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 Predicting student performance in real-time remains a critical challenge in 

educational data mining (EDM), especially with large, noisy, and high-

dimensional datasets. This study proposes an advanced deep learning 

framework that integrates learning entropy estimation (LEE) with models 

such as support vector machines (SVM), you only look once (YOLO), 

recurrent convolutional neural networks (RCNN), and artificial neural 

networks (ANN) to enhance feature selection and classification accuracy. 

The framework follows a systematic pipeline involving data preprocessing, 

LEE-based feature extraction, and model training on a real-time academic 

dataset comprising student demographics, attendance, and performance 

metrics. Among the proposed models, the LEE-based YOLO (LBYOLO) 

achieved the highest testing accuracy of 93% and the fastest execution time 

of 1.84 seconds, while the LEE-based ANN (LBANN) demonstrated 

consistent performance across precision, recall, and F1-score. The results 

confirm the superiority of deep learning methods over traditional machine 

learning techniques for educational prediction tasks. This approach enables 

early detection of at-risk students and supports timely, data-driven 

educational interventions. Future work will focus on adaptive learning 

systems and multi-platform student behavior analysis to support 

personalized education strategies. 
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1. INTRODUCTION 

Educational data mining (EDM) is an evolving interdisciplinary domain that utilizes data science 

techniques to analyze educational data and uncover patterns that improve learning outcomes. Institutions 

today collect vast amounts of academic, demographic, and behavioral data, yet struggle to leverage it 

effectively for actionable insights [1]. Accurate prediction of student performance plays a crucial role in 

enabling early interventions, identifying at-risk students, and guiding personalized learning strategies. 

Traditional machine learning models, such as decision trees, logistic regression, and support vector machines 
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(SVMs), have shown moderate success in student performance prediction [2]. However, their ability to 

model complex, non-linear relationships in high-dimensional, noisy educational datasets remains limited. 

Recent developments in deep learning—especially with architectures like artificial neural networks (ANN), 

recurrent convolutional neural networks (RCNN), and you only look once (YOLO)—have shown promise in 

improving prediction accuracy and generalization [3]. Still, challenges persist in optimizing feature selection, 

dealing with data sparsity, and maintaining real-time performance. Previous studies have introduced deep 

learning techniques for educational predictions, such as long short-term memory (LSTM)-based models for 

time-series data or convolutional networks for behavioral pattern analysis [4]. However, there is limited 

research integrating deep learning models with entropy-based feature selection algorithms to reduce 

dimensionality and improve model interpretability. Furthermore, existing literature often lacks comparative 

analysis across different deep architectures under real-time constraints [5]. 

Learning analytics (LA) typically focuses on real-time, actionable insights for immediate 

interventions, while EDM emphasizes discovering patterns in large datasets through data mining techniques. 

The problem arises when attempting to combine the real-time focus of LA with the data-driven discovery of 

EDM, as each operates on different temporal and methodological planes [6]. A deep cognitive diagnosis 

model (DCDM) for predicting students’ performance focuses on enhancing how accurately we can assess 

student knowledge based on their responses to various assessments [7]. Another issue is the need for large-

scale, high-quality data to train such models effectively. In many educational contexts, data may be scarce, 

noisy, or imbalanced, especially in terms of assessments for specific learning domains or minority student 

groups [8]. Many deep learning knowledge tracing (DLKT) models are trained on specific types of data (e.g., 

online learning platforms and standardized tests). The survey seeks to address the problem of how well 

DLKT models generalize across diverse learning contexts. However, the problem remains that there is 

limited research exploring the direct role artificial intelligence (AI) can play in enhancing academic outcomes 

by focusing on both study strategies and learning disabilities [9]. A novel machine learning model, random 

grouping-based deep multi-modal learning (RG-DMML), which is coupled with an ensemble learning 

algorithm. This model integrates various data sources, such as academic records and demographic 

information, and applies deep learning techniques to enhance prediction accuracy [10]. Educational 

institutions struggle to identify at-risk students early enough to intervene effectively. 

 

 

2. REVIEW OF LITERATURE 

EDM has seen rapid growth over the last decade, driven by the increasing availability of educational 

data from online learning platforms, student information systems, and other digital tools. Early research 

focused on rule-based systems and statistical models, which, while effective in certain scenarios, struggled to 

scale with increasing data complexity. Rathi et al. [11] has presents the hybrid approach combining the self-

supervised robust optimization algorithm (SS-ROA) and deep LSTM networks. This model leverages the 

strengths of deep learning in handling time-series data while optimizing feature selection and model training 

using the SS-ROA technique. Ding [12] has illustrate on deep learning models can analyze student 

movements through video data, providing real-time corrections or feedback on technique and posture. In 

music, AI-driven models can assess pitch, timing, and expression during performances, offering students 

detailed feedback on areas for improvement. Aulakh et al. [13] aims to examine the intersection of e-learning 

and EDM during the COVID-19 pandemic. It explores various EDM methods applied in e-learning, such as 

clustering, classification, and regression analysis. 

Sarker et al. [14], by analyzing students’ academic performance through EDM has emerged as a 

valuable approach for improving educational outcomes and institutional decision-making. Feng and Fan [15] 

has investigated how EDM can improve the learning process by evaluating learning behaviors, predicting 

student success, and visualizing data in a way that supports decision-making in education. Deng et al. [16] 

has introduces a novel deep learning-based predictive model, capable of analyzing various factors such as 

self-esteem levels, tendencies towards individualism, and their combined impact on performance metrics.  

Lam et al. [17] has analyze student performance data to identify distinct groups based on learning styles, 

achievement levels, and other relevant factors. By utilizing algorithms such as K-means, hierarchical 

clustering, and density-based spatial clustering of applications with noise (DBSCAN), the study seeks to 

uncover patterns that can inform educators about the diverse needs of their students. Peng et al. [18], the 

achievement of this research lies in its ability to facilitate targeted interventions, personalized learning 

pathways, and ultimately enhance educational outcomes. 

Rejeb et al. [19] aims to examine how ChatGPT is being utilized in various educational contexts and 

to assess its influence on teaching methods, learning experiences, and overall educational outcomes. 

Bhardwaj et al. [20] demonstrates that deep learning models, such as convolutional neural networks (CNNs) 

and LSTM networks, are effective tools for predicting and analyzing student engagement in e-learning 
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environments. It aims to identify patterns of engagement, predict student behaviors, and provide personalized 

interventions to improve learning outcomes. Ka’bi [21] has introduces a novel AI algorithm and deep 

learning techniques tailored for enhancing the quality of higher education. Lin et al. [22] aims to streamline 

learning processes, improve educational outcomes, and optimize institutional management by providing 

personalized learning experiences, predictive analytics, and automated administrative tasks. Farhood et al. 

[23] has develop a novel approach for predicting learning performance by analyzing students' learning 

behaviors using natural language processing (NLP). The focus is on extracting meaningful patterns and 

insights from textual or communication data generated during learning processes, such as online discussions, 

written assignments, or feedback. Riaz et al. [24] introduces transLSTM, a novel hybrid architecture 

combining the strengths of LSTM and Transformer models to perform fine-grained suggestion mining. 

 

 

3. METHOD 

The method for predicting student performance through EDM, this study employs a multi-step 

methodology utilizing deep learning techniques [25]. The approach begins with data collection, where 

academic records, demographic details, and behavioral patterns are aggregated. The data undergoes 

preprocessing to clean and normalize it, followed by feature selection to identify the most relevant attributes 

for prediction [26]. 

The Figure 1 presents a crystal-clear flow of an EDM framework integrating deep learning and 

learning entropy estimation (LEE)-based models. The process starts with data collection from educational 

sources, followed by pre-processing to clean and standardize data. Feature relection using the LEE algorithm 

identifies the most relevant features. The data is then split through data segmentation into training and testing 

sets. These datasets are input into deep learning models like LEE-based support vector machine (LBSVM) 

and LEE-based recurrent convolutional neural network (LBRCNN), which are tailored to handle educational 

patterns and nonlinear relationships in student data. These models, evaluated using performance measures 

(e.g., accuracy, precision), feed into the LEE based artificial neural network (LANN) for enhanced 

classification and decision making. Finally, the LANN integrates all outcomes and delivers the final results, 

offering meaningful insights into student performance prediction, dropout analysis, or academic success 

patterns [27]. The system ensures improved accuracy and intelligent decision-making in education. 
 

 

 
 

Figure 1. Proposed EDM models 

 

 

3.1.  LEE based SVM method used for EDM with student performance prediction 

In the proposed approach, a LBSVM is used for accurately predicting student performance. The 

LEE algorithm enhances traditional SVM by optimizing the feature selection process and improving the 

decision boundary. Educational datasets often contain noisy, redundant, or irrelevant features. LEE evaluates 

the entropy-based contribution of each feature and selects the most informative ones, ensuring higher model 

generalization and reduced overfitting [28]. Given a dataset of student features (such as grades, attendance, 

and demographic data), the goal is to classify students into categories like pass/fail, high/medium/low 

performance, or predict their final scores. 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝜔𝑇∅(𝑥) + 𝑏 = 0) (1) 
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Where 𝜔 is the weight vector (which determines the orientation of the hyperplane), x is the feature vector 

(input data, such as student features), b is the bias (offset from the origin), 𝑠𝑖𝑔𝑛 (𝜔𝑇∅(𝑥) + 𝑏 = 0 defines 

the hyperplane, and this is the decision boundary. If f(x)≥0 the student is classified into one category (e.g., 

pass), if f(x)<0 the student is classified into the other category (e.g., fail). 

 

3.2.  LEE based YOLO method used for EDM with student performance prediction 

The LEE-based YOLO model for EDM introduces a novel adaptation of the original object 

detection architecture to structured tabular data. In this context, each student profile is treated as an 'object,' 

and the individual attributes (e.g., attendance, grades, and demographics) serve as 'features' within a defined 

feature-space grid—analogous to spatial regions in an image [29]. YOLO’s single-pass detection logic is 

repurposed to rapidly assess patterns across this multidimensional feature grid. Instead of bounding boxes 

around spatial areas, the model identifies 'performance zones' in the feature space indicative of pass/fail or 

grade categories. This adaptation allows simultaneous evaluation of multiple predictive cues, enabling real-

time classification. The refined dataset is then passed to the YOLO-inspired detection framework to identify 

performance patterns and predict outcomes. 

 

𝑌𝑂𝐿𝑂𝑙𝑒𝑒(𝑥𝑖), 𝑌𝑂𝐿𝑂𝑙𝑒𝑒(𝑥𝑖) = 𝜔(𝑤𝑜. ∅(𝑙𝑒𝑒(𝑥𝑖)) + 𝑏𝑜) (2) 

 

Where 𝑥𝑖 is the input feature vector for student i, 𝑙𝑒𝑒(𝑥𝑖) extracts key features, ∅ is a non-linear 

transformation (activation layer), 𝑤𝑜 are YOLO layer weights and bias, 𝜔 is the soft max function for 

classification, and 𝑌𝑖 =̂ 𝑌𝑂𝐿𝑂𝑙𝑒𝑒(𝑥𝑖) is the predicted performance class (e.g., pass/fail or grade level). This 

fusion enables real-time, scalable, and interpretable performance prediction, which can be used by educators 

and institutions for early intervention and personalized learning strategies. 

 

3.3.  LEE based RCNN method used for EDM with student performance prediction 

The LBRCNN is a hybrid deep learning approach that integrates LEE with RCNN to accurately 

predict student performance. In EDM, this model utilizes both temporal (e.g., attendance and submission 

dates) and spatial features (e.g., marks and demographic attributes) of student data. The LEE component 

enhances feature selection by assigning weights to attributes based on their predictive power, refining input 

for the RCNN. RCNN processes the data using both convolutional layers to extract hierarchical feature 

patterns and recurrent layers (like LSTM or GRU) to learn sequential dependencies—vital for modeling time-

based student activities. 

 

𝐿𝑐 = − ∑ ∑ 𝑦𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 log 𝑃 (𝑃𝑖𝑗) (3) 

 

Where 𝑦𝑖𝑗  is the true performance class for student i’s region j and log 𝑃 (𝑃𝑖𝑗) is the predicted probability of 

the true class for region j. For each student, it make predictions for each region of features and then aggregate 

these to make a final decision about the student's overall performance. The algorithm can classify 

performance or predict scores for each feature set and then aggregate these predictions to make a final 

decision on student performance. 

 

3.4.  LEE based ANN method used for EDM with student performance prediction 

The proposed LANN method integrates the LEE algorithm with an ANN to enhance feature 

relevance and reduce dimensionality. Initially, raw educational data undergoes preprocessing and LEE-based 

feature selection, which evaluates each feature’s importance by its entropy-based contribution to learning. 

The selected features are then passed into a multi-layer ANN that captures nonlinear dependencies in student 

data such as attendance, assessment scores, demographics, and behavior metrics. The prediction output is a 

binary or multiclass label indicating performance levels (e.g., pass/fail and grades). 

 

𝑆𝑖 =  − ∑ 𝑃(𝑥𝑖𝑗)𝑙𝑜𝑔𝑃(𝑥𝑖𝑗)𝑛
𝑗=1  (4) 

 

𝐿𝑟 = 1
𝑛⁄ ∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1  (5) 

 

Where 𝑠𝑖 is the true performance class for student I and 𝑙𝑜𝑔𝑃(𝑥𝑖𝑗) is the predicted probability for the true 

class. Then, next equation 𝑦𝑖  is the true performance class for student I, 𝑦𝑖̂ is the predicted performance score. 

For each student, the Lee processes the sequential features, and the ANN layers make the final performance 

prediction based on the learned representation. 
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4. RESULTS AND DISCUSSION 

The LEE ANN models demonstrated superior performance in predicting student outcomes 

compared to traditional machine learning methods. The LEE, in particular, excelled at capturing temporal 

patterns in the data, leading to higher accuracy in predicting long-term student performance. When compared 

to decision trees and LSVMs, deep learning models showed a marked improvement in prediction accuracy. 

The LANN models reduced the error rate by approximately 10-15%, highlighting their effectiveness in 

identifying non-linear relationships and complex patterns in student data. 

 

4.1.  Classification accuracy 

The classification accuracy for student performance prediction in the real time dataset, to find the 

accuracy is a commonly used metric to evaluate the performance of a classification model. Accuracy 

measures the proportion of correct predictions made by the model relative to the total number of predictions. 

 

𝐴 = 1
𝑛⁄ ∑ 1𝑛

𝑖=1 (𝑦𝑖̂ = 𝑦𝑖) (6) 

 

Where n is the total number of students, 𝑦𝑖̂ is predicted class either 0 or 1, and 𝑦𝑖  is the true class of i. In the 

context of student performance prediction, accuracy measures how well the model classifies students into the 

correct performance categories (e.g., pass/fail, high/medium/low performance). Let’s say the model is 

predicting whether a student will pass or fail based on their features (such as grades, attendance, and 

assignments). If the model classifies a student as passing, and the student actually passes, it is a true positive 

(TP). If it predicts failure, and the student fails, it is a true negative (TN). 

 

4.2.  Precision, recall, and F-measures 

Precision calculates the proportion of TP predictions among all positive predictions (including both 

true and false positives (FP)). It addresses the question: "Out of all the students predicted to succeed, how 

many actually did?" recall, also referred to as sensitivity or the true positive rate (TPR), measures the ratio of 

TP predictions to all actual positives (TP and false negatives (FN)). It answers: "Out of all the students who 

actually succeeded, how many were correctly predicted by the model?" The F1-score, which is the harmonic 

mean of precision and recall, offers a single metric that balances the two. This score is particularly valuable 

when there is a need to balance precision and recall, such as when both FP and FN have significant 

consequences. 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

 

𝐹 = 2.
𝑃.𝑅

𝑃+𝑅
 (9) 

 

Where TP refer to the number of cases where positive outcomes are correctly predicted (e.g., students 

correctly identified as passing). FP represent instances where the model incorrectly predicts a positive 

outcome (e.g., students predicted to pass but actually fail). FN are the cases where the model wrongly 

predicts a negative outcome (e.g., students predicted to fail but actually pass). The F1-score ranges between 0 

and 1, with 1 signifying perfect precision and recall. 

 

4.3.  Receiver operating characteristic 

The ROC curve is an effective tool for assessing the performance of a classification model, 

especially when predicting student outcomes (such as pass/fail or different performance categories). It is a 

graphical representation that illustrates the trade-off between the TPR and the false positive rate (FPR) as the 

decision threshold changes. The ROC curve plots the TPR against the FPR for varying thresholds, with each 

point on the curve reflecting a different threshold used by the model to classify students as passing or failing. 

The x-axis represents the FPR, while the y-axis represents the TPR. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
 (10) 

 

This represents one point on the ROC curve. By varying the threshold, you generate additional TPR and FPR 

values to plot the entire curve. 
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4.4.  Time calculation 

EDM for student performance prediction, calculating the time complexity of the algorithms and the 

overall prediction process can provide insights into the efficiency of the model. Time complexity generally 

refers to the amount of computational time an algorithm takes as a function of the length of the input. 

 

𝑜(𝑛. 𝑝2) (11) 

 

Where n is the number of instances and p is the number of features. The computation involves calculating the 

coefficients using the least squares method. 

The Table 1 presents the training and testing performance of four proposed LEE-based models—

LBSVM, LBRCNN, LBANN, and LEE-based you only look once (LBYOLO)—applied to EDM, 

specifically for student performance prediction. Each model is evaluated based on accuracy and execution 

time (in seconds). LBSVM achieves moderate training accuracy (0.73) and a slightly higher testing accuracy 

(0.82). It has a relatively low training time (3.4 s) and testing time (2.9 s), indicating fast convergence but 

lower predictive power compared to deep models. LBRCNN shows improved training (0.76) and testing 

accuracy (0.87), although it takes slightly longer to train (3.7 s). This suggests it captures temporal and 

spatial patterns more effectively in student data. LBANN balances accuracy and time, with 0.74 training and 

0.87 testing accuracy. Its lower training (3.1 s) and testing time (2.02 s) demonstrate its efficiency for 

educational prediction tasks. LBYOLO outperforms all others, achieving the highest training (0.86) and 

testing accuracy (0.93) with the fastest execution time (2.7 s training and 1.84 s testing). Its real-time 

classification capability makes it ideal for immediate student performance monitoring. 

 

 

Table 1. Comparison of student performance data for testing and training process 

 Training Testing 

Methods Accuracy Time Accuracy Time 

LBSVM 0.73 3.4 0.82 2.9 
LB RCNN 0.76 3.7 0.87 2.7 

LBANN 0.74 3.1 0.87 2.02 

LBYOLO 0.86 2.7 0.93 1.84 

 

 

The Figure 2 illustrates the performance comparison of four models—LBSVM, LB RCNN, 

LBANN, and LBYOLO—applied in EDM. The models are evaluated based on accuracy and time during 

training and testing phases. Among them, LBYOLO achieves the highest accuracy (0.86 training and 0.93 

testing) with the least time consumption (2.7 training and 1.84 testing), indicating superior efficiency and 

prediction capability. In contrast, LBSVM and LB RCNN show higher time consumption and lower 

accuracy. This highlights LBYOLO as the most effective model for analyzing student data, predicting 

outcomes, and supporting personalized learning in educational environments. 

 

 

 
 

Figure 2. Performance comparison of proposed methods 
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Table 2 evaluates the classification performance of four proposed LEE-based models—LBSVM, 

LBRCNN, LBANN, and LBYOLO—on EDM tasks, specifically for predicting student performance. Each 

model is assessed based on three key metrics: precision, recall, and F-measure, across both training, and 

testing phases. LBSVM shows consistent but relatively lower performance with a training precision of 0.735 

and testing precision of 0.693. Its F-measure drops from 0.704 (training) to 0.687 (testing), indicating 

moderate generalization capability but limited robustness in identifying student performance patterns. 

LBRCNN demonstrates improved learning, with a training F-measure of 0.721 and a testing F-measure of 

0.712. This model effectively captures complex educational data relationships using both convolutional and 

recurrent layers, resulting in better predictive accuracy and stability. LBANN shows balanced and stable 

results across phases, with nearly matching precision, recall, and F-measure values in training and testing. 

The F-measure improves to 0.732 in testing, highlighting its strong generalization and suitability for 

academic performance prediction. LBYOLO, while faster and more accurate in classification tasks (as seen 

in previous tables), shows slightly lower F-measure (0.692 training and 0.685 testing) compared to other deep 

learning models. LBANN and LBRCNN outperform other models in terms of balanced classification metrics, 

indicating stronger reliability for EDM tasks. 

 

 

Table 2. Overall performance comparison of the proposed measures 

Methods 
Training Testing 

Precision Recall F-measure Precision Recall F-measure 

LBSVM 0.735 0.735 0.704 0.693 0.697 0.687 

LB RCNN 0.752 0.746 0.721 0.725 0.734 0.712 

LBANN 0.748 0.746 0.723 0.723 0.734 0.732 
LBYOLO 0.706 0.713 0.692 0.712 0.701 0.685 

 

 

Figure 3 presents the overall performance comparison of four models—LBSVM, LB RCNN, 

LBANN, and LBYOLO—using precision, recall, and F-measure during training and testing, within the 

context of EDM. LBANN demonstrates consistent high performance across all metrics, with LBSVM and LB 

RCNN following closely. LBYOLO, while efficient in speed, shows comparatively lower values in these 

evaluation measures, particularly in testing. This indicates that LBANN provides better balance between 

identifying relevant educational patterns and minimizing errors, making it suitable for student performance 

prediction, risk assessment, and learning behavior analysis. These metrics are critical for building reliable 

educational decision-support systems. 

 

 

 
 

Figure 3. Overall performance comparison of the different measures 
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model’s ability to distinguish between classes (e.g., pass/fail), with values closer to 1.0 representing better 

classification performance. LBSVM achieves stable ROC values (0.804 training dan 0.81 testing), reflecting 

good generalization and reliable binary classification performance on student data. LBRCNN shows the 
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highest ROC during training (0.863), suggesting strong learning capacity. However, its drop to 0.746 during 

testing indicates possible overfitting, where the model learns well on training data but struggles to generalize. 

LBANN maintains moderate ROC scores (0.826 training and 0.717 testing), showing consistent but slightly 

reduced performance during testing, which is still suitable for practical applications. LBYOLO, while 

optimized for speed, records lower ROC values (0.713 training and 0.693 testing), highlighting its limitation 

in precise class separation despite its real-time classification strength. LBSVM offers consistent ROC scores, 

making it reliable. LBANN balances learning and generalization well. LBRCNN excels in training but may 

need tuning to avoid overfitting. LBYOLO, though fast, is less effective in accurately separating student 

performance classes based on ROC. 

 

 

Table 3. Performance comparison of ROC applied on student performance dataset 

Methods 
Training Testing 

ROC ROC 

LBSVM 0.804 0.81 

LB RCNN 0.863 0.746 

LBANN 0.826 0.717 

LBYOLO 0.713 0.693 

 

 

Figure 4 illustrates the ROC performance comparison of four models—LBSVM, LB RCNN, 

LBANN, and LBYOLO—on real-time educational data. ROC values reflect each model’s ability to 

distinguish between classes (e.g., pass/fail or high/low performers). LB RCNN shows the highest training 

ROC (0.863), indicating strong model learning, while LBSVM has the best testing ROC (0.81), showing 

better generalization. LBANN performs moderately in both phases, whereas LBYOLO records the lowest 

ROC values, suggesting limited effectiveness in classification tasks. This analysis helps in selecting reliable 

models for predicting student outcomes and supporting personalized interventions in EDM. 

 

 

 
 

Figure 4. Performance comparison of ROC in real time dataset 

 

 

5. CONCLUSION 

This paper presented a LEE-based deep learning framework for predicting student performance 

using EDM techniques. By integrating LEE with advanced models such as SVM, YOLO, RCNN, and ANN, 

the framework enhances feature selection, improves model interpretability, and significantly boosts 

classification accuracy. Among the models evaluated, the LBYOLO architecture achieved the highest 

prediction accuracy (93%) with the lowest execution time (1.84 s), demonstrating strong potential for real-

time decision-making systems. LBANN, on the other hand, exhibited the most balanced performance across 

precision (0.723), recall (0.734), and F1-score (0.732), suggesting its suitability for stable and generalizable 

academic prediction tasks. The findings have practical implications for educational institutions aiming to 

implement predictive analytics for early student intervention, resource allocation, and personalized learning 

strategies. The approach also supports building intelligent dashboards to monitor student risk profiles 

dynamically. However, the study has certain limitations. The performance may vary with different datasets, 

and the deep models require considerable computational resources and high-quality labeled data. 
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Additionally, while LEE improved feature relevance, domain-specific interpretability of selected features 

remains an area for improvement. Future research will focus on extending this framework to cross-

institutional and multilingual datasets, incorporating adaptive learning algorithms, and modeling behavioral 

traits for more personalized educational recommendations. Further integration with explainable AI (XAI) 

techniques will also be explored to enhance transparency in academic decision support systems. 
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