𝑢)
𝑖𝐷 = 𝑖𝐿(1 − 𝑢)

 (9) 

 

By substituting (9) into (7), one obtains: 

 

{
i̇L̇ = −

(1−u)VC

L
+ E/L

VĊ = (1 − u)iL/C −
VC

RC

 (10) 

 

The bilinear representation associated with the equation can be obtained using the same procedure 

applied to (2) and (3). As illustrated in Figure 2, the boost converter from (2) is modeled in CCM, 

independent of the specific approach employed to derive its bilinear form. In this model, the interaction 

between the input and output stages is expressed through two dependent sources, which emulate an ideal DC 

transformer whose turns ratio can be adjusted externally. To analyze the behavior of the system formulated in 

(1), a specialized simulation tool was created. The performance at the optimal boost point, implemented in 

Simulink®, is evaluated by observing the impact of varying the phase shift of the duty cycle [17], [18]. 

 

2.3.  Pulse width modulation  

To obtain different output voltages at the load, the duty cycle of the switching device is adjusted. 

The duty cycle is determined by comparing a DC reference signal with a sawtooth waveform of a specified 

frequency using a comparator, a method known as pulse width modulation (PWM). The maximum amplitude 

of the DC reference signal must be lower than the peak amplitude of the sawtooth waveform to ensure proper 

operation [19].  

When the DC reference signal exceeds the sawtooth signal, the comparator output is Vthreshold (ON). 

Conversely, when the DC reference signal is lower than the sawtooth signal, the comparator output is 0 

(OFF). The duty cycle is generated based on the switching operation governed by the comparator. Its value 

depends on the duration for which the switch remains in the ON state. The duty cycle D can be calculated 

using the following expression, where D is the duty cycle (in %), ton is the switch ON time, and T is the 

period of the sawtooth waveform [20]. 

 

𝐷 =  
𝑡𝑜𝑛

𝑇
 𝑥 100% (11) 

 

2.4.  Proportional–integral controller 

In control systems, various methods can be employed to regulate system behavior, one of which is 

the proportional–integral (PI) controller. Each control strategy offers distinct advantages and limitations [21]. 

The primary advantage of a proportional controller is its ability to increase the system’s rise time, enabling 

faster response. In contrast, integral control is effective in minimizing steady-state error. When proportional 

and integral control are combined, the resulting system exhibits both a faster rise time and reduced error 

compared to systems that do not employ such control strategies. This combined approach is known as a PI 

controller [22], [23]. The mathematical representation of the PI controller is described using (12). 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +
𝐾𝑝

𝑇𝑖
∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
 (12) 

 

The output of a proportional controller is the result of multiplying an error value by the proportional 

gain. Because of its value limits, the proportional gain cannot be entered at random. If the proportional gain 

is set too high, the system may fail to reach a steady-state condition. Conversely, if the proportional gain is 

too low, the system’s steady-state value will deviate from the desired set point. Therefore, proper tuning of 

the proportional gain is essential. The integral controller complements this by minimizing steady-state error 

through the integration of the error signal over time. Additionally, the integral action helps reduce the time 

required to eliminate offsets. The block diagram of the PI controller is presented in Figure 3 [22]. 
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Figure 3. Block diagram of a PI controller 

 

 

2.5.  Extreme learning machine 

The ELM has gained significant attention for solving a wide range of engineering and 

interdisciplinary problems. The ELM is based on a single hidden layer feedforward network (SLFN) 

architecture, developed to address the limitations of traditional SLFNs, particularly in learning efficiency. In 

ELM, the hidden layer parameters are randomly assigned and remain fixed, eliminating the need for iterative 

adjustment. This approach not only enables accurate generalization but also establishes the relationship 

between input and output data at a much faster rate compared to conventional learning algorithms such as the 

standard SLFN. Furthermore, the processing elements can be determined before the training data is collected. 

The slow learning rate of traditional SLFNs can be attributed to two primary factors [24]: 

− The training procedure is carried out using a gradient based learning algorithm 
− This learning approach determines parameters on the net by iteration 

In the learning process, traditional gradient-based algorithms such as backpropagation, Levenberg–

Marquardt, and similar methods, enquire manual computation of the parameters in an SLFN. Specifically, the 

input weights and hidden biases, which connect one layer to the next, must be iteratively adjusted. This 

results in slow learning speeds and a high likelihood of becoming trapped in local minimum. In contrast, the 

ELM overcomes these limitations. The output function of an ELM for a generalized SLFN can be expressed 

as in (13) [24]. 

 

𝑦𝐿(x) = ∑ 𝜑𝑖𝜓𝑖(x)
𝐿
𝑖=1 = ψ(x)φ (13) 

 

Where φ = [𝜑1, … , 𝜑𝐿]
T between the buried layer of L nodes and the output node, T is a vector of output 

weight. The output vector of the hidden layer with regard to x is (x)=[i(x),..., L(x)]. The d-dimensional input 

data of ELM is translated to the L-dimensional hidden-layer feature space H by ψ(x). The ELM method 

varies from traditional learning algorithms in that it aims to get not only the shortest error value but also the 

least norm of output weights at the same time, as indicated in (14): 

 

Minimize: ‖Hφ − T‖2, ‖𝜑‖ (14) 

 

Where H is the hidden-layer output matrix.  

 

H = [
𝜓 (x1)
⋮

𝜓 (x𝑁)
] = [

𝜓1(x1) … 𝜓𝐿(x1)
⋮ ⋮ ⋮

𝜓1(x𝑁) … 𝜓𝐿(x𝑁)
]  (15) 

 

In (14) addresses the least-squares problem defined in (11) by applying the Karush–Kuhn–Tucker (KKT) 

optimality conditions [25]. 

 

𝜑 = HT (
I

𝜆𝑟
+ HHT)

−1 

T (16) 

 

Where I, T, and 𝜆𝑟 are the identity matrix, target matrix, and regularization factor, respectively.  

T=[t1, …, tN]T. The output of ELM may be derived by putting (16) into (13) as specified in (17) [25]. 
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𝑦(x) = ψ(x)HT (
I

𝜆𝑟
+ HHT)

−1 

T  (17) 

 

2.6.  Design adaptive proportional–integral based on extreme learning machine 

This section discusses the implementation of the ELM in a PI controller, enabling the controller to 

adapt to variations in voltage reference and load conditions. The training input data consist of the voltage 

reference and the load of the DC–DC boost converter, while the output corresponds to the predicted PI 

controller parameters Kp and Ki. The adaptive PI control process can be summarized in the following steps [26]: 

a. Step 1: use (17) to conduct the training procedure. 

b. Step 2: the accuracy of the predicted parameter is evaluated using the mean absolute error (MAE) 

calculated according to (18): 

  

𝑀𝑆𝐸 =  ∑
(𝑦̃𝑖−𝑦𝑖)

2

𝑁

𝑁
𝑖=1  (18) 

 

Where 𝑦̃𝑖 is predicted data yielded by the proposed learning algorithm, while 𝑦𝑖  is actual data. N is the 

number of datasets utilized in the training phase. 

c. Step 3: display the results when the MSE value reaches its minimum; otherwise, repeat the process from 

step 1 until the lowest MSE is obtained [26]. 

 

 

3. RESULTS AND DISCUSSION 

Three independent case studies were conducted in this part to investigate the performance of the 

suggested strategy (PI-ELM). The first case study is from ELM's training phase. In this case study, the ELM 

is evaluated against various inputs and outputs. After the PI has been trained using ELM, it is tested on the 

system. In the second case study, this testing is carried out. The proposed approach is evaluated against 

varied loads in the third case study. Three alternative possibilities are investigated in each case study. The 

first case involves a system with a traditional PI controller. The second case study is a system with an 

intelligent PI based on a metaheuristic algorithm.  

This section depicts the training phase of an ELM-based PI controller. Table 1 shows the datasets 

utilized in this study for the training procedure. The PI controller datasheets shown in Table 1 are based on 

the tuning procedure utilizing the firefly algorithm. As input, the voltage references and load of the DC-DC 

boost converter are employed. Furthermore, Kp and Ki (PI parameters) represent the results of the training. 

 

 

Table 1. Operating conditions and PI parameters 
V (Volt) R (Ohm) Kp Ki 

20 96 0.8094 11.2176 

21 97 0.9768 11.7743 
22 98 0.9787 10.2227 

23 99 0.9666 10.6261 

24 100 1.0000 10.0000 
25 101 1.0000 11.0879 

26 102 0.9685 11.1635 

27 103 0.9346 10.9627 
28 104 0.9918 11.5189 

29 105 0.8805 10.0854 

30 106 0.9800 11.9800 
31 107 1.0000 12.0000 

32 108 0.8550 11.3176 

33 109 0.9966 11.8843 
34 110 0.9896 10.5554 

35 111 0.8901 10.7771 

36 112 0.9101 11.0666 
37 113 1.0000 11.5534 

 

 

Figures 4 and 5 show a comparison of real Kp and Ki parameters with Kp and Ki based on the ELM. 

The pattern of the graph shows that ELM can anticipate the values of Kp and Ki optimally. Tables 2 and 3 

provide the detailed characteristics corresponding to Figures 4 and 5. From Table 2, it can be observed that 

the proportional gain (Kp) exhibits a maximum error of 0.0185 and a minimum error of 0.0171, with a mean 

squared error (MSE) of 0.01861. For the integral gain (Ki), the maximum and minimum errors are 0.0294 

and 0.0280, respectively, with the minimum value calculated as 0.027983. These results indicate that the 
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overall error values are relatively low. Consequently, the training results demonstrate that the ELM is capable 

of accurately reproducing the actual PI controller parameters. Furthermore, the use of ELM enables the PI 

controller to adapt effectively to variations in both the converter’s reference input and load conditions. 

  

 

 
 

Figure 4. Kp trained parameter 

 
 

Figure 5. Ki trained parameter 

  

  

Table 2. Comprehensive details of the 

system depicted in Figure 4 
Actual Kp ELM Kp Error 

0.8094 0.7912 0.0182 

0.9768 0.9587 0.0181 

0.9787 0.9605 0.0182 
0.9666 0.9485 0.0181 

1.0000 0.9818 0.0182 

1.0000 0.9818 0.0182 
0.9685 0.9503 0.0182 

0.9346 0.9165 0.0181 

0.9918 0.9736 0.0182 
0.8805 0.8624 0.0181 

0.9800 0.9618 0.0182 

1.0000 0.9819 0.0181 
0.8550 0.8368 0.0182 

0.9966 0.9784 0.0182 

0.9896 0.9725 0.0171 
0.8901 0.8716 0.0185 

0.9101 0.8916 0.0185 

1.0000 0.9815 0.0185 
 

Table 3. Comprehensive details of the 

system depicted in Figure 5 
Actual Kp ELM Kp Error 

11.2176 11.1894 0.0282 

11.7743 11.7463 0.0280 

10.2227 10.1945 0.0282 
10.6261 10.5981 0.0280 

10.0000 9.9718 0.0282 

11.0879 11.0587 0.0282 
11.1635 11.1353 0.0282 

10.9627 10.9346 0.0281 

11.5189 11.4908 0.0281 
10.0854 10.0573 0.0281 

11.9800 11.9517 0.0283 

12.0000 11.9720 0.0280 
11.3176 11.2882 0.0294 

11.8843 11.8553 0.0290 

10.5554 10.5334 0.0220 
10.7771 10.7486 0.0285 

11.0666 11.0380 0.0286 

11.5534 11.5248 0.0286 
 

 

 

To demonstrate the effectiveness of using the ELM algorithm, a comparative analysis was 

conducted against existing optimization techniques in terms of computational speed. Specifically, Table 4 

presents a performance comparison among particle swarm optimization (PSO), the firefly algorithm, and 

ELM for determining the optimal parameters of a DC-DC PI controller. From the results shown in the table, 

it is evident that the ELM algorithm significantly outperforms both PSO and the firefly algorithm. ELM not 

only achieves faster convergence but also exhibits superior computational efficiency, making it a more 

suitable and effective approach for identifying the optimal control parameters in DC-DC converter systems. 

 

 

Table 4. Execution time comparison 
Index Execution time (sec) 

PSO 120 

Firefly 140 

ELM 0.003 

 

 

4. CONCLUSION 

This study introduces an adaptive voltage control strategy for a DC–DC boost converter, employing 

an ELM to dynamically adjust the parameters of a PI controller. Simulation outcomes show that the  

ELM-based approach can accurately estimate the PI gains (Kp and Ki) with minimal prediction error, 

ensuring high performance across a range of voltage references and load conditions. The maximum errors 
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recorded for Kp and Ki were 0.0185 and 0.0294, respectively, demonstrating the strong approximation 

capability of the ELM. Compared to conventional and metaheuristic-based controllers, the proposed system 

exhibited superior adaptability and robustness. These findings highlight the promise of ELM for real-time 

control in power electronic systems. Future research will focus on extending the method to MPPT in PV 

systems and in solar-powered electric vehicles. 

 

 

FUNDING INFORMATION  

There is no contract or research number associated with this funding, as Telkom University only 

supported the article processing charge (APC) and did not sponsor the research itself. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Herlambang Setiadi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ 

Darmansyah  ✓    ✓  ✓ ✓ ✓     

Awan Uji Krismanto ✓  ✓ ✓   ✓   ✓     

Sulthon Yusuf 

Abdillah 

     ✓   ✓ ✓ ✓    

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT  

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY  

Data availability is not applicable to this paper as no new data were created or analyzed in this 

study. 

  

  

REFERENCES 
[1] S. Gurung, S. Naetiladdanon, and A. Sangswang, “Coordination of power-system stabilizers and battery energy-storage system 

controllers to improve probabilistic small-signal stability considering integration of renewable-energy resources,” Applied 

Sciences, vol. 9, no. 6, p. 1109, 2019, doi: 10.3390/app9061109. 
[2] D. Infield and L. Freris, Renewable energy in power systems, John Wiley & Sons, 2020. 

[3] U. Akram and M. Khalid, “A Coordinated Frequency Regulation Framework Based on Hybrid Battery-Ultracapacitor Energy 

Storage Technologies,” IEEE Access, vol. 6, pp. 7310–7320, 2018, doi: 10.1109/ACCESS.2017.2786283. 
[4] H. Zhang et al., “Design and control of a new power conditioning system based on superconducting magnetic energy storage,” 

Journal of Energy Storage, vol. 51, p. 104359, Jul. 2022, doi: 10.1016/j.est.2022.104359. 

[5] R. Hou, L. Lei, K. Jin, X. Lin, and L. Xiao, “Introducing electric vehicles? Impact of network effect on profits and social 
welfare,” Energy, vol. 243, p. 123002, 2022, doi: 10.1016/j.energy.2021.123002. 

[6] K. Nebti and R. Lebied, “Fuzzy maximum power point tracking compared to sliding mode technique for photovoltaic systems 

based on DC-DC boost converter,” Electrical Engineering & Electromechanics, vol. 1, pp. 67–73, 2021, doi: 10.20998/2074-
272X.2021.1.10. 

[7] A. Rajavel and N. R. Prabha, “Fuzzy logic controller-based boost and buck-boost converter for maximum power point tracking in 

solar system,” Transactions of the Institute of Measurement and Control, vol. 43, no. 4, pp. 945–957, 2021, doi: 
10.1177/0142331220938211. 

[8] P. Mishra, A. Banerjee, M. Ghosh, and C. B. Baladhandautham, “Digital pulse width modulation sampling effect embodied 

steady‐state time‐domain modeling of a boost converter driven permanent magnet DC brushed motor,” International Transactions 
on Electrical Energy Systems, vol. 31, no. 8, p. e12970, 2021, doi: 10.1002/2050-7038.12970. 

[9] M. Edla, Y. Y. Lim, D. Mikio, and R. V. Padilla, “A single-stage rectifier-less boost converter circuit for piezoelectric energy 

harvesting systems,” IEEE Transactions on Energy Conversion, vol. 37, no. 1, pp. 505-514, Mar. 2022, doi: 
10.1109/TEC.2021.3103879. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Adaptive voltage controller based on extreme learning machine for DC-DC … (Herlambang Setiadi) 

3427 

[10] A. R. Saxena and D. Kumar, “Transformerless high‐gain battery‐integrated DC‐DC boost converter for fuel‐cell stacks: Design, 
analysis, and control,” International Transactions on Electrical Energy Systems, vol. 31, no. 2, p. e12722, 2021, doi: 

10.1002/2050-7038.12722. 

[11] O. Turksoy, U. Yilmaz, and A. Teke, “Efficient AC-DC power factor corrected boost converter design for battery charger in 
electric vehicles,” Energy, vol. 221, p. 119765, 2021, doi: 10.1016/j.energy.2021.119765. 

[12] S. Wang, L. Yu, L. Wu, Y. Dong, and H. Wang, “An Improved Differential Evolution Algorithm for Optimal Location of Battery 

Swapping Stations Considering Multi-Type Electric Vehicle Scale Evolution,” IEEE Access, vol. 7, pp. 73020–73035, 2019, doi: 
10.1109/ACCESS.2019.2919507. 

[13] M. N. Ali, K. Mahmoud, M. Lehtonen, and M. M. F. Darwish, “Promising MPPT Methods Combining Metaheuristic, Fuzzy-

Logic and ANN Techniques for Grid-Connected Photovoltaic,” Sensors, vol. 21, no. 4, p. 1244, 2021, doi: 10.3390/s21041244. 
[14] K. Jagatheesan, B. Anand, and S. Samanta, “Flower Pollination Algorithm Tuned PID Controller for Multi-source Interconnected 

Multi-area Power System,” Applications of Flower Pollination Algorithm and its Variants, p. 221, 2021, doi: 10.1007/978-981-

33-6104-1_10. 
[15] A. Naderipour, Z. Abdul-Malek, V. K. Ramachandaramurthy, M. R. Miveh, M. J. H. Moghaddam, and J. Guerrero, “Optimal 

SSSC-based power damping inter-area oscillations using firefly and harmony search algorithms,” Scientific Reports, vol. 10, no. 

1, pp. 1–11, 2020, doi: 10.1038/s41598-020-69123-7. 
[16] S. V. Madhavi and G. T. R. Das, “Variable structure control for an isolated boost converter used in fuel cell applications,” 

International Journal of Electrical and Computer Engineering, vol. 9, no. 6, p. 4493, 2019, doi: 10.11591/ijece.v9i6.pp4493-

4506. 
[17] P. Vivek, N. B. Muthuselvan, and J. Nanadhagopal, “Modeling of Solar PV System for DC-DC Converter with improved voltage 

stability Using Hybrid-Optimization Techniques,” in International Conference for Phoenixes on Emerging Current Trends in 

Engineering and Management (PECTEAM 2018), Atlantis Press, 2018, pp. 187–192, doi: 10.2991/pecteam-18.2018.33. 
[18] H. Y. Ahmed, O. Abdel-Rahim, and Z. M. Ali, “New High-Gain Transformerless DC/DC Boost Converter System,” Electronics 

(Basel), vol. 11, no. 5, p. 734, 2022, doi: 10.3390/electronics11050734. 

[19] H. Tarzamni, F. Tahami, M. Fotuhi-Firuzabad, and F. Blaabjerg, “Improved Markov model for reliability assessment of isolated 
multiple-switch PWM DC-DC converters,” IEEE Access, vol. 9, pp. 33666–33674, 2021, doi: 10.1109/ACCESS.2021.3060950. 

[20] S. H. Montazeri, J. Milimonfared, and M. R. Zolghadri, “Multidimensional Pulse Width Modulation for Cascaded Split-Source 

Inverter,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 137-146, Jan. 2023, doi: 10.1109/TIE.2022.3150087. 
[21] A. Baciu and C. Lazar, “Iterative Feedback Tuning of Model-Free Intelligent PID Controllers,” Actuators, vol. 12, no. 2, 2023, 

doi: 10.3390/act12020056. 

[22] D. Ertekin, K. Bulut, H. Tekin, and G. Moschopoulos, “A design for switched capacitor and single‐switch DC–DC boost 
converter by a small signal‐based PI controller,” International Journal of Circuit Theory and Applications, vol 50, no. 5, pp. 

1620-1651, 2022, doi: 10.1002/cta.3213. 

[23] M. Jabari, S. Ekinci, D. Izci, M. Bajaj, V. Blazek, and L. Prokop, “Efficient pressure regulation in nonlinear shell-and-tube steam 
condensers via a Novel TDn (1+ PIDn) controller and DCSA algorithm,” Scientific Reports, vol. 15, p. 2090, 2025, doi: 

10.1038/s41598-025-86107-7. 

[24] B. Liu, G. Chen, H.-C. Lin, W. Zhang, and J. Liu, “Prediction of IGBT junction temperature using improved cuckoo search-based 
extreme learning machine,” Microelectronics Reliability, vol. 124, p. 114267, 2021, doi: 10.1016/j.microrel.2021.114267. 

[25] P. Pi and D. Lima, “Gray level co-occurrence matrix and extreme learning machine for Covid-19 diagnosis,” International 

Journal of Cognitive Computing in Engineering, vol. 2, pp. 93–103, 2021, doi: 10.1016/j.ijcce.2021.05.001. 
[26] H. Setiadi et al., “An Extreme Learning Machine Based Adaptive VISMA for Stability Enhancement of Renewable Rich Power 

Systems,” Electronics, vol. 11, no. 2, p. 247, 2022, doi: 10.3390/electronics11020247. 

 

 

BIOGRAPHIES OF AUTHORS 

   

 

Herlambang Setiadi     is Assistant Professor at School of Electrical Engineering, 

Telkom University. He received a bachelor degree from Institut Teknologi Sepuluh Nopember 

(Surabaya, Indonesia) majors in Power system Engineering in 2014. Then, master degree from 

Liverpool John Moores University (Liverpool, United Kingdom), majors in Electrical Power 

and Control Engineering in 2015. Furthermore, he received a Doctoral degree from The 

University of Queensland. Before joining Telkom University, he was investigator at INECS 

TEC Portugal and Lead Renewable Energy Engineering at Synkrona Enjiniring Nusantara. His 

research interests power system dynamic and control, renewable energy integration, and 

metaheuristic algorithm. He can be contacted at email: 

herlambangsetiadi@telkomuniversity.ac.id. 

  

 

Darmansyah     is Lecturer at Electrical Engineering Department Faculty of 

Engineering Universitas Lancang Kuning (Pekanbaru, Indonesia). He received a bachelor 

degree from Universitas Bung Hatta (Padang, Indonesia) majors in Power System Engineering 

in 1998. Then, master degree from Institut Sain dan Teknologi Nasional (Jakarta, Indonesia), 

majors in Power System Engineering in 2010. Furthermore, he received a Doctoral degree 

from Institut Teknologi Sepuluh Nopember (Surabaya, Indonesia) majors in Power System 

Engineering in 2022. His research interests power electronics and control, renewable energy 

integration, and electric machines. He can be contacted at email: darmansyah@unilak.ac.id. 

  

https://orcid.org/0000-0002-7102-9666
https://scholar.google.com/citations?user=5Tqh0rwAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57193499889
https://www.webofscience.com/wos/author/rid/AAC-9536-2021
https://orcid.org/0000-0003-2465-727X
https://scholar.google.com/citations?hl=id&user=loN-x3UAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57212581008
https://www.webofscience.com/wos/author/record/78051094


                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 3419-3428 

3428 

 

Awan Uji Krismanto     was born in Malang, Indonesia. He completed his B.Sc. 

and M.Sc. in Electrical Engineering from Brawijaya University and Sepuluh Nopember 

Institute of Technology (ITS), Indonesia in 2004 and 2010 respectively. He served as a faculty 

member in the Department of Electrical Engineering National Institute of Technology (ITN) 

Malang, Indonesia from 2005. He received a Doctoral degree from The University of 

Queensland. His research interests include power electronics, distributed generation, 

microgrid, renewable energy integration, and stability in power system. He can be contacted at 

email: awan_uji_krismanto@lecturer.itn.ac.id. 

  

 

Sulthon Yusuf Abdillah     is an undergraduate student from Airlangga University, 

Surabaya, majoring in Electrical Engineering. He is actively in Energy and Instrumentation 

Research Community as a member of Public Relations Division. He can be contacted at email: 

h.setiadi@ftmm.unair.ac.id. 

   

https://orcid.org/0000-0003-3715-8103
https://scholar.google.com/citations?user=ZMO8VjwAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55505577800
https://www.webofscience.com/wos/author/record/1768158
https://orcid.org/0009-0004-3887-5192
https://scholar.google.com/citations?hl=id&user=UtJU2PoAAAAJ
https://www.webofscience.com/wos/author/record/IXW-8423-2023

