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 Facial expression recognition (FER) is essential in various domains such as 

healthcare, road safety, and marketing, where real-time emotional feedback 

is crucial. Despite advancements in controlled settings such as well-lit, 

frontal, and unobstructed conditions, FER still faces significant challenges in 

natural, unconstrained environments. One of the most difficult issues is the 

presence of occlusions, which obscure key facial features. To overcome this, 

multiple strategies have been proposed, generally falling into two categories: 

those focused on analyzing visible facial regions and those aimed at 

reconstructing hidden facial features. In this study, we present a variational 

autoencoder (VAE)-based solution designed to reconstruct facial features 

obscured by occlusions. Experimental results show our VAE model 

optimized with the structural similarity index measure (SSIM) cost function 

achieves superior performance, with recognition rates of 91.2% for eye 

occlusions and 89.7% for mouth occlusions. The SSIM-optimized VAE 

effectively reconstructs occlude facial features while preserving structural 

details, demonstrating significant improvements over conventional 

approaches. This VAE-based solution proves particularly robust for real-

world scenarios involving common facial obstructions like masks or 

sunglasses, making it valuable for applications in healthcare monitoring, 

driver safety systems, and human-computer interaction. 
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1. INTRODUCTION 

Although, facial expression recognition (FER) has improved a lot under controlled environments to 

face challenges like low resolution images, lighting conditions variations or head movements [1], [2]. This 

study, however brings us to focus on a common issue: occlusions in faces. While encouraged for security and 

human-computer interaction applications, in these settings FER performance can greatly degrade when 

critical facial regions are occluded by items like scarves, sunglasses, masks (Figure 1), or a hand raised to the 

chin. Simple everyday occlusions can hide important parts of the face, making it difficult to obtain an 

accurate measurement and introduce noise. Solving this issue is important to build robust, and reliable FER 

systems in the wild, where occlusions of this type are common. 

In contrast, this study addresses the problem by proposing a new method to reconstruct occluded 

facial regions based on an adapted variational auto-encoder (VAE) architecture. Our aim is to leverage the 

VAE’s ability to generate latent representations of hidden facial information, creating a robust system that 

https://creativecommons.org/licenses/by-sa/4.0/
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can restore missing features. Our goal is to improve robustness of FER systems so that they are accurate and 

reliable despite various occlusions, through comprehensive experimentation and analysis. 

 

 

 
 

Figure 1. Examples of occlusions that are frequently observed in real-world 

 

 

In addition the paper is centered around implementing an FER task on partial occluded face images 

using VAE-based facial feature reconstruction. The work therefore underscores the need to fill in missing 

features due specifc occlusions, with an emphasis on VAE-like methods and models. The tasks required to 

accomplish this research goal include: 

− Justify the selection and generation of occlusions in the CK+ database images. 

− Analyze methods for reconstructing obscured facial features. 

− Develop a VAE-based model for reconstructing occluded facial features. 

− Optimize the model’s hyperparameters to improve recognition rates. 

− Validate the developed method. 

− Analyze the experimental results. 

This research offers three main contributions. First, it proposes a model based on the VAE approach 

to reconstruct obscured facial features. Second, the reconstructed features are used as inputs to train a 

convolutional neural network (CNN) classifier. Finally, an experimental study on the CK+ dataset provides 

empirical evaluation of the method's effectiveness. 

Section 2 reviews the relevant literature and state-of-the-art methods addressing the occlusion 

challenge in FER tasks. Section 3 details the methodology used to develop the neural network models, 

including the VAE for feature reconstruction and the CNN for classification. Section 4 presents the results of 

our approach and compares them with previous studies. The conclusion summarizes the key findings of this 

research. 

 

 

2. RELATED WORKS 

Facial occlusions pose a significant challenge to automatic FER. In response, two primary research 

directions have emerged: methods that focus on analyzing unoccluded facial regions and those that attempt to 

reconstruct occluded areas. 

Early approaches divided the face into predefined regions, prioritizing visible areas while 

disregarding occluded zones. However, these static segmentation strategies lacked adaptability to variable 

occlusion patterns. More recent solutions, particularly those based on deep learning, have introduced 

attention mechanisms capable of dynamically identifying and emphasizing the most informative unoccluded 

regions, thereby enhancing recognition performance [3]-[5]. However, these approaches still depend largely 

on the quality and location of visible attributes and can perform poorly in severe or misaligned occlusions. 

In contrast, reconstruction-based techniques aim to retrieve facial information lost due to occlusions. 

While prior work highlighted the importance of modeling partial occlusions to reasoning about critical facial 

traits, recent works adopted generative models to synthesize occluded information which was also applicable 

[6]-[9]. For example, Lu et al. [10] proposed a Wasserstein generative adversarial networks (WGAN)-based 

framework to increase robustness by generating realistic facial expression. In terms of lighting or distorted 

facial expressions, WGANs will vary in difficulty and sometimes will produce unrealistic results or blurs. 

Similarly, generative adversarial networks (GAN)-based inpainting methods by Chen et al. [11] and  

Borges et al. [12] achieved strong results on benchmark datasets, but their performance relies on precise 

occlusion localization and can drop when facing real-world, non-uniform occlusions. 

Denoising autoencoders also demonstrate an ability to recover facial features from incomplete 

inputs. A recent contribution by Kemmou et al. [13] used motion-guided autoencoders to reconstruct 

expression-relevant optical flow, though such motion-based methods may be less effective for static images 

or weak motion cues. These findings align with the work of [14] and [15], who showed that deep CNNs and 

hybrid architectures can benefit from occlusion-aware preprocessing, though this often comes at the cost of 
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greater model complexity and longer training times. Variational autoencoders (VAEs) have also gained 

traction as a powerful tool for handling occlusions. Gui et al. [16] highlighted their expanding role in visual 

understanding tasks. 

Our approach builds on these recent insights by combining optical flow cues with a VAE-based 

latent reconstruction model, specifically designed to handle static occlusions in FER tasks. This hybrid 

formulation leverages the temporal motion patterns between neutral and apex frames to infer occluded 

features, while addressing the limitations of both GAN and attention-based methods. Overall, the field is 

moving toward hybrid and generative solutions that jointly model structure and motion, enabling more robust 

FER under a variety of occlusion scenarios. 

 

 

3. METHOD 

In this section, we present a reconstruction-based approach aimed at restoring occluded faces to 

conditions that are more suitable for accurate analysis by compensating for the impact of occlusions. Our 

strategy involves leveraging the similarity in motion patterns, as shown in Figure 2, by restoring the missing 

motion information caused by occlusions. 

 

 

 
 

Figure 2. Disgust samples from CK+ (top) and corresponding DeepFlow optical flow maps between neutral 

and apex frames (bottom) 

 

 

To reconstruct the missing data using the similarity property, we propose a novel approach that 

reconstructs the optical flow derived from sequences of occluded facial videos. The method, illustrated in 

Figure 3 is based on a VAE architecture to reconstruct the optical flows calculated from occluded data [17]. 

A classifier, trained on optical flows from unoccluded data, then uses the reconstructed optical flows as input 

to recognize facial expressions in the classification step. 

 

 

 

 

Figure 3. Overview of the proposed VAE-based reconstruction framework for FER under occlusion 
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3.1.  Data preparation 

Effective training of a VAE model relies on two crucial components: ground truth optical flow from 

unoccluded images and the matching optical flow calculated from the same images with occlusions. These 

elements are critical for the training process, allowing the model to learn and accurately reconstruct occluded 

facial features. 

 

3.1.1. Generation of occlusions 

To simulate occlusions in the most crucial regions for FER, we introduce various occlusion patterns 

affecting the eyes and mouth, as illustrated in Figure 4. The eyes and mouth are common areas for occlusion 

when evaluating methods designed to tackle the issue of occlusions. To simulate these occlusions, static 

black boxes are overlaid over the images in the video sequence. 
 

 

 
 

Figure 4. Chosen occlusions for evaluating the approach, applied to the CK+ database 

 

 

3.1.2. Optical flow calculation 

Given the limited availability of datasets in existing literature, evaluating the approach requires 

restricting the number of parameters learned, which leads to the use of shallow architectures. Additionally, 

utilizing smaller optical flow maps at the system input is crucial. To ensure the accuracy of flow 

computation, the optical flow is initially calculated on high-resolution images, then downsampled, as shown 

in Figure 5, to achieve a uniform size that meets the input requirements of the feature extraction model. This 

process helps optimize the retention of computational quality. 
 
 

 
 

Figure 5. Suggested method for computing and reducing optical flow size to optimize its use in the approach 

 

 

3.2.  Reconstruction of optical flow 

Our approach employs a VAE architecture to reconstruct optical flow calculated from occluded 

data. These optical flows, detailed in the previous section, serve as inputs to the model. Here, we first present 

the VAE architecture for reconstruction, then explain the model’s probabilistic aspects and latent space, and 

finally review the various cost functions used to train the VAE. 

 

3.2.1. Variational auto-encoder architecture 

The architecture used in our method as shown in Figure 6 consists of an encoder and a decoder 

designed for reconstructing optical flows. The encoder processes the input optical flow data using 

consecutive layers of convolutions with 4×4 kernels, progressively downsampling the input to a latent space. 

Each convolutional layer is succeeded by rectified linear unit (ReLU) activations and batch normalization to 
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stabilize the training. At the end of the encoder, the latent space is represented by two fully connected layers, 

one for the mean and one for the log variance, allowing the VAE to encode the input into a probabilistic 

latent space. 

 

 

 

 

Figure 6. VAE architecture for reconstructing optical flow from occluded facial inputs 

 

 

The decoder takes a latent vector sampled from this learned distribution and reconstructs the optical 

flow. The decoder consists of several layers of transposed convolutions, each followed by ReLU activations 

and batch normalization to upsample the latent vector back to the original optical flow size (2×64×64). The 

final layer employs a Sigmoid activation to produce the output, which corresponds to the reconstructed 

optical flow, while ensuring that the range of pixel values is normalized between 0 and 1. 

Since optical flow consists of both positive and negative displacements in the x and y directions, the 

last transposed convolution layer is not followed by ReLU, allowing the network to reconstruct both positive 

and negative flow values. 

 

3.2.2. Probabilistic model and Latent space 

In a VAE model, unlike traditional autoencoders, the encoder does not directly map the input to a 

fixed latent vector. Instead, the input is mapped to a distribution, typically a Gaussian distribution, defined by 

two parameters: mean (μ) and variance (σ²). These parameters define the probability distribution that the 

model learns for each input in the latent space. This probabilistic setup helps keep the space smooth and 

consistent, making it easier to move between points and generate realistic new samples. 

With a VAE, the latent space isn't one single fixed point it's a continuous space. When 

reconstructing, the decoder samples latent vectors from this space using the reparameterisation trick to 

sample from a Gaussian distribution with mean and variance being learned. This forces the latent space to be 

well-organized, with nearby inputs linking directly to one another which produces soft interpolations and 

high quality reconstructions. 

A VAE is made up of two main components: the encoder and the decoder. The encoder takes the 

occluded optical flow and compresses it into a smaller latent space, keeping only the most important features 

for reconstruction. The decoder then uses this latent representation to rebuild the optical flow image. Before 
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decoding, the optical flow vector is reshaped to fit the expected dimensions, producing images of size 

2×64×64 pixels. Thanks to its probabilistic design, the VAE can manage variations in the input and generate 

realistic optical flow reconstructions. 

 

3.2.3. Reparameterization trick 

To keep the VAE differentiable, we apply the reparameterization trick [17]. We sample z from the 

latent space by adding Gaussian noise to the mean μ and scaling it by the standard deviation σ: 

 

𝑧 = 𝜇 + 𝜎. 𝜖 (1) 

 

where, 𝜎 = exp⁡(0.5 log(𝜎2)) and 𝜖~𝑁(0, 𝐼) (random noise sampled from a standard normal distribution). 

 

3.2.4. Cost functions 

The loss function includes both the reconstruction loss (binary cross-entropy) and the KL 

divergence, which ensures that the latent space distribution remains close to a standard normal distribution. 

a. Reconstruction loss  

This measures how accurately the decoder can reconstruct the original image from the latent vector. 

This is typically computed by different loss functions as follows: 

− Binary cross-entropy loss between the reconstructed and original images [18]. 

 

𝐵𝐶𝐸⁡𝐿𝑜𝑠𝑠 = ⁡∑ [𝑥𝑖 log(𝑥𝑖
′) + (1 − 𝑥𝑖)log⁡(1 − 𝑥𝑖

′)]𝑛
𝑖=1  (2) 

 

where 𝑥𝑖and 𝑥𝑖
′ are the pixels of the original and reconstructed images, respectively, and the sum is over all 

pixels. 

− Mean squared error (MSE) loss 

MSE is commonly used when the pixel values of the optical flow are continuous, and it measures 

the squared differences between the true and predicted values [19]. It works well when optical flow data is 

not normalized. 

 

𝑀𝑆𝐸⁡𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑖

′)𝑁
𝑖=1  (3) 

 

− Structural similarity index measure (SSIM) loss 

SSIM compares the perceptual similarity between the true and predicted images by evaluating 

structural details (e.g., textures and edges) [20], which is particularly useful for optical flow reconstruction to 

preserve the movement's structure. SSIM measures luminance, contrast, and structure. 

 

𝑆𝑆𝐼𝑀⁡𝐿𝑜𝑠𝑠 =
(2𝜇𝑥𝜇𝑥′+𝐶1)(2𝜎𝑥𝑥′+𝐶2)

(𝜇𝑥
2+𝜇

𝑥′
2 +𝐶1)(𝜎𝑥

2+𝜎
𝑥′
2 +𝐶2)

 (4) 

 

where, 𝜇𝑥 and 𝜇𝑥′ are the means of the true and reconstructed optical flow images; 𝜎𝑥
2 and 𝜎𝑥′

2  are the 

variances of the true and reconstructed optical flow; 𝜎𝑥𝑥′ is the covariance between the true and 

reconstructed optical flow; and 𝐶1 and 𝐶2 are small constants to avoid division by zero. 

b. Kullback-Leibler divergence (KL divergence) 

This regularizes the learned latent space by ensuring that the distribution learned 𝑞𝜑(𝑍|𝑋) by the 

encoder remains close to a standard normal distribution 𝑁(0, 𝐼). 
 

𝐷𝐾𝐿 = −
1

2
∑ (1 + log(𝜎𝑖

2) − 𝜇𝑖
2 − 𝜎𝑖

2)𝑑
𝑖=1  (5) 

 

where d is the dimension of the latent space, 𝜇𝑖 and 𝜎𝑖
2 are the mean and variance for the 𝑖-th latent variable. 

c. Total VAE loss 

The total loss for training the VAE is the sum of the reconstruction loss and the KL divergence. 

 

𝑉𝐴𝐸⁡𝐿𝑜𝑠𝑠⁡ = ⁡𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛⁡𝐿𝑜𝑠𝑠⁡ + ⁡𝐾𝐿⁡𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (6) 

 

This loss is minimized to train the VAE, optimizing the encoder and decoder parameters to generate accurate 

reconstructions while maintaining a smooth latent space distribution. 
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4. RESULTS AND DISCUSSION 

We test our method mainly on how well it recognizes facial expressions using the reconstructed 

data, not just on reconstruction accuracy. We start by explaining the experiment setup, including the database 

and classifier used to measure the effect of reconstruction. Next, we adjust key parameters and carry out a 

step-by-step analysis. 

 

4.1.  Experimental protocol 

The CK+ database is widely recognized in the literature for evaluating recognition methods in 

scenarios involving partial facial occlusions [21]. It is particularly suited for studying occlusions, as it is a 

fully controlled database. Additionally, CK+ fits our method well since it is a dynamic dataset with 374 

labeled video sequences, making it perfect for calculating optical flow in our experiments. 

 

4.2.  Experimental protocol for automatic facial expression recognition 

We propose employing the architecture suggested by Allaert et al. [22] (Figure 7), as it has 

demonstrated its effectiveness in FER tasks, particularly when utilizing optical flow-based learning methods. 

 

 

 
 

Figure 7. Performance assessment based on 10-fold cross-validation 

 

 

To train CNN classifier, each fold is evaluated sequentially by training the CNN on 8 folds, 

validating on the 9th, and testing on the 10th, as illustrated in Figure 7. The FER rates provided represent the 

average recognition rates across the 10 successive test folds. 

 

4.3.  Parameterization of the recognition process 

To optimize the classification process, we explored the size of the optical flow images to balance 

recognition performance and computational complexity. Various optical flow sizes 24×24, 48×48, 64×64, 

96×96, and 128×128 were evaluated. As shown in Figure 8, we found that the 64×64 size produced the 

highest recognition scores, making it the optimal choice for further analysis. 

In the previous section, we detailed the step-by-step process used to generate the scores. These 

results are summarized in Table 1, providing an initial benchmark for evaluating our method. We compared 

these results with scores obtained using the same CNN architecture, trained on images of faces without 

occlusions. The evaluation was performed in two scenarios: first, with no occlusions present and second, with 

varying degrees of partial occlusions. This comparison helps us assess the effectiveness of our method in 

handling occluded facial data versus unoccluded data. 
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4.3.1. Evaluation of the method based on the various cost functions 

During evaluation, optical flows were computed between the neutral (start) and apex (end) frames 

for each CK+ sequence. As shown in Table 2, different cost functions were tested within the VAE 

reconstruction framework. The SSIM cost function delivered the best results, achieving a recognition rate of 

91.2% for eye occlusions and 89.7% for mouth occlusions. These results highlight how SSIM excels at 

preserving structural details in reconstructed optical flows, making it more effective than other cost functions 

for handling occluded facial data. 
 
 

 
 

Figure 8. Recognition CNN performance for different optical flow input sizes, averaged over 100 seeds 
 

 

Table 1. Baseline CNN results on non-occluded and partially occluded faces 
Without occlusion (%) Eyes region occlusion (%) Mouth area occlusion (%) 

92.8 73.8 71.1 

 

 

Table 2. Results based on the cost function applied during backpropagation in the VAE reconstruction 

architecture 
Cost function Eyes region occlusion (%) Mouth area occlusion (%) 

BCE 84.6 73.4 

MSE 87.3 83.8 

SSIM 91.2 89.7 

 

 

Table 3 shows the gains achieved with different cost functions, measured by the performance 

changes resulting from the proposed method. Comparing the improvements from different cost functions 

allows us to determine which one best enhances recognition rates. This analysis clarifies how various cost 

functions influence the method’s performance and supports choosing the best one for the task. 
 

 

Table 3. Improvements gained from different cost functions, calculated as the difference in results using the 

proposed method 
Cost function Eyes region occlusion (%) Mouth area occlusion (%) 

BCE 10.8 2.3 

MSE 13.5 12.7 

SSIM 17.4 18.6 

 

 

4.3.2. State-of-the-art comparison 

Table 4 compares the results of our optimized approach with those of other leading methods 

evaluated on the CK+ dataset. In the table, the best results for each occlusion type are highlighted in bold, 

while the second best outcomes are underlined. Additionally, we show the losses caused by various 

occlusions, indicating the difference between the results without occlusions and those obtained using 

different methods. The comparison demonstrates the strong performance of our proposed method, 

particularly with significantly better results for mouth occlusions compared to other state-of-the-art 

techniques. 

Our comparative study reveals that architectural differences fundamentally explain the performance 

variations among occlusion-handling methods for FER. While traditional approaches like [23] and [24] rely 

on static image analysis, their inability to model temporal dynamics leads to significant performance 

degradation (-17.4% for eye occlusion in Dapogny et al. [24]). Our VAE-based method overcomes these 
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limitations through two key innovations: i) optical flow integration that captures motion patterns to infer 

occluded regions (-1.6% drop for eyes) and ii) probabilistic latent modeling with KL divergence that enables 

robust feature reconstruction (-3.1% drop for mouth, outperforming AE's -9.6% and DCGAN's -5.2%). 

 

 

Table 4. Comparison of the proposed method’s results with leading approaches on the CK+ dataset for eye 

and mouth occlusion scenarios 
 Without occlusion (%) Eyes region occlusion (%) Mouth area occlusion (%) 

Huang et al. [23] 93.2 93/-0.2 73.5/-19.7 
Dapogny et al. [24] 93.4 76/-17.4 67.1/-26.3 

AE-based method [13] 92.8 89.7/-3.1 83.2/-9.6 

DCGAN-based method [25] 92.8 90.5/-2.3 87.6/-5.2 
Our VAE-based method 92.8 91.2/-1.6 89.7/-3.1 

 

 

The evaluation on CK+ dataset under standardized protocols confirms our method's consistent 

superiority across occlusion types. By synergistically combining motion-aware feature extraction with 

probabilistic reconstruction, our framework achieves state-of-the-art performance while addressing the 

critical challenge of occlusion robustness in real-world applications. This dual advantage of temporal 

modeling and generative reconstruction positions our approach as particularly effective for practical FER 

scenarios where occlusions are frequent and variable. 

However, we acknowledge that CK+ is a controlled dataset with posed expressions and limited 

variability in lighting and background conditions. As such, generalization to real-world ("in-the-wild") 

settings remains an open challenge. In future work, we plan to evaluate the proposed method on more diverse 

datasets such as AffectNet and RAF-DB to assess its robustness under natural occlusions, spontaneous 

expressions, and complex environments. 

 

4.3.3. Computational efficiency and inference time 

To assess the practical feasibility of our VAE-based reconstruction method, we measured inference 

time and model size on a machine equipped with an NVIDIA Quadro P600 GPU and 32 GB RAM. The average 

inference time per sample (including optical flow computation, VAE reconstruction, and CNN classification) is 

approximately 95 ms, allowing near real-time processing at around 10 FPS. The full model (VAE+CNN) 

occupies 34 MB, confirming its suitability for memory-constrained environments. These findings indicate that 

our approach maintains a good trade-off between reconstruction quality and computational efficiency, making it 

applicable to real-time or low-latency FER tasks with lightweight hardware. 

 

 

5. CONCLUSION 

In summary, we have introduced an innovative approach to addressing occlusions in FER systems. 

Our method focuses on reconstructing occluded facial regions within the optical flow domain by leveraging 

the natural similarity in motion patterns between individuals. Utilizing a VAE-based architecture specifically 

designed for handling noisy data, we aim to recover and reconstruct critical information related to facial 

expressions. The study primarily concentrates on static occlusions occurring between the initial and final 

frames of video sequences. However, we have not yet explored dynamic occlusions, such as passing hands, 

which present additional challenges. Future research will focus on analyzing the impact of dynamic 

occlusions on optical flows and understanding the complexities they introduce in correlating these 

movements with facial expressions. From a scientific perspective, this work advances the integration of 

generative reconstruction with motion-based features, offering a robust solution for expression recognition 

under occlusion. Practically, our method can enhance the reliability of FER systems in real-world 

applications such as driver monitoring, telemedicine, and security, where occlusions are common. 
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