
Bulletin of Electrical Engineering and Informatics 

Vol. 14, No. 5, October 2025, pp. 3959~3968 

ISSN: 2302-9285, DOI: 10.11591/eei.v14i5.9648      3959  

 

Journal homepage: http://beei.org 

Smart virtual rotor for frequency stability enhancement 

considering inverter-based renewable energy sources 
 

 

Herlambang Setiadi1, Baity Nuris Syifa2, Muhammad Abdillah3, Yusrizal Afif4 
1Electrical Engineering Study Program, School of Electrical Engineering, Telkom University, Bandung, Indonesia 

2School of Electrical Engineering and Computer Science, Faculty of Engineering, Architecture and Information Technology, University 

of Queensland, Brisbane, Australia 
3Department of Electrical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia 

4Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Dec 5, 2024 

Revised Jul 26, 2025 

Accepted Sep 11, 2025 

 

 This paper proposes a novel smart virtual rotor controller (VRC) that 

combines the Bat Algorithm (BA) with extreme learning machine (ELM) to 

enhance frequency stability in power systems. To reflect the impact of 

renewable integration, inverter-based power plants are incorporated to 

simulate high levels of penetration from power-electronics-based generation. 

The proposed method first tunes the virtual rotor parameters (virtual inertia 

and damping control) using BA under varying operating conditions. These 

parameters are then trained with ELM to enable adaptive control across 

different scenarios. Time-domain simulations demonstrate that the proposed 

approach outperforms existing methods in terms of frequency nadir and 

settling time, while also achieving a significant reduction in execution time, 

requiring only 0.0033 seconds. 
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1. INTRODUCTION 

The growing integration of renewable energy sources (RESs) is shifting the generation paradigm 

from conventional fossil-fuel-based plants toward renewable-based generation [1], [2]. Since RESs interface 

with the grid through power electronic converters [3], [4], they inherently lack inertial response. 

Consequently, higher penetration of power-electronics-based RESs reduces total system inertia and increases 

the rate of change of frequency (RoCoF) during disturbances. Elevated RoCoF not only heightens the risk of 

frequency instability but also undermines overall system reliability. 

Research by Arora et al. [5], investigate the impact of adding inverter-based power plants on 

interconnected power systems. It is reported that adding an inverter-based power plant will bring new 

challenges to frequency stability. Integrating RESs also increases the non-linearity of the power system as 

reported in [6]. It is noticeable that if the system's non-linearity is increasing the possibility of the system 

being unstable is higher. This makes the frequency stability of the system more vulnerable to disturbance. 

The impact of power electronics-based RESs on frequency stability is reported in [7]. From [7], it is 

noticeable that adding inverter-based RESs could increase the frequency nadir of the system. In addition, it is 

reported that to handle the high penetration of RESs, traditional load frequency control is not sufficient. 

Another issue from power electronics-based RESs especially photovoltaics (PV) and wind is the 

intermittent power [8], [9]. The intermittent power of PV and wind happens due to the uncertain power 

source of the PV and wind [10], [11]. To handle the uncertainty output of PV and wind energy storage is 

https://creativecommons.org/licenses/by-sa/4.0/
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essential [12], [13]. Research efforts in [14], [15] investigate the influence of energy storage to handle the 

uncertainty of inverter-based RESs. It is reported that by adding energy storage the stability of the power 

system can be enhanced. Although energy storage can be the solution to handle the uncertain power output of 

RESs, the inertia-less characteristic of RESs can not be handled only by original energy storage [16], [17]. 

Hence, an additional controller that can emulate inertia to the system without adding more conventional 

power plants is important. 

The controller that can emulate inertia or mimic the behavior of a conventional power plant is called 

a virtual inertia/virtual rotor [18]. It is reported that by adding virtual inertia/virtual rotor to the energy 

storage the frequency stability of the power system can be enhanced [19]. It is also reported that although the 

system has low inertia, by adding virtual inertia/virtual rotor controller (VRC) the frequency nadir of the 

system can be enhanced (far from nadir). The problem with a VRC is how to design the controller optimally, 

especially if the system is experiencing uncertain conditions from RESs and the load. 

The application of manta ray foraging optimization (MRFO) for the development of virtual inertia 

controllers has been presented in [20], where an islanded microgrid was employed as the benchmark system 

with RESs integrated into the study. Results demonstrated that MRFO provides an effective means for 

achieving optimal controller design. Likewise, the utilization of the bacteria foraging optimization algorithm 

(BFOA) was reported in [21], showing that embedding a virtual inertia controller within inverter-based 

distributed generation enhances the frequency’s dynamic response. Despite their effectiveness, metaheuristic 

techniques such as MRFO and BFOA encounter significant challenges when system operating conditions 

vary, as parameter tuning must be continuously adjusted to maintain performance. This limitation highlights 

the necessity for an adaptive VRC capable of responding to diverse and changing operational environments. 

To address this issue, this paper introduces an intelligent VRC that integrates the Bat Algorithm 

(BA) with the extreme learning machine (ELM). The BA is employed to achieve optimal parameter 

selection, while the ELM provides adaptability across different operating conditions. Together, this hybrid 

approach ensures both optimal tuning and real-time adaptability, offering a more robust solution compared to 

conventional metaheuristic-based designs. 

 
 

2. METHOD 

2.1.  Virtual rotor controller 

VRC is based on applying the swing equation to inverter-based power plants, enabling inverters 

without physical inertia to emulate the inertial characteristics of synchronous generators [22]. The term 

virtual rotor reflects the ability to reproduce generator-like rotor dynamics without a rotating mass. Such 

controllers regulate the amount of additional inertial power supplied to the system [23]. 

Figure 1 illustrates the dynamic structure of the VRC applied in frequency stability analysis. The 

VRC incorporates inverter-based energy storage, which is typically represented using a first-order model. To 

ensure operational safety, a limiter is included to restrict the maximum power output from the storage unit. 

The virtual rotor itself is generally implemented through a proportional–derivative (PD) controller, where the 

proportional component emulates virtual damping and the derivative component emulates virtual inertia [24]. 

 

 

 
 

Figure 1. Virtual rotor block diagram 

 

 

The virtual inertia is calculated using a derivative-based method that relies on the rate of change of 

frequency (df/dt or RoCoF), enabling adaptive adjustment of active power injection. Through this 

mechanism, virtual inertia reduces frequency overshoot, while virtual damping enhances the rate of 

frequency recovery following disturbances or high renewable energy integration [25]. The damping effect is 

analogous to the function of damper windings in synchronous machines, effectively suppressing oscillations 

after a frequency event. The governing dynamic equation of the virtual rotor can be expressed as (1) [26]: 
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∆𝑃𝑉𝐽 =
𝐽𝑉𝐼𝑠+𝐷𝑉𝐼

1+𝑠𝑇𝐵𝐸𝑆
(∆𝑓) (1) 

 

2.2.  Bat Algorithm 

The BA, proposed by Xin-She Yang in 2010 [27], is a nature-inspired metaheuristic optimization 

technique modelled on the echolocation behavior of bats. Unlike most mammals, bats are capable of flight 

and rely on echolocation—a biological sonar—to navigate, detect prey, and avoid obstacles in darkness. 

They emit ultrasonic pulses and interpret the returning echoes to sense their environment. Depending on the 

species, these signals may vary in form: some predominantly use short frequency-modulated pulses, while 

others rely on constant-frequency emissions. The signal bandwidth can also differ among species and often 

exhibits harmonic components. This echolocation capability enables bats to forage effectively at night 

without collisions. The design of the BA is guided by three idealized behavioral rules [28]: 

− Bats employ echolocation to estimate distance and distinguish prey from obstacles, even in darkness. 

− They search for food by flying randomly with velocity vi at position xi, using a fixed frequency fi, 

wavelength λi and loudnes Ai. 

− Loudness Ai decreases dynamically, typically modeled from an initial maximum value A0 to a minimum 

constant value Amin. 

− The noise level can be varied in various ways, it can be assumed that the noise level varies from a 

maximum (positive) (A0) to a minimum constant value (Amin). 

The BA begins by initializing a population of bats, each defined by an initial position (solution), 

pulse rate, and frequency. In each iteration, bats update their positions toward the global best solution. When 

a bat discovers a better solution, its pulse rate and loudness are adjusted accordingly. Throughout the process, 

the best solution is continuously updated until the stopping criterion is satisfied, at which point the optimal 

solution is obtained. The pseudocode of BA is described below: 

 
Objective function f(x), with x=(x1,…., xd)

T 

Initialization of Bat algorithm population xi, i= 1, 2,….., n, and vi randomly 

Define the frequency fi based on xi 

Initialization of the pulse ri and loudness Ai randomly 

While (t<Maximum iteration) 

Find a new solution by adjusting the frequency 

Update the velocity and the location/ solution using, 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 
𝑣𝑖

𝑡+1 = 𝑣𝑖
𝑡 + (𝑥𝑖

𝑡 − 𝑥∗)𝑓𝑖 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡 

If ran>ri 

Choose the best solution 

Use the local solution from the best-chosen solution 

end if 

if(rand<Ai)&&(f(xi)<f(x*)) 

Get the new solution 

Increase the ri value and decrease the Ai value 

end if 

end while 

 

with a 𝛽 ∈ [0,1] is a random number with uniform distribution. While x* is the optical location of the whole 

solution. 
 

2.3.  Extreme learning machine 

The ELM, introduced by Guang-Bin Huang, is a learning framework derived from artificial neural 

networks. It is structured as a feedforward neural network with a single hidden layer, commonly referred to 

as a single hidden layer feedforward neural network (SLFN). ELM was specifically developed to address the 

drawbacks of conventional feedforward networks, most notably their slow training process. The inefficiency 

of traditional approaches can largely be attributed to two main factors [29]: i) reliance on slow gradient-based 

learning algorithms during training and ii) iterative adjustment of network parameters. 

Conventional methods such as backpropagation (BP) and Levenberg–Marquardt (LM) determine 

parameters—specifically input weights and hidden biases—iteratively, which increases training time and 

often leads to convergence at local minima. In contrast, ELM assigns input weights and hidden biases 

randomly, enabling faster training while maintaining strong generalization performance. The structure of the 

ELM is illustrated in Figure 2. 
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Figure 2. ELM structure 

 

 

For example, given N distinct training samples (xi, ti) (𝑥𝑖 , 𝑡𝑖) ∈ 𝑅𝑑 × 𝑅𝑚, the standard SLFN with L 

hidden nodes can be mathematically represented as in (2) [30]. 

 

𝑡ℎ𝑒 ∑ 𝛽𝑖𝑔𝑖(𝑥𝑗)𝐿
𝑖=1 = ∑ 𝛽𝑖𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥𝑗) = 𝑜𝑗 , 𝑗 = 1, … , 𝑁𝐿

𝑖=1  (2) 

 

An SLFN can approximate the NNN training samples with a mean error as expressed in (3), where 

𝑎𝑖 , 𝑏𝑖, and 𝛽𝑖 denote the model parameters. Accordingly, the formulation can be expressed as in (4). 

 

∑ ‖𝑜𝑗 − 𝑡𝑗‖𝐿
𝑖=1 = 0 (3) 

 

∑ 𝛽𝑖𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥𝑗) = 𝑜𝑗 , 𝑗 = 1, … , 𝑁𝐿
𝑖=1  (4) 

 

In (4) can be further simplified as shown in (6)–(9). Here, H denotes the hidden layer output matrix 

of the SLFN. The i-th column of H corresponds to the output of the i-th hidden node associated with the input 

samples 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁. The hidden layer feature mapping is express using (5). Where G(⋅) represents the 

activation function. The i-th row of H corresponds to the feature mapping h(xi) of the input xi. Furthermore, β 

denotes the output weight matrix, and T is the target output matrix of the ELM. 

 

ℎ(𝑥) = 𝐺(𝑎1, 𝑏1, 𝑥𝑁), … , 𝐺(𝑎𝐿 , 𝑏𝐿 , 𝑥𝑁) (5) 

 

𝐻 × 𝛽 = 𝑇 (6) 

 

𝐻 = [
ℎ(𝑥1)

⋮
ℎ(𝑥𝑁)

] (7) 

 

𝐻 = [
𝐺(𝑎1, 𝑏1, 𝑥1) … 𝐺(𝑎𝐿 , 𝑏𝐿 , 𝑥𝐿)

⋮ … ⋮
𝐺(𝑎1, 𝑏1, 𝑥𝑁) … 𝐺(𝑎𝐿 , 𝑏𝐿 , 𝑥𝑁)

] (8) 

 

𝛽 = [
𝛽1

𝑇

⋮
𝛽𝐿

𝑇
] and 𝑇 = [

𝑇1
𝑇

⋮
𝑇𝐿

𝑇
] (9) 

 

In ELM, the input weights and hidden biases are randomly assigned. Consequently, the output 

weights associated with the hidden layer can be formulated as in (10). 

 

𝛽 = 𝐻𝑇 × 𝑇 (10) 

 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Smart virtual rotor for frequency stability enhancement considering inverter-based … (Herlambang Setiadi) 

3963 

3. RESULTS AND DISCUSSION 

The two-area power system, commonly referred to as the Kundur two-area test system, is illustrated 

in Figure 3. This benchmark network comprises four synchronous generators, two load centers, and eleven 

buses. Area 1 includes Generator 1, Generator 2, and Load 1, while Area 2 consists of Generator 3,  

Generator 4, and Load 2. The overall generation capacity of the system is 2819 MW, serving a total demand 

of 2734 MW. In Area 1, an inverter-based generation unit is incorporated, where its level of penetration is 

modeled by decreasing the effective inertia of the area in proportion to the increase in inverter capacity. 
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Figure 3. Two-area power system single line diagram 
 
 

The first step focuses on showing the optimized parameter of virtual rotor control using BA. The 

parameters that have been optimized by BA are virtual damping gain and virtual inertia gain. There are 

eighteen different operating conditions in this paper. The VRC is optimized with BA for each operating 

condition. Table 1 shows the optimized VRC parameter in each operating condition. Variation of load and 

total inertia of Area 1 is considered as the fluctuations of the operating condition. The load is varied from 

0.01-0.09 of the total generating capacity in Area 1. The inertia is varied from 100 to 50% of the total inertia 

from Area 1. 
 
 

Table 1. Optimized parameter of VRC 
Load variation (pu) Inertia variation (%) Kj Kd 

0.01 100 63.4197 10.2053 
 50 78.5501 88.3423 

0.02 100 86.0295 3.2491 

 50 71.1091 94.4610 
0.03 100 1.1578 59.9316 

 50 61.8158 30.7237 

0.04 100 40.5493 96.5366 
 50 7.1158 92.3641 

0.05 100 26.1761 43.5434 

 50 81.5650 90.6263 
0.06 100 30.2469 25.9829 

 50 38.5657 27.5096 

0.07 100 46.0777 21.2204 

 50 81.2050 14.9104 
0.08 100 88.3938 33.6988 

 50 50.2154 63.6629 

0.09 100 82.9292 78.3242 
 50 24.9958 40.1394 

 

 

The variation of total system inertia is introduced to emulate the impact of integrating inverter-based 

generation. As presented in Table 1, the values of virtual damping and inertia gain differ across various 

operating conditions. These parameters are subsequently trained using the ELM, enabling the VRC to adapt 

to fluctuations in system operation. Through this approach, the transmission system operator (TSO) is 

relieved from the need to repeatedly optimize VRC parameters whenever operating conditions change. 

At this stage, the performance of ELM in training VRC-optimized parameters is evaluated using the 

dataset summarized in Table 2. The inputs to the ELM are the variations in load and total inertia, while the 

outputs correspond to the VRC parameters. Figure 4 compares the values of KjK_jKj obtained from the BA 

with those predicted by ELM, while Figure 5 presents a similar comparison for KdK_dKd. The results clearly 

indicate that ELM is capable of accurately replicating the VRC parameters optimized by BA. 
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Table 2. Execution time comparison 
Remarks Duration (sec) 

PSO 360 
DEA 600 

ELM 0.0033 

 

 

  
 

Figure 4. Comparison between Kj obtained from the 

BA and Kj predicted by the ELM 

 

Figure 5. Comparison between Kd obtained from the 

BA and Kd predicted by the ELM 
 
 

The ELM demonstrates high computational efficiency, requiring only 0.0313 seconds to obtain 

trained parameters. As shown in Figure 5, the error performance of KjK_jKj includes a maximum error of 

0.0098, a minimum error of 0.0023, and a mean square error (MSE) of 0.005639, while for KdK_dKd,  

Figure 6 indicates a maximum error of 0.0069, a minimum error of 0.0022, and an MSE of 0.00525. These 

results confirm that ELM achieves both high prediction accuracy and strong generalization capability in 

estimating PI controller parameters. 

In the testing phase, the trained VRC was evaluated under a 0.05 load change and a 50% reduction 

in total inertia in Area 1, considering two scenarios: VRC based on the BA (VRC-BA) and VRC based on 

ELM (proposed method). The dynamic frequency responses in Figure 6 show that both methods produce 

similar behavior, demonstrating that ELM can emulate BA-based VRC performance. However, the VRC-

ELM system provides a smaller frequency nadir, indicating enhanced stability, while the frequency overshoot 

remains within ±0.42 Hz, ensuring continuous operation without under-frequency or over-frequency 

violations. Overall, these findings demonstrate that VRC-ELM offers faster computation, accurate parameter 

estimation, and improved frequency stability compared to VRC-BA, suggesting its promise for applications 

in low-inertia power systems with high renewable penetration. 

To evaluate the superiority of the proposed method, a comparison with existing approaches was 

conducted. The simulation considered a 0.05 load change in Area 1 along with a 50% reduction in total 

inertia to represent inverter-based power plant integration. As illustrated in Figure 7, the time-domain 

response of frequency deviations demonstrates that the system with VRC based on ELM achieves the best 

performance among the tested scenarios. 
 

 

  

 

Figure 6. Dynamic response of frequency area 1 under 

different scenarios 

 

Figure 7. Comparison of time domain simulation in 

frequency area 1 
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In addition to dynamic performance, computational efficiency was assessed by comparing execution 

times with other well-known optimization methods, namely the differential evolution algorithm (DEA) and 

particle swarm optimization (PSO). As presented in Table 2, the proposed method achieves significantly 

shorter execution times than DEA and PSO, while maintaining comparable or superior accuracy. Although 

execution time is expected to increase with system size and complexity, the results highlight a favorable 

trade-off: the proposed ELM-based approach delivers faster computation without sacrificing performance, 

making it highly suitable for practical implementation in modern power systems. 

To further demonstrate the efficacy of the ELM algorithm, a performance matrix is presented. 

Figure 8 illustrates the comparative performance of each algorithm under consideration. In this analysis, two 

key parameters frequency nadir and execution time are utilized to evaluate the overall performance and 

efficiency of the algorithms. These parameters are critical in assessing both the dynamic response and 

computational feasibility, particularly for real-time applications. 

 

 

 
 

Figure 8. Performance matrix of each algorithm 

 

 

As depicted in Figure 8, the ELM algorithm consistently outperforms both PSO and DEA across the 

selected metrics. Specifically, ELM achieves a lower frequency nadir, indicating a more stable dynamic 

response, and demonstrates significantly faster execution time, highlighting its suitability for time-sensitive 

applications. These results clearly support the conclusion that ELM offers a superior balance between control 

performance and computational efficiency compared to the other two algorithms. 

 

 

4. CONCLUSION 

This work introduces an intelligent VRC that integrates the BA for parameter optimization with the 

ELM for adaptive control, targeting enhanced frequency stability in power systems with high penetration of 

inverter-based renewable energy. Simulations conducted on a modified two-area test system demonstrate that 

the proposed controller adapts effectively to variations in both load and system inertia. Across 18 operating 

scenarios, the ELM was able to accurately replicate BA-optimized parameters with negligible prediction 

error, thereby ensuring consistent performance without the need for repeated re-optimization. 

Dynamic performance evaluations further reveal that the ELM-based controller achieves superior 

frequency nadir and overshoot responses compared to BA-only and conventional methods, maintaining 

system stability under disturbances such as load fluctuations and inertia reduction. Moreover, the proposed 

approach exhibits a significant computational advantage, requiring only 0.0033 seconds, in contrast to  

360 seconds for PSO and 600 seconds for DEA, making it well-suited for real-time applications. These 

results establish the method as a fast, accurate, and robust solution for frequency regulation in low-inertia 

grids. Future work may extend this study by incorporating RESs with uncertain outputs to further assess the 

robustness of the proposed framework. 
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