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 Suicide attempt prediction is a challenging classification problem that 

involves a variety of risk factors in individuals with various medical 

conditions. Accurate risk stratification prediction is hampered by the absence 

of reasons for those who have attempted suicide and developing prediction 

model is challenged to be explained. Therefore, this work aimed to develop a 

multiclass prediction model for suicide attempts and to use Shapley additive 

explanations (SHAP), an explainable artificial intelligence (XAI) method to 

analyze the prediction model for suicide attempts in explaining the decision 

of the model. The prediction model is trained using machine learning 

approaches, random forest (RF) and gradient boosting (GB), on a clinical 

dataset of patients with chronic diseases. GB demonstrated higher accuracy 

with 0.81 than RF with 0.78 for multiclass classification results (no risk, low 

risk, moderate risk, and high risk). By analyzing the SHAP explanations, 

clinicians can gain valuable insights into the factors contributing to suicide 

attempt predictions in patients with chronic diseases. This enhanced 

understanding can facilitate more informed and appropriate treatment 

decisions, potentially leading to improved patient outcomes and targeted 

interventions. 
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1. INTRODUCTION 

The global rise in suicide rates, which accounts for nearly one million deaths annually, highlights its 

status as a critical and escalating public health crisis [1]. A growing number of suicide cases are linked to a 

combination of risk factors, including stressful life events, economic problems, and mental health problems. 

Therefore, it has recently become important and critical to accurately assess individual suicide risk [2], [3]. In 

addition, understanding and analyzing risk factors are a critical component of suicidal behavior in an 

individual. 

Suicidal behavior is defined by the study from Leo et al. [4] as behaviors that intentionally or 

unintentionally harm himself or herself; it includes suicide deaths, suicidal ideation, suicide attempts, and 

self-harm. There are multifactorial risk factors that affect suicidal behavior such as mental disorders, history 

of suicide attempts, financial problems, social problems, and substance abuse [3]. Assessing individual 

suicide risk based on predictions is important for clinicians when making decisions. Prediction of suicide 
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attempts currently based on manual risk assessments such as the Columbia suicide severity rating scale  

(C-SSRS), the SADS person scale, and the Beck’s scale for suicide ideation (BSSI) has been slow to improve 

and is not sufficiently reliable for predicting suicide attempts [5], [6]. Research by Belsher et al. [7] found 

that the development of new scales for suicide attempts is costly and time-consuming. 

Recently, machine learning techniques have been explored for predicting suicide attempts in several 

studies [8]-[10] using decision trees, support vector machine and logistic regression. The main task in 

predicting suicide attempts is to classify individuals with suicide attempts (suicide attempter) and individuals 

without suicide attempts (non-suicide attempter). In simple terms, this is a binary classification task. Binary 

classification models can be effective in predicting suicide attempts, but there is a limitation that they 

oversimplify the complex phenomenon due to the influence of multiple risk factors, lead to inaccurate 

predictions of patients with suicide attempts [11]. Besides that, in the context of predicting suicide attempts, 

the results evaluated based on positive and negative screening are less beneficial and not precise for further 

management and treatment of suicidal behavior [12]. This is because treatment based on positive (yes) or 

negative (no) screening might lead to inefficient decision making and depends only on the risk factors that 

the individual presents. Therefore, identifying and monitoring individuals at varying risk of suicide helps 

clinicians to make accurate classification (low risk, moderate risk, and high risk). 

Multiclass classification is a classification problem in which the goal is to predict to which of 

several classes a new data point belongs. In general, there are three or more possible classes in multiclass 

classification [13]. In the context of suicide attempt prediction, multiclass classification is defined as a 

classification problem for classifying individuals with suicide attempt that includes no risk, low risk, 

moderate risk, and high risk. Multiclass classification is a challenging, but also a very important problem in 

practice to predict suicide attempt to improve decision-making. Thus, there is a need for a multiclass 

prediction model to predict and analyze suicide attempts in the context of the complex occurrence of risk 

factors (suicide risk) with multiclass classification [6]. Multiclass classification is a suitable approach for 

predicting suicide attempts, as individuals may be at low, medium or high risk based on different risk factors, 

and can enable personalized interventions and support [14]. 

Explainable artificial intelligence (XAI) provides methods for making artificial intelligence (AI) 

predictions more transparent and understandable which has been demonstrated in numerous studies [15], 

[16]. XAI techniques include Anchors, local interpretable model-agnostic explanations (LIME), Shapley 

additive explanations (SHAP), partial dependence plots (PDP), and counterfactual explanations that have 

been used in different problems and application. In healthcare, XAI has been used in the analysis of patients 

with cardiovascular disease to explain the associated risk factors. However, there is lack of study that 

addresses the analysis of the healthcare prediction using XAI in the context of patients with chronic diseases. 

In fact, there is a lack of studies using XAI as a method to analyze and explain suicide attempts in detail in 

the context of populations and individual cases [17]. The XAI method in the context of suicide prediction is 

crucial for clinical interpretability and building trust in the prediction model for clinical decision making. 

SHAP method contribute to clinical interpretability in suicide attempt prediction by providing clear 

explanations, identifying key risk factors, supporting decision making and building confidence in the 

prediction model. By providing insight into feature importance, causal relationships and the rationale for 

model predictions, SHAP can help improve the effectiveness of XAI in predicting suicide attempts. 

Therefore, the main contribution of this study is to develop a multiclass prediction model for suicide 

attempts and utilize the XAI method, SHAP, to analyze and explain predictions about individuals for clinical 

decision making and clinical interpretability. The novelty of the study is that it focuses on multiclass 

classification in predicting suicide attempts, which has not been explored and investigated in previous studies 

that are usually categorized into binary classification only. Risk stratification with different classes of suicide 

attempts is important for clinicians to create personalized treatment plans and make accurate decisions. 

Understanding suicidal risk for clinical interpretability is necessary for clinicians to understand the risk 

factors underlying a model’s predictions in order to make informed decisions and provide effective 

interventions. Assist from the XAI method, specifically SHAP, can help build trust and transparency between 

clinicians, and facilitate its use in clinical practice. 

This paper is organized as follows: section 2 discusses the framework for the multiclass prediction 

model based on the methodology and section 3 presents the results and analysis of the prediction model. 

Finally, section 4 summarizes the conclusions with future improvements. 

 

 

2. METHOD 

Figure 1 shows the framework of a multiclass prediction model with XAI for analyzing suicide risk 

in individuals with a suicide attempt and without a suicide attempt. The framework consists of five stages:  

i) data collection, ii) data pre-processing, iii) model development, iv) model evaluation, and v) clinical 
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decision making. Each of the stages is discussed in details in order to develop a multiclass prediction model 

for suicide attempt prediction using the XAI method. 

 

 

 
 

Figure 1. A multiclass prediction model for suicide attempt using the SHAP method 

 

 

2.1.  Data collection 

The study focuses on a specific chronic disease that leads to suicide attempts, namely systemic lupus 

erythematosus (SLE). SLE is a chronic and complex multi-organ disorder categorized by autoimmune-

mediated and systemic inflammation. Research by Karassa [18] found that the vulnerability of SLE patients 

is higher risk of suicide compared to other chronic diseases. 

The clinical research data of SLE patients, consisting of 130 patients, were used to predict suicide 

attempts. The SLE dataset is based on the study by Buji et al. [19] and was collected from June to September 

2015 at Universiti Kebangsaan Malaysia Medical Centre, Malaysia. Due to the scarcity and confidentiality of 

suicidal behavior dataset, this study focuses only on the patients in Malaysia. The original SLE dataset 

consists of 23 features including demographic information (gender, religion, ethnicity, marital status, and 

employment status), and psychosocial measures (patient health questionnaire-9 (PHQ9), SELENA-SLE 

disease activity index). The risk level of a suicide attempt is based on the C-SSRS which is categorized into 

four classifications: i) no risk, ii) low risk, iii) moderate risk, and iv) high risk. The four classifications of risk 

level of suicide attempt are evaluated by medical experts and clinicians. 

 

2.2.  Data pre-processing 

The SLE dataset consists of socio-demographic information, psychosocial information, and 

assessment scores are structured in a table form. There are no missing values in the dataset. Scaling of the 

data is performed using the standardization technique and feature selection is completed to select the most 

important features for developing a multiclass prediction model. Feature selection is performed using 

recursive feature elimination (RFE). Based on RFE, a set of ten features is selected and retrieved from both 

machine learning models [8]. Table 1 shows the total of ten features identified in the dataset after feature 

selection and one output feature (risk level of suicide attempt: no risk, low risk, moderate risk, and high risk). 

 

 

Table 1. Features in the clinical dataset 
Features Values 

SLEDAI scores 0–19 
Depressive disorder 0–no and 1-yes 

History of suicide attempt 0–no and 1-yes 

Past psychiatric treatment 0–no and 1-yes 
Little interest (PHQ9) 0–Not at all, 1–Several days, 2–More than half the days, and 3–Nearly everyday 

Feeling down (PHQ9) 0–Not at all, 1–Several days, 2–More than half the days, and 3–Nearly everyday 
Sleeping trouble (PHQ9) 0–Not at all, 1–Several days, 2–More than half the days, and 3–Nearly everyday 

Trouble concentrating (PHQ9) 0–Not at all, 1–Several days, 2–More than half the days, and 3–Nearly everyday 

Feeling tired (PHQ9) 0–Not at all, 1–Several days, 2–More than half the days, and 3–Nearly everyday 
Thoughts of self-harm (PHQ9) 0–No risk, 1–Low risk, 2–Moderate risk, and 3–High risk 

Risk level of suicide attempt (Output) 0–No risk, 1–Low risk, 2–Moderate risk, and 3–High risk 

 

 

The table provides an overview of the features used to develop the prediction model, which consist 

of the SLEDAI score (the clinical assessment scale for SLE disease), depressive disorder, history of suicide 

attempt, and past psychiatry treatment, which indicate the presence (1) or absence (0) of the condition in an 

individual. Based on feature selection also, five features were selected from the PHQ-9 to develop the 

prediction model, which are little interest, feeling down, sleeping trouble, trouble concentrating, feeling tired, 

and thought of self-harm. For each question, individuals are asked to indicate whether they have been 
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bothered by the problem in the last two weeks. The measure is based on the frequency of experiencing these 

features with values ranging from not at all (0) to several days (1), more than half the days (2), and nearly 

everyday (3). All of these features are useful indicators of suicide risk to develop a reliable and accurate 

prediction model. The risk level of suicide attempt is the target feature of the prediction model. It classifies 

the overall risk of suicide attempt into four categories: no risk (0), low risk (1), moderate risk (2), and high 

risk (3). 

 

2.3.  Model development 

In developing a multiclass prediction model for suicide attempt, two ensemble tree-based techniques 

are used: random forest (RF) and gradient boosting (GB). These two ensemble tree-based techniques are 

widely used in the medical domain for classification tasks [11], [20]. Both ensemble techniques are suitable 

for suicide attempt prediction as they perform well on tabular data, specifically clinical data, can handle 

different feature types (numerical and categorical) and are compatible with SHAP. Easy to implement and 

low computational effort are advantages when training the models. To avoid overfitting due to a small 

sample size, stratified three-fold cross-validation was employed and optimal hyperparameters were selected 

to improve the performance of the predictions. 

The hyperparameters chosen for RF are the criterion, the maximum depth of the tree and the number 

of estimators (trees), and the hyperparameters for GB are the loss function, the learning rate and the number 

of estimators. These hyperparameters were chosen because they are important for the prediction model: the 

criterion for splitting the nodes in a decision tree, the depth of the tree to prevent overfitting by controlling 

the complexity of the model, and the number of decision trees, which affects the accuracy and stability of the 

model. Therefore, the chosen hyperparameters are the best combination to find the best configuration for this 

multiclass prediction model. The optimal hyperparameter settings are performed using GridSearchCV. The 

best parameters for RF are criterion (entropy), maximum depth of trees (4), number of estimators (200), and 

the best parameters for GB are loss (deviance), learning rate (0.01), and number of estimators (350). 

After developing a multiclass prediction model, analysis of the prediction is performed using XAI. 

In this study, a post-hoc explainability approach is used to explain the prediction of suicide attempt in 

patients with chronic disease. SHAP is a post-hoc explainability approach that gives each input feature an 

important value for a given prediction [21]. SHAP is based on cooperative game theory principles and the 

important value is calculated using the Shapley value to determine the contribution of the players in the game 

to the final game outcome. 

 

2.4.  Model evaluation 

The performance of the multiclass prediction model is evaluated in terms of accuracy, precision, 

specificity, and sensitivity. The confusion matrix is used in multiclass classification to measure the metrics 

and visualize the goodness of machine learning techniques. The measurement of the confusion matrix is 

taken from the study by Sokolova and Lapalme [22]. Classification accuracy is used to identify the ratio of 

correct predictions to the number of predictions, which is normally known as how often the classifier (model) 

is correct, while the precision is used to quantify the number of positive class predictions that actually belong 

to the positive class. Specificity is the proportion of individuals who test negative among all those who 

actually do not have the possibility of suicide attempt, while sensitivity is also known as recall which is the 

proportion of individuals who test positive among all those who are actually having the possibility of suicide 

attempt. 

 

 

3. RESULTS AND DISCUSSION 

We compare RF and GB as machine learning techniques for classifying suicide attempts. Three-fold 

cross-validation was performed to evaluate the prediction model. The performance results of the two machine 

learning models were evaluated in terms of accuracy, precision, specificity, and sensitivity, as shown in 

Table 2. These four measures are commonly used for the prediction of suicide attempts. 

 

 

Table 2. Performance results of machine learning models 
Performance results RF GB 

Accuracy 0.78 0.81 
Precision 0.75 0.80 

Specificity 0.70 0.75 

Sensitivity (recall) 0.78 0.80 
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Table 2 shows the performance of machine learning models for predicting suicide attempts in 

multiclass classification. Based on two models, GB revealed a good performance in the context of accuracy, 

precision, specificity, and sensitivity. As can be seen in Table 2, GB shows the highest accuracy (accuracy–

0.81) compared to RF (accuracy–0.78). Precision results also shows that GB has a higher precision with 0.80, 

than RF with 0.75. In addition, GB shows a higher specificity (0.75) and higher sensitivity (0.80) compared to 

RF. Development of multiclass prediction model able to classify suicide attempt with a good performance 

using RF and GB. However, these models are known to be black boxes (difficult to interpret and explain). 

Therefore, SHAP is integrated into the model (GB) for understanding the prediction of suicide attempts in 

patients with SLE chronic disease. Using the Shapley value, feature importance has been generated and 

illustrated in Figure 2. 

 

 

 
 

Figure 2. Important features of a multiclass prediction model 

 

 

Figure 2 shows the importance of features in predicting suicide attempt in SLE patients based on the 

Shapley value. As can be seen in Figure 2, the feature values are represented from high to low values by red 

color and blue color respectively, indicating that the feature has strong and weak importance in predicting 

suicide attempt. Based on Figure 2, the presence of depressive disorder is the strongest and most significant 

feature in predicting suicide attempt with a high SHAP value, followed by SELENA-SLE score, feeling tired, 

thoughts of self-harm and little interest. Interestingly, three of the five features that have high importance in 

predicting suicide attempt are from the PHQ9 assessment. This shows that the items and features in the risk 

assessment tools can be used to predict suicide attempt rather than using demographic information only [23]. 

In addition to the importance of features contributing to the prediction of suicide attempt at 

population level in patients with SLE chronic disease, SHAP is able to provide analysis and explanations at 

the individual level. In the context of SHAP, this is referred to local explanations. In complex machine 

learning models, local explanations provide a local understanding of how and why a particular prediction was 

made. Using SHAP, the analysis and understanding of suicide attempt prediction are represented in a force 

plot, as illustrated in Figure 3. 

 

 

 
 

Figure 3. Probability of a patient with a high risk level of suicide attempts 
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Figure 3 shows that a patient with SLE has a probability of 0.84 of being at high risk for suicide 

attempt. Based on the force plot, the features that increase prediction higher are represented by red arrows, 

while the features that decrease prediction lower are represented by blue arrows. As can be seen in Figure 3, 

the red arrow indicates that the patient has a depressive disorder and has sleeping trouble nearly everyday, 

which means a high risk for suicide attempt, while blue arrow represents by no feeling tired. This is an 

example of a patient with SLE at high risk for suicide attempt. As compared to Figure 4, the probability of 

SLE patient is at low risk for suicide attempt. 

 

 

 
 

Figure 4. Probability of a patient with a low risk level of suicide attempts 

 

 

Figure 4 shows that a patient with SLE has a low risk of suicide attempt with a probability of 0.04. 

This is because the feature/risk factors that contribute to a low prediction are the absence of a depressive 

disorder, a low SLEDAI score, and no sleep problems. Based on Figures 3 and 4, SHAP explains the 

prediction of suicide attempt comprehensively and individually. Based on the multiclass prediction model 

with XAI, the understanding of suicidal risk for suicide attempt can improve decision-making efficiently and 

effectively [17]. Therefore, the prediction model for suicide attempt can be analyzed successfully using an 

XAI method. This is important for clinicians to know and understand the features that contribute most to 

suicide risk in individual cases and also in the population. Integrating the prediction model into SHAP will 

increase the reliability and trustworthiness of predictions among clinicians in the medical domain, especially 

for clinicians and psychiatrists [24]. 

It has been shown that depressive disorders or depression in the SLE population are an important 

predictor of a high risk of suicide attempt. This is consistent with the results of previous studies using 

statistical analyses [7]. In the study by Macalli et al. [25], the group of students with depressive symptoms 

was found to be at high risk for suicidality. However, this study found that SLE patients with depressive 

disorders were most likely to attempt suicide in the future, showing that it is not only students who are prone 

to suicide attempts. In addition, the SLE patient with a higher SELENA-SLEDAI score has an impact on the 

prediction model for distinguishing the risk level for suicidal behavior. Therefore, clinicians are advised to 

assess suicide risk in patients with severe SLE disease activity. A multiclass prediction model showed 

comparable and better overall prediction performance when using multiclass classification problems to 

predict high risk for suicidal behavior. 

The difficulty of the small sample size and the limited features available is the limitation of this 

study. A small sample size impairs the ability of the model to learn robust patterns and generalize to the 

broader population of individuals with chronic diseases at risk of suicide. As suicide risk is highly 

heterogeneous, a small sample might not adequately represent all relevant subgroups, and further acquiring a 

larger dataset would improve the model’s ability to generalize diverse populations as well as represent more 

robust patterns of individuals with chronic disease. Limited features availability influenced the factors 

beyond standard clinical dataset. Enrichment with more diverse features, including social support, economic 

status, treatment response, and genetic biomarker data, will be explored in future research. In this study, the 

prediction model was developed using RF and GB only. Comparison with other models is limited as the 

study uses tabulated clinical data, which is often useful and appropriate for suicide attempt prediction model. 

The study focuses on the use of SHAP to explain the model’s decisions that is integrated with SHAP, and 

both models are compatible with SHAP. This study is a first step in establishing the feasibility of using XAI 

for suicide prediction, with the intention that future work can extend the comparative analysis to more 

complex models. In fact, only SHAP was used as an XAI in this study to understand the prediction model. 

Other XAI such as LIME and Anchors, could be investigated with a larger clinical dataset to improve 

healthcare, especially in the context of suicidality. 

 

 

4. CONCLUSION 

In this study, we develop a multiclass prediction model for suicide attempt in patients with SLE 

chronic disease using an XAI method (SHAP). We found that GB achieved higher accuracy (0.81) in 

predicting suicide attempt compared to RF. The multiclass prediction model can classify four risk levels of 
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suicide attempt (high risk, moderate risk, low risk, and no risk). With the different risk levels, clinicians can 

make a better decision. This study contributes to explain the model’s decision which shows that depressive 

disorders are the most important features influencing individuals at high risk for suicide attempts. The 

clinical implications of multiclass prediction models can contribute to personalized treatment plans that allow 

clinicians to tailor treatment plans to individual patients and also allow them to target specific interventions 

to a particular group of suicide attempt patients. Indeed, multiclass prediction models can help diagnose 

suicide attempt patients with multiple possible outcomes (treatment options), leading to more accurate and 

timely treatment decisions. This study is a guide and basis for clinicians in identifying, classifying, and 

predicting individuals with suicide attempt for further treatment and management. Future work should focus 

on diverse patient populations, integrating other clinical data and developing a user-friendly clinical tool for 

real-time assessment and decision support. 
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