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 This study focuses on developing an efficient and cost-effective approach for 

compressing phonocardiogram (PCG) signals without compromising their 

quality to be used in in real-time cardiac monitoring devices. The method 

utilizes two data compression techniques, capturing heart sounds and 

transforming them into the frequency domain to extract essential features such 

as frequency, phase, and amplitude peaks. The compressed signals are 

subsequently reconstructed to faithfully replicate the original heart sounds. 

The findings contribute to advancements in biomedical signal processing and 

compression methodologies, with potential applications in telemedicine, 

internet of things (IoT), and remote sustainable healthcare systems. 

Compressed PCG signals enable real-time remote consultations and 

continuous cardiac health monitoring, particularly in underserved regions 

with limited medical resources. This research holds significant potential for 

improving access to cardiovascular healthcare and promoting overall health 

and well-being. 
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1. INTRODUCTION 

In biomedical signal processing, especially in the processing of phonocardiogram (PCG) signals, 

considerable advancements have taken place to treat physiological data more efficiently in transmission. The 

PCG acts as a crucial diagnostic instrument in cardiovascular diseases, mainly by detecting and recording heart 

sounds, for instance, complex movements of the cardiac structures and blood flow phenomena [1]-[3]. 

Traditionally, the process of auscultation consisted of infinitely listening to heart sounds with a rudimentary 

stethoscope [4], [5]. Some heart sounds or murmurs may remain undetectable, and no recordings are made for 

further analysis. The closure of heart valves generates at least two different heart sounds. First, the S1 sound is 

generated when the atrioventricular valves close at the beginning of systole, while the S2 sound is produced 

by the closure of the pulmonary and aortic valves at the end of systole. 

Effective data transmission and storage are becoming more and more important as telemedicine, 

internet of things (IoT), and remote patient monitoring are used more frequently. Multi-antenna systems and 

cooperative communication techniques are used by next-generation wireless communication systems to boost 

signal transmission efficiency [6]-[9]. However, data rates usually must be lowered due to bandwidth 
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limitations. Next-generation source coding techniques address this limitation by compressing data while 

preserving important information. Effective data encoding is made possible by methods like entropy coding 

and predictive coding, which guarantee the best possible bandwidth utilization without sacrificing signal 

quality. These systems effectively overcome bandwidth constraints by fusing next-generation source coding 

techniques [10]-[17] with multi-antenna technology and cooperative communication strategies [18]-[20], 

guaranteeing secure signal transmission. This method works best in applications like IoT and mobile networks. 

The use of these cutting-edge technologies promises optimal spectrum utilization and smooth connectivity for 

a wide range of wireless communication applications. 

PCG signals present difficulties because they are data-intensive by nature, despite being information-

rich by nature. This makes the need for reliable and affordable compression methods designed especially for 

PCG signals urgent. These signals actually record the acoustic sounds generated by the beating heart, while 

electrocardiogram (ECG) signals represent the electrical pulse of the heart [21]-[25]. Unique to these signals 

are their characteristics; understanding them would shed light on the diagnostic data contained therein. In 

previous research works, some processing difficulty specific to the PCG signals were pointed out, including 

accurate peak detection, amplitude variations, and interference from external noise. A compression method has 

been developed as a result of these considerations in an attempt to mitigate these issues. Although many 

compression techniques have been used for biomedical data, including ECG signals, specific techniques for 

PCG signals remain scarce. This work considers this gap by using sinusoidal coding, an approach known for 

maintaining main features during compression. 

The need of preserving vital diagnostic characteristics while signal compression is underway has been 

emphasized by research [26], [27]. Although PCG signals are widely used for medical monitoring and 

diagnosis [28], [29] such as in ECG stress test machines, effective compression methods are required to 

maximize storage and transmission bandwidth due to their high data volumes. Lossless compression is a 

popular technique for PCG signal compression that lowers signal size without sacrificing information  

[10]-[13], [17], [21], [22], [30]. By breaking down signals into their frequency components, the wavelet 

transform, a well-known method for lossless compression, allows for effective compression of each band. 

Other methods, like Huffman coding and run-length encoding, have also been effectively used for PCG signal 

lossless compression. Another strategy is lossy compression, which sacrifices some information in order to 

achieve higher compression ratios (CR) [10]-[16]. One popular lossy compression technique is predictive 

coding, where the sample is predicted from previous ones, and the prediction error is encoded. Significant 

compression is accomplished with little information loss by quantizing this error. Machine learning methods 

have recently become effective tools for compressing PCG signals. High CR have been made possible while 

maintaining essential information by using deep learning algorithms, such as autoencoders, to learn compact 

representations of PCG signals. These techniques efficiently compress PCG signals while capturing intricate 

patterns. 

Overall, techniques for compressing PCG signals encompass a variety of techniques from advanced 

machine-learning approaches to simple signal-processing methods [10]-[16]. Each technique has compromises 

about information loss, computational complexity, and compress ratio. Application-specific requirements for 

CR and willingness for information degradation has implications for the selection process for compression 

technique. With advancing research there will likewise new, even more effective methods which should evolve 

the field of PCG signal compression. 

 

 

2. RESEARCH METHOD 

A sinusoidal model, as described in [10], [11], offers an efficient voice-coding methodology that relies 

on the amplitudes, frequencies, and phases of sine waves in a PCG signal to enable both analysis and synthesis. 

High-quality signal reconstruction at low data rates has been successfully accomplished with this technique 

[10]-[13], [17], [21], [22]. It represents the k-th segment, i.e., k-th frame, of the input signal as a sum of a 

specific number of sinusoidal parameters, each uniquely characterized by its amplitude (𝐴𝑘), frequency (𝛺𝑘), 

and phase (𝜙𝑘): 

 

𝑠𝑖𝑔(𝑛) = ∑ 𝐴𝑘.sin(𝛺𝑘𝑛 + 𝜙𝑘)𝑆
𝑘=1  (1) 

 

where 𝐴𝑘, Ω𝑘, 𝜙𝑘, and S correspond to the amplitude, frequency, phase of the k-th sinusoidal wave, and the 

total number of potential peaks, respectively. Sinusoidal encoders are flexible for a range of signal types 

because they are highly effective in handling both voiced and unvoiced segments. During the analysis stage, 

the parameters that correspond to the sinusoids are extracted after the input signal has first been split up into 

smaller frames. These extracted parameters are then used to reconstruct the original frames at the receiver side 

during the synthesis stage in order to effectively convert PCG signals into the frequency domain and capture 
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the unique features of heart sounds, the signal transformation process utilizes the Sinusoidal Coding method. 

To improve precision in representing frequencies, the transformation algorithm employs a windowing 

technique such as the Hamming window. 

To extract the intrinsic attributes of the PCG signals, working with the frequency domain is necessary. 

During the optimal feature extraction process, the essential diagnostic information required for accurate signal 

reconstruction is preserved. This ensures that the PCG signal is accurately reconstructed from the feature-

extracted signals with the original heart sound intact. An important consideration for the PCG signal 

compression system is the overarching expectation of the system, the CR versus the signal fidelity. In the 

pursuit of a satisfactory balance between compression and preserved diagnostic data, the algorithm is modified. 

In the efforts to enhance the system responsiveness and seamless incorporation into healthcare frameworks, 

real-time implementation demands dominate the need for heavy computational efficiency. The algorithm is 

designed with the existing medical devices and healthcare system in mind to ensure seamless interoperability 

by embedding standard formats for data, storage, and transmission. For added system reliability, consistent 

performance across diverse signal conditions is rigorously tested. 

The signal transformation approach uses ssinusoidal coding at the output of the signal transformation 

approach to convert the PCG signals to the time domain from the frequency domain. The MATLAB code 

outlines a simple method which begins with a time base of the PCG signal windowed by the Hamming window 

for spectral analysis. The spectral analysis used fast Fourier transform (FFT) to obtain the spectrum 

representation. This representation isolates the sinusoidal components needed to obtain information about the 

frequency, phase, and amplitude. The feature extraction method revealed useful information in the frequency 

domain while extracting useful features including frequency, phase, and amplitude. Reconstruction of the 

important features converted back to time-base so that phase information was retained to enhance the 

correctness of the signal. We have identified performance measures that will assist the decision-making of the 

design parameters of the PCG signal compression system. The measures will help evaluate the system’s 

usefulness and ensure useful diagnostic information is retained during compression: 

a. CR: the ratio between the original and transmitted bit rate which needs to be optimized to find a balance 

between decreasing the overall bit rate and keeping significant information. 

b. Fidelity: the quality of the reconstructed PCG signal as compared to the original one. The purpose of the 

fidelity criteria is to maintain the compressed PCG signal's clinical dependability. 

c. Real-time processing: any clinical data with time-dependent characteristics must be made available with 

the real-time processing specifications in the design. The system is provided with strict time limits to allow 

it to perfectly integrate into healthcare workflows. Consequently, the above standards would ensure that 

the suggested PCG compression system qualifies on its performance, reliability, and clinical usefulness 

standards. Thus, the following criteria were then developed: 

− Signal transformation criteria 

a) Hamming window technique: 

− Chosen for its ability to suppress the side-lobes while maintaining the resolution. 

b) FFT size: 

− Selected to optimize frequency and time resolution. 

− Chosen according to the engineering standards and best practices in signal processing. 

− Feature extraction criteria 

The feature extraction stage plays a pivotal role in preserving diagnostic information from the PCG 

signal. The design criteria for this stage include: 

a) Peak-picking threshold: 

− Used to remove unnecessary data while keeping diagnostically useful characteristics. 

− Adaptable to varying signal conditions to provide robustness and reliability. 

b) Number of peaks: 

− Determined based on PCG signal diagnostic importance and complexity. 

− Capable of providing sufficient information to allow robust signal reconstruction. 

− Signal reconstruction criteria 

In order to give proper reconstruction of the PCG signal, the reconstruction algorithm is designed to 

meet some engineering requirements: 

a) Phase management: 

− Particular attention is paid to preserve phase information while reconstructing. 

− This must be done so that data is not lost and an original replica of the reconstructed signal is like the 

original one. 

b) Overlap and interpolation: 

− Evaluation of overlap and interpolation requirements during reconstruction. 
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− These values are traded-off to achieve both computational effectiveness and reconstruction accuracy 

within accepted engineering standards. 

If we stick to these criteria, the signal transformation, feature extraction, and reconstruction methods ensure 

the compression system is of high fidelity, computationally efficient, and reliable, making them well-suited for 

clinical and real-time applications. 

 

2.1.  Encoder stage 

The encoder converts the PCG segments into parameters that are quantized into binary strings and 

sent over a communication channel. The long-term goal of the proposed method is to drastically decrease the 

bit rate of PCG signal while maintaining signal integrity and perceived quality. 

− Sampling and frame segmentation 

The PCG signal is sampled at 8 kHz and divided into frames. Each frame is classified into one of two 

groups dependent on its energy level-i.e., high-energy frames and low-energy frames, as follows: 

a. Voiced frames: these are frames with higher energy levels and, hence, are generally associated with carrying 

augmented diagnostic information. 

b. Unvoiced frames: these frames have lower energy levels and need fewer peaks to represent their features. 

− Subdivision and energy-based classification 

In addition to that, each voiced frame is divided into N-subframes, which are also classified according 

to their energy levels: 

a. High-energy subframes: allocated more peaks to capture the details. 

b. Low-energy subframes: assigned fewer peaks to optimize the bit rate while maintaining essential 

information. 

The hierarchical classification approach qualifies successful extraction of required parameters for low 

bit rate representation while ensuring that quality is not lost in reconstructing the PCG frames. The two major 

areas into which this encoding algorithm is divided are further elaborated in the sub-sections that follow. The 

classification approach has ensured an efficient as well as a fidelity-based encoding process, thereby satisfying 

the compression system objectives. 

 

2.1.1. Sinusoidal peaks selection strategy 

To ensure the wide-sense stationarity of the PCG signal, in the proposed method of encoding, the 

signal is divided into primary frames with a duration lying anywhere between 20 and 40 ms. These frames, 

after being windowed, are converted into the frequency domain by means of FFT so that sinusoidal peaks might 

be found, which are necessary for the accurate signal reconstruction on the decoders' side. Since an inherent 

conflict between window size and parameter resolution exists in the selection of peaks, the chief challenge in 

this process lies in estimating the significant peaks and their parameters and at the same time in deciding the 

best duration for the analysis window. On one hand, window length must be chosen as a tradeoff between 

competing objectives: detection of rapid variations requires short windows, whereas accurate frequency 

resolution and the separation of closely spaced spectral elements require longer ones. To meet this tradeoff, the 

analysis is performed using the Hanning window since the better side lobe suppression leads to better results 

in accurate peak detection. 

Short-time Fourier transform (STFT) local maxima in magnitudes are used to identify the sinusoidal 

components in the PCG signal. A spike or a local maximum in the STFT magnitude corresponds to a sinusoidal 

wave. While the method is effective and is characterized by a fixed bit rate, reducing this bit rate means 

choosing a small number of sinusoids for encoding. To improve the performance of this step, peaks are selected 

with the help of a threshold, i.e., local maxima peaks surpassing that threshold are identified as sinusoidal 

peaks. Taking into consideration the spectral slope change, peaks are selected, especially those corresponding 

to high-to-low transitions. Afterward, a parabola is fitted through each peak and the vertex value of this 

parabola is used to compute the peak frequency. The whole process yields roughly 80 peaks. The identified 

peaks are reduced further, through some suitable means of reduction that may lose little in perceived 

information. After this reduction: 

− Frequency values of the peaks, together with the important phases corresponding to them, are extracted. 

− Quantization is performed on these parameters to prepare for transmission. 

Final transmission: after quantization, the parameters are transmitted to the receiver so that the PCG signal can 

be efficiently encoded with the maintenance of diagnostic quality. Thus, the approach balances bit rate 

reduction and fidelity to conform to the computational and diagnostic criteria. 
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2.1.2. Optimization of data rate 

The proposed method is to encode the significant peaks since only such a procedure would enhance 

the efficiency of the construction of block codes while maintaining the excellent signal properties. This is 

achieved in a multi-level procedure which decomposes the PCG signal into main frames and then sub-frames. 

The PCG signal is first segmented into main frames and labeled as voiced and unvoiced using a preconfigured 

energy threshold. Voiced frames, which have energy levels above an energy threshold, are split into N sub 

frames. More peaks are assigned to the higher-energy sub-frames and less to the lower-energy sub-frames. On 

the other hand, unvoiced frames, which have energy levels less than the threshold, are also split into sub-

frames, but without further energy classification. All the sub-frames in the unvoiced frames are allotted the 

same number of peaks, which is the same as the distribution for the lowest-energy sub-frame in the voiced 

frames. This systematic classification and segmentation ensure that only the most significant peaks are coded, 

thus reducing the bit rate without compromising the fidelity of the reconstructed PCG signals. 

Reduction of the number of parameters is crucial for minimizing compression and reconstruction 

errors. The parameter reduction works to decrease the parameters per key frame to 15-30. This is achieved by: 

a. Segmented classification: ranking the most important peaks according to energy levels. 

b. Quantization: in this procedure, further lowering parameter counts is done. 

After classification and segmentation, three encoding stages are used to maximize parameter 

reduction: 

a. Peak reduction: to reduce the number of necessary parameters, the most significant peaks are encoded 

where redundant or less important peaks are filtered out. 

b. Phase reduction: keeps enough information to guarantee reconstruction fidelity while decreasing the 

accuracy of phase values linked to sinusoidal peaks. 

c. Threshold reduction: optimizes the bit rate while preserving vital diagnostic information by introducing 

adaptive thresholding to remove small peaks that fall below a predetermined significance level. The 

suggested method successfully strikes a balance between low bit rates and high-quality signals by utilizing 

these three encoding levels. 

− Number of peaks minimization: 

The job of this phase is to discover and select N most significant sinusoidal components of every 

voiced frame, the value of N being predetermined in terms of target data rate. The encoding scheme of this 

phase involves the following steps: 

a. Frequency domain transformation: every sub-frame is converted into the frequency domain using methods 

like the FFT in order to facilitate analysis and selection of significant sinusoidal components. 

b. Peak identification: assign the most dominant tops in the frequency domain at each sub-frame as the most 

dominant sinusoidal components. 

c. Peak selection for closely situated peaks: when peaks are tightly distributed in the frequency spectrum, 

select the largest peak among the group to represent the group. Redundancy is eliminated with the prime 

spectral information being preserved. This method ensures that the selected peaks provide a good-quality 

approximation of the signal and, in effect, ready it for the subsequent steps of the encoding process. By 

focusing on the strongest peaks and eliminating weaker peaks, the method achieves the optimal balance 

between data compression and signal quality, and hence forms a good foundation for further processing. 

− Phase minimization: 

This stage is intended to minimize the phase parameters by classifying each sub-frame as voiced or 

unvoiced. Voiced/unvoiced classification depends on the following voiced frame features: 

a. Greater energy: voiced frames has energy values greater than a predefined threshold. 

b. Zero crossings: voiced frames typically possess fewer zero crossings compared to unvoiced frames. 

c. Pitch value: voiced frames possess a specific pitch value that could be utilized for separation from unvoiced 

frames. 

Among these criteria, the first—greater energy—is the most significant for reducing overall 

complexity. As a result, it is implemented using a binary decision-making process. The encoding process for 

phase parameters is as follows: 

a. Voiced frame processing: if a frame is classified as voiced (i.e., it has substantial energy content), the 

encoder directly extracts its phase parameters. 

b. Unvoiced frame processing: for unvoiced frames, phase parameters are estimated using phase extraction 

equations from established methods, such as those presented by McAulay and Quatieri [10], [21], [22], or 

Ahmadi and Spanias [11]. By minimizing the number of phase parameters in unvoiced frames and taking 

advantage of human auditory insensitivity to phase distortion, the technique significantly reduces 

computational and data transmission demands. This approach ensures that the perceived quality of the 

reconstructed PCG signal remains largely unaffected while optimizing resource efficiency. 

− Threshold optimization 
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This stage is considered the most effective of the minimization techniques described, as it focuses on 

significantly reducing the number of sinusoidal peaks while maintaining the perceived integrity of the signal. 

By applying a low threshold value, peaks with amplitudes below this threshold are systematically removed, 

resulting in the following benefits: 

a. Peak elimination below threshold: 

− Eliminates insignificant peaks to reduce the corresponding frequencies, amplitudes, and phases. 

− Decreases the number of amplitudes required for encoding. 

b. Noise filtration: 

− Filters out noise-related peaks with low amplitudes, improving the overall quality of the recovered frames. 

c. Optimized data rate: 

− Reduces the overall bit rate needed for transmission. While this method improves signal quality, increasing 

the threshold beyond a certain point may result in corrupted frames by inadvertently filtering out critical 

informative peaks. Therefore, finding the optimal threshold value is important and requires an in-depth 

statistical study to optimize data reduction and signal quality. 

After applying all reduction stages: 

a. Each main frame will contain S amplitudes, S frequency values, and 0.5S phases. 

b. For each main frame: 

− Amplitude and frequency values: 6 bits are allocated for each. 

− Phase values: 4 bits are allocated for each. 

The required data rate for each frame is calculated as (2): 

 

𝐹 = 𝑆 × (6 + 6) + (0.5𝑆 × 4) = 12𝑆 + 2𝑆 = 14𝑆 𝑏𝑖𝑡𝑠/𝑓𝑟𝑎𝑚𝑒 (2) 

 

Thus, the data rate per frame depends directly on the number of selected peaks S, ensuring efficient encoding 

while maintaining the quality of the reconstructed PCG signal. The total data rate (R) can be calculated as (3): 

 

𝑅 = 𝐹 × 𝑁 = 14𝑆 (𝑏𝑖𝑡𝑠/𝑓𝑟𝑎𝑚𝑒) × 𝑁 (𝑓𝑟𝑎𝑚𝑒𝑠/𝑠) = 14𝑁𝑆 𝑏𝑝𝑠 (3) 

 

Extra bits can be reserved for functions such as control, error detection, and error correction to enhance system 

reliability and performance. 

 

2.1.3. Advantages of the proposed coding technique 

As outlined in the preceding section, the proposed coding approach demonstrates several notable 

features and benefits: 

− Effective and efficient stages: incorporates highly effective and efficient encoding and decoding processes, 

optimizing performance. 

− High-quality signal reconstruction: produces a high-quality reconstructed PCG signal at the receiver's side, 

ensuring fidelity to the original signal. 

− Reduced data rate: achieves a significantly reduced data rate in the range of 4-8 kbps, enhancing 

transmission efficiency. 

− Noise robustness: improves the reconstructed signal's quality even in the presence of noise, maintaining 

diagnostic accuracy. 

− Pitch independence: operates independently of the fundamental pitch, making it versatile and applicable to 

a variety of PCG signals. 

− High noise immunity: possesses good noise immunity, which ensures operation under harsh settings. 

− Power and bit rate optimization: leads to a power and bit-rate-minimized transmission; hence it is suited 

for applications with limited resources, such as telemedicine or IoT medical devices and systems. 

− Error handling capability: allows for the implementation of error detection and correction techniques to 

achieve more reliable data transmission. This coding technique reflects a well-rounded approach to PCG 

signal compression with respect to quality, efficiency, and robustness and thereby becomes a convenient 

coding alternative for actual healthcare applications. 

 

 

3. RESULTS AND DISCUSSION 

The first step to compress the PCG signal was to translate the proposed technique into working 

MATLAB code, allowing for a thorough test of the performance and determining where improvements could 

be made. The implementation started with the process of signal transformation where a Hamming window was 

used while the FFT transformed PCG signals into the frequency domain to establish a foundation for feature 
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extraction. Second, peak-picking based feature extraction software was employed to identify significant 

frequency peaks from the transformed signals with promising outcomes for the overall extraction of the 

fundamental features applied in signal reconstruction. Peak-picking based feature extraction software carried 

out this significant task. Finally, a reconstruction algorithm converted the extracted features to the time domain. 

Initial testing revealed no clear differences between the original and the reconstructed PCG signals, which 

verified high fidelity. Examination continued to show that the incoming signals were similar in form and all 

applicable properties to the original signals, Figures 1 to 3. The primary functionality of the compression unit 

was extensively tested by a first MATLAB model. The signal transformation, feature extraction, and 

reconstruction algorithms worked perfectly to preserve the integrity of the PCG signal and were very promising 

in terms of real-world applications. Future advances and enhancements will focus on raising computational 

capability and robustness and optimizing the system in real-word PCG and ECG medical devices and stress 

test machines. 

 

 

  

 

Figure 1. Difference between the original signal and 

the reconstructed signal 

 

Figure 2. Representation of several frames in the 

PCG signal 

 

 

 
 

Figure 3. Shape of a single frame accurately and more clearly 

 

 

The implementation phase is a comprehensive evaluation of the PCG signal compression algorithm 

to ensure it performs satisfactorily with real-time data taken from a well know datasets. The algorithm was 

tested for reliability and applicability in scenarios by applying it to several PCG datasets of actual cardiac 

recordings taken from a well-known databases. Typical and key performance parameters were systematically 

and thoroughly analyzed and included the CR, which measures the capacity for data reduction; the mean 
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squared error (MSE), which gives accuracy of reconstruction; and the signal-to-noise ratio (SNR), which 

ensured preservation of some quality of the signal during reconstruction. The algorithm was measured under 

various conditions, namely, different noise levels and amplitude changes with different cardiac pathologies, to 

check consistency and robustness. Although it is able to maintain high fidelity in reconstruction and perform 

compression very efficiently, it has a few downsides with regards to noise sensitivity and time delays during 

computation. For that matter, some modifications are suggested that go towards fixing these problems like 

adaptive peak-picking thresholds for handling signal variation, better phase handling through advanced 

approaches such as interpolation, and optimized real-time processing. These improvements aim to make the 

system more robust, adaptable, and reliable for real-world healthcare applications such as real-word PCG and 

ECG medical devices and stress test machines. 

 

 
 

4. CONCLUSION 

The primary objective of this work was to develop a technique for compressing PCG signals that 

significantly reduces data size and is also capable of restoring high-quality signals for making accurate cardiac 

diagnoses. Sinusoidal coding was utilized to achieve this, providing an economical approach that is specially 

devised for telemedicine and low-resource healthcare systems. Iterative design and rigorous testing resulted in 

the effective application of the method of compression, obtaining the best balance between effectiveness of 

compression and diagnostic accuracy. The ultimate design had a better Sinusoidal coding algorithm that had 

the capability to compress PCG signals in an effective manner while retaining critical diagnostic information, 

offering a special means for characterizing cardiac activity in a summarized and dependable way. 
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