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 In contemporary hybrid power systems, persistent load fluctuations disrupt 

the delicate balance between electrical output and mechanical torque, 

thereby compromising frequency stability. Load frequency control (LFC) 

mechanisms are indispensable in maintaining this equilibrium, particularly 

in systems integrating renewable and thermal energy sources. This study 

introduces a three-degree-of-freedom proportional-integral-derivative 

(3DOF-PID) controller optimized via the novel chess optimization algorithm 

(COA) and evaluates its efficacy against the ant lion optimizer (ALO) and 

Harris Hawks optimization (HHO). Extensive MATLAB/Simulink 

simulations were conducted on a hydrothermal system, with performance 

assessed through objective functions—integral of absolute error (IAE) and 

integral of time-weighted absolute error (ITAE). The COA consistently 

yielded the lowest cumulative error values (IAE=0.1548 and ITAE=0.2965), 

demonstrating its superiority in steady-state performance. However, COA 

exhibited substantial dynamic deviations, including an overshoot of 387.79% 

and undershoot of 4513.8% in ∆ftie. Conversely, HHO offered a 

significantly enhanced transient response, achieving 0% undershoot in ∆ftie 

with minimal oscillatory behavior. ALO displayed moderate performance 

but struggled with higher undershoots and prolonged settling time. The 

findings underscore the criticality of algorithm selection in controller design. 

While COA excels in minimizing long-term errors, HHO is preferable for 

applications requiring heightened dynamic stability and responsiveness. 
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1. INTRODUCTION 

In an age of swiftly rising energy demands and fluctuating load circumstances, maintaining the 

stability of contemporary power systems has become paramount [1], [2]. Frequent load fluctuations disrupt 

the balance between electrical output and mechanical torque in generators, resulting in variations in rotor 

speed and, subsequently, in system frequency [3], [4]. Load frequency control (LFC) is essential for ensuring 

https://creativecommons.org/licenses/by-sa/4.0/
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frequency stability and improving system resilience, especially in hybrid energy systems characterized by 

intrinsic variability [5], [6]. 

Motivated by environmental issues and technological progress, the amalgamation of renewable 

energy sources—such as wind, solar, and hydropower—with conventional thermal generating has resulted in 

the development of hybrid power systems [7]-[9]. These systems, although environmentally beneficial, 

provide considerable hurdles for frequency regulation due to their unpredictable nature. Ensuring stability in 

such systems requires extremely adaptable and precise control mechanisms [10]-[13]. 

Although various optimization techniques, including the ant lion optimizer (ALO) [14] and Harris 

Hawks optimization (HHO) [15], have been employed for tuning proportional-integral-derivative  

(PID)-based controllers in LFC applications [16]-[18], they often suffer from limitations such as premature 

convergence or insufficient handling of nonlinearities in hybrid settings. To address this gap, this study 

proposes the use of the chess optimization algorithm (COA) to enhance the tuning of a  

three-degree-of-freedom proportional-integral-derivative (3DOF-PID) controller. 

This paper has three primary contributions: i) it presents COA for tuning LFC controllers, ii) it 

compares COA with ALO and HHO in a hydrothermal setting, and iii) it shows enhanced frequency 

regulation using MATLAB/Simulink simulations. This research enhances the formulation of more robust and 

energy-efficient control algorithms for intricate hybrid power systems. 

 

 

2. MODEL OF THE REHEAT THERMAL AND HYDRO POWER SYSTEMS UNDER 

INVESTIGATION 

The block diagram depicted in Figure 1 represents a two-area hydro-reheat thermal power system 

that has been examined for load frequency management [19]. A detailed power system can be divided into 

multiple-LFC areas interconnected by tie-lines. It is possible to investigate a scenario involving two areas 

connected by a single tie line without any loss of generality [20]. 
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Figure 1. Two area hydro-reheat thermal power system 

 

 

3. THREE-DEGREE-OF-FREEDOM PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROLLER 

Figure 2 presents the block diagram of the 3DOF-PID controller as described in [15]. In this 

configuration, R(s) refers to the reference input signal, Y(s) corresponds to the tie-line power feedback, and 

D(s) represents an external disturbance or noise input. The principal objective of the 3DOF-PID controller is 

to mitigate substantial disturbances while ensuring dynamic responsiveness and robust closed-loop 

performance. The parameters PW and DW define the set-points for the proportional and derivative paths, 

respectively [21]. The term N denotes the filter coefficient applied to the derivative path, whereas Gff 
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accounts for the feedforward gain applied to D(s). The control signal output from the 3DOF-PID, denoted 

∆Pc is formulated as (1): 

 
∆Pc 

R(s)
 = 

s2(KDNDW + KPPW)+ s(NPW + KI) + KIN

s(s+N)
 (1) 

 

Where KP, KI, and KD denote the proportional, integral, and derivative gains of the controller, respectively. 
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Figure 2. Block diagram of 3DOF-PID controller 

 
 

4. CHESS OPTIMIZATION ALGORITHM 

This study presents an approach called the COA, which utilizes the principles and strategies from 

the game of international chess to identify the optimal value. Moreover, one must consider the specific 

movements of each chess piece along with the comprehensive strategic framework of the game. Utilizing the 

previously mentioned concept to determine the best value will enable the player to secure a win in the game. 

This will produce an algorithm exhibiting a variety of traits across multiple domains. This concept facilitates 

the creation of an algorithm, as each chess piece can move in specific ways dictated by a predefined set of 

rules, reflecting the style of the game. Utilizing these concepts in optimization will lead to the development 

of algorithms that excel in tackling a wide range of intricate challenges [22]. The Chess algorithm consists of 

the following steps: 

a. Step 1: introduce variability in the solution by allocating 8 pawns (np) in a randomized manner. 

Responses should be practical and achievable within the given limitations. Given the numerous 

mandatory requirements, it is essential that the number of iterations remain limited to one.  

b. Step 2: assess the random pawn allocations. Each response leads to an evaluation of the function. Being 

ready to classify the response signifies the function's minimum value. 

c. Step 3: display the organized responses. This step includes the sequential arrangement of 1 king, 1 queen, 

2 rooks, 2 knights, and 2 bishops. 

d. Step 4: allocate items on a one-by-one basis analyze the movements of the pieces to identify the nearby 

solution.  

e. Step 5: assess the responses in the vicinity. Assess the function for each outcome. Identify the most 

effective options in the vicinity. Every element  

f. Step 6: reposition items. Identify the optimal solution for ensuring compatibility between components and 

their environment.  

g. Step 7: analyze the search results in relation to all chess pieces. Which response yields the greatest 

function value? Identify it as the optimal solution in that search iteration.  

h. Step 8: evaluate the conditions and incorporate a local response. Provided that the criteria are fulfilled. 

Let us liberate ourselves from constrained solutions.  

i. Step 9: verify the termination criteria. If the criteria are satisfied, cease further inquiry. Enhance the 

number of iterations when the requirements remain unfulfilled. Increment the current iteration value by 1 

to obtain the updated value.  

j. Step 10: evenly distribute 8 pieces and initiate the process again.  
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k. Step 11: involves combining the current best arrangement for all chess pieces (1 king, 1 queen, 2 rooks, 2 

knights, and 2 bishops) with the starting pawn arrangement (8 pieces). This is done while setting the 

function value of the random pawn selection outcome. The 16 responses were evaluated and ordered from 

most favorable to least favorable.  

l. Step 12: reiterates step 3, focusing on the top 8 responses until the stopping condition is satisfied. 

 

 

5. MATHEMATICAL ANALYSIS OF THE PROPOSED SYSTEM 

This paper explores the stability of the proposed system through an examination of delay-based 

factors. The choice of the objective function plays a vital role in improving the dynamic outcomes of the 

system [23]. 

 

5.1.  Objective function 

In optimal control theory, a cost function is typically associated with attaining the desired control 

objective through the closed-loop system, whether in the time domain or the frequency domain. Carefully 

adjusting the controller's free parameters should minimize this function [24]. 

Integral of absolute error (IAE) serves as a key performance criterion in this study for the 

optimization assignment. IAE is defined as (2) [25]: 

 

IAE = ∫ (|∆f1|+|∆f2|+|∆Ptie|)dt
50

0
 (2) 

 

Integral of time-weighted absolute error (ITAE) serves as a performance criterion used in this study for the 

optimization assignment. ITAE is defined as (3) [26]: 

 

ITAE = ∫ (|∆f1|+|∆f2|+|∆Ptie|) ∙ t dt
 50

0
 (3) 

 

where ∆f
i
 and ∆Ptie are the frequency deviation of the power system [27]. 

 

5.2.  System constraints 

The proposed LFC system is characterized as a constrained optimization problem, with the 

constraints detailed as (4) [28]: 

 

KParamiter min ≤ KParamiter ≤ KParamiter max (4) 

 

The minimum and maximum values of the controller parameters are indicated by the min and max 

symbols. The lower boundary and the upper boundary for all 14 controllers. The parameters are detailed in 

Table 1. This investigation utilizes HHO [26], ALO [29], and COA. 

 

 

Table 1. Minimum and maximum value of the control parameter 

Controller parameter 
Gain parameter 

Hydro area Thermal area 

Lower boundary 0 0 

Upper boundary 1 1 

 

 

6. SIMULATION AND RESULTS 

The simulation of the hydro-thermal power system was conducted using MATLAB/Simulink, with a 

CPU of Core i5-12400F, 16.0 GB DDR4-3200 RAM and an NVIDIA GeForce RTX 4060 GPU. The 

parameter of the MATLAB simulation is considered as variable-step ODE45-type solvers. The simulation 

time for each iteration is established at 50 seconds. The m-file contains formulations for the proposed 

algorithms: HHO, ALO, and COA. The maximum number of iterations is set at 50 for tuning the controller 

setting in all cases. 

 

6.1.  Result using objective function integral of absolute error 

The system described is simulated using all four controllers, excluding any communication delay 

from the analysis. The appendix provides a comprehensive enumeration of the system configuration values 

for the entire system. The tuning of all controller parameters is conducted through various algorithms, 
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including ALO, HHO, and COA, as detailed in Table 2. The system's responses regarding the frequency error 

∆f
i
  (Figures 3(a) and (b)) and tie-line power error ∆Ptie (Figure 3(c)) for various controllers are summarized 

in Figure 3. The parameters in the time domain for evaluating system performance are presented in Table 2.  

 

 

Table 2. Parameter setting of the controller using objective function IAE 

Tuned parameters 
COA 

[Proposed] 

ALO 

[Studied] 

HHO 

[Studied] 
Tuned parameters 

COA 

[Proposed] 

ALO 

[Studied] 

HHO 

[Studied] 

Reheat thermal area Kp 0.4374 0.0334 1.0000 Hydro area Kp 0.1318 0.1307 1.0000 

Ki 0.5234 0.4369 0.5724 Ki 0.9414 0.1359 0.0427 

Kd 0.5175 0.4113 0.2868 Kd 0.0466 0.1090 0.0005 
Pw 0.4728 0.0940 1.0000 Pw 0.1138 0.0383 0.0949 

Dw 0.8410 0.7590 0.0006 Dw 0.0212 0.6419 0.1627 

N 0.3333 0.4716 0.1033 N 0.0992 0.0227 0.0003 
Gff 0.0444 0.1552 1.0000 Gff 0.3195 0.1796 0.0001 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 3. Frequency deviations: (a) reheat thermal zone, (b) hydroelectric zone, and (c) both areas 

 

 

Figure 3 and Table 3 present an analysis of the time-domain outcomes for the 3DOF-PID controller, 

which has been tuned using various algorithms. This analysis reveals notable differences in overshoot, 

undershoot and settling time across the three response functions. The COA exhibits a significant ability to 

reduce the cumulative error of the system, as evidenced by the minimum (IAE=0.1548). This indicates that 

COA is very effective in minimizing long-term system errors. However, COA demonstrates significant 

overshoot, with values such as 8.4210e+03% in ∆f
1
 and 21.85% in ∆Ptie, indicating a considerable degree of 

oscillation in the system response. In a similar vein, the undershoot values are noteworthy, with figures like 
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4.6398e+04% in ∆f
1
 and 8.4304e+03% in ∆Ptie, suggesting that the system may not be appropriate for 

situations that demand quick stability or minimal oscillatory behavior. 

 

 

Table 3. Time domains outcomes of the system using objective function IAE 

Function Parameter 
3DOF-PID controller using objective function IAE 

COA 

[Proposed] 

ALO 

[Studied] 

HHO 

[Studied] 

∆f𝟏 Overshoot 8.42e+03 7.69e+03 902.7076 
Undershoot 4.63e+04 126.4994 113.0894 

Setting time 5.93e+03 5.93e+03 5.92e+03 

∆f𝟐 Overshoot 3.13e+04 1.17e+04 2.28e+03 
Undershoot 1.72e+05 455.6764 336.3630 

Setting time 5.93e+03 5.93e+03 5.91e+03 

∆Ptie Overshoot 21.8549 800.2219 586.9930 
Undershoot 8.43e+03 0 0 

Setting time 5.73e+03 5.86e+03 5.92e+03 

IAE 0.1548 0.1796 0.2682 

 

 

In comparison, HHO demonstrates the most balanced and stable performance when evaluated 

against the other algorithms. The results indicate the lowest overshoot values across all response functions, 

with 902.7076% for ∆f
1
 (Figure 3(a)) and 586.9930% for ∆Ptie (Figure 3(c)). The undershoot values are at 

their minimum, recorded at 113.0894% for ∆f
1
 and 336.3630% for ∆f

2
 (Figure 3(b)). Furthermore, HHO 

exhibits a reduced settling time relative to COA, with values of 5.9249e+03 seconds for ∆Ptie in contrast to 

5.7328e+03 seconds for COA. 

 

6.2.  Result using objective function integral of time-weighted absolute error 

To assess the performance of the 3DOF-PID controller optimized using the COA for LFC, the 

controller parameters are established in accordance with the ITAE objective function. This approach is 

designed to ensure a rapid system response while minimizing cumulative error. Table 4 presents the 

optimized parameter values. 

 

 

Table 4. Parameter setting of the controller using objective function ITAE 

Tuned parameters 
COA 

[Proposed] 

ALO 

[Studied] 

HHO 

[Studied] 
Tuned parameters 

COA 

[Proposed] 
ALO 

[Studied] 
HHO 

[Studied] 

Reheat thermal area Kp 0.7830 0.8205 0.0497 Hydro area Kp 0.1284 0.1484 1.0000 
Ki 0.1157 0.1341 0.2043 Ki 0.0863 0.1358 0.1873 
Kd 0.5887 0.6573 0.4712 Kd 0.0014 0.0010 0.0449 
Pw 0.8936 0.9143 0.1138 Pw 0.0940 0.1172 0.0364 
Dw 0.1425 0.1147 0.0014 Dw 0.1239 0.2014 0.9101 
N 0.8826 0.8609 0.0148 N 0.2685 0.3099 0.0755 
Gff 0.4979 0.5390 0.9262 Gff 0.3324 0.2965 0.6863 

 

 

The system described earlier is simulated using all four controllers, excluding any communication 

delay. The appendix provides a comprehensive enumeration of the system configuration values for the entire 

system. The tuning of all controller parameters is conducted through various algorithms, including the ALO, 

HHO, and COA, as detailed in Table 5. The system's frequency error responses ∆f
i
 show  

(Figures 4(a) and (b)) and tie-line power error responses ∆Ptie (Figure 4(c)) for various controllers are 

summarized in Figure 4. The parameters in the time domain for evaluating system performance are presented 

in Table 5. 

The analysis of Table 5, which details the results of the 3DOF-PID system optimized through the 

COA, ALO, and HHO, clearly indicates that each optimization method has its own unique advantages and 

limitations. COA shows exceptional performance in reducing the cumulative system error, attaining the 

lowest ITAE value of 0.2965, in contrast to ALO (0.4932) and HHO (1.0622). Nonetheless, COA continues 

to demonstrate a higher Overshoot in certain functions, such as ∆Ptie at 387.7896%, surpassing that of ALO 

(205.9978%). Furthermore, the COA's undershoot ∆f
1
 is recorded at 1.3696e+03%, which, while lower than 

ALO's 4.8165e+04%, is still considerably higher than HHO's 59.3990%. 

 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Improved load frequency control with chess algorithm-driven optimization of … (Kittipong Ardhan) 

3435 

Table 5. Time domains the outcomes of the system using objective function ITAE 

Function Parameter 
3DOF-PID controller using objective function ITAE 

COA 

[Proposed] 

ALO 

[Studied] 

HHO 

[Studied] 

∆f𝟏 Overshoot 131.5172 3.71e+05 1.76e+03 

Undershoot 1.36e+03 4.81e+04 59.3990 
Setting time 5.93e+03 5.94e+03 5.79e+03 

∆f𝟐 Overshoot 2.23e+03 3.06e+03 2.38e+03 

Undershoot 420.4494 1.70e+04 207.9822 
Setting time 5.93e+03 5.93e+03 5.82e+03 

∆Ptie Overshoot 387.7896 205.9978 449.1254 

Undershoot 4.51e+03 8.04e+03 0 
Setting time 5.93e+03 5.93e+03 5.83e+03 

ITAE 0.2965 0.4932 1.0622 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 4. Frequency deviations: (a) reheat thermal zone, (b) hydroelectric zone, and (c) both areas 

 

 

Conversely, HHO exhibits exceptional stability in the system's response, showcasing the lowest 

Overshoot values in multiple instances, including ∆f
1
 at 1.7640e+03%, in contrast to COA (131.5172%) and 

ALO (3.7130e+05%). Moreover, HHO greatly reduces undershoot, as demonstrated in ∆Ptie, achieving 0% 

and surpassing COA (4.5138e+03%) and ALO (8.0474e+03%). The settling time for HHO demonstrates a 

competitive edge, as indicated by ∆Ptie, achieving 5.8337e+03 seconds, which is marginally lower than COA 

at 5.9395e+03 seconds and closely aligns with ALO at 5.9363e+03 seconds. 
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7. CONCLUSION 

This study employed the COA, ALO, and HHO to tune the parameters of a 3DOF-PID controller for 

LFC in a hydrothermal power system. Simulation results reveal that COA demonstrates outstanding  

long-term error minimization, achieving the lowest IAE and ITAE (0.2965), while HHO offers superior 

dynamic response with minimal overshoot and undershoot—undershoot of 0% in ∆Ptie—making it ideal for 

stability-sensitive applications. ALO provides moderate performance, showing improved overshoot in some 

cases but struggling with settling time and undershoot. 

The findings underscore the importance of aligning the choice of optimization algorithm with 

specific control objectives: COA is well-suited for minimizing cumulative errors, whereas HHO is preferable 

in scenarios requiring enhanced transient stability and rapid convergence. In terms of real-world applications, 

COA-tuned 3DOF-PID controllers hold promises for deployment in advanced power grids, particularly 

hybrid systems integrating renewable and thermal sources, where precise frequency regulation is critical. 

Nonetheless, this study is limited to simulation-based validation in a hydrothermal context. Future 

research should explore real-time implementation in large-scale power networks, investigate hybrid 

approaches that integrate COA with deep learning techniques, and assess controller robustness under varying 

levels of renewable energy penetration. 
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