A multi domains short message sentiment classification using hybrid neural network architecture
Abstract
Keywords
Full Text:
PDFReferences
B. Liu, “Sentiment Analysis and Opinion Mining,” Morgan Claypool Publ., no. May, 2012.
A. Bandhakavi, N. Wiratunga, D. Padmanabhan, and S. Massie, “Lexicon based feature extraction for emotion text classification,” Pattern Recognit. Lett., vol. 93, no. December, pp. 133–142, 2017.
C. Wu, F. Wu, S. Wu, Z. Yuan, J. Liu, and Y. Huang, “Semi-supervised dimensional sentiment analysis with variational autoencoder,” Knowledge-Based Syst., vol. 165, pp. 30–39, 2019.
F. Abid, M. Alam, M. Yasir, and C. Li, “Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter,” Futur. Gener. Comput. Syst., vol. 95, pp. 292–308, 2019.
Q. Pan and J. L. Gastwirth, “Issues in the Use of Survival Analysis to Estimate Damages in Equal Employment Cases,” Law, Probab. Risk, vol. 8, no. 1, pp. 1–24, 2009.
J. X. Zhang, X. H. Long, and W. X. Jin, “Solving the employment problems in China construction industry: Localization,IT service, minimum wage limit,” Proc. Int. Conf. E-bus. E-Government, ICEE 2010, pp. 642–645, 2010.
M. Pivec and A. Maček, “Employment background influence on social media usage in the field of European project management and communication,” J. Bus. Res., vol. 94, no. August 2017, pp. 280–289, 2019.
D. M. Boajă and F. C. Ciurlău, “Actual Issues Concerning Employment in Romania,” Procedia - Soc. Behav. Sci., vol. 62, pp. 301–307, 2012.
B. Fan, H. Tian, L. Jiang, and A. V. Vasilakos, “A Social-Aware Virtual MAC Protocol for Energy-Efficient D2D Communications Underlying Heterogeneous Cellular Networks,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8372–8385, 2018.
H. J. Choi and C. H. Park, “Emerging topic detection in twitter stream based on high utility pattern mining,” Expert Syst. Appl., vol. 115, pp. 27–36, 2019.
M. Congosto, P. Basanta-Val, and L. Sanchez-Fernandez, “T-Hoarder: A framework to process Twitter data streams,” J. Netw. Comput. Appl., vol. 83, pp. 28–39, 2017.
R. Wijayanti and A. Arisal, “Ensemble Approach for Sentiment Polarity Analysis in User-Generated Indonesian Text,” in Computer, Control, Informatics and its Applications (IC3INA), 2017 International Conference on, 2017, pp. 158–163.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, pp. 391–394, 2018.
A. F. Wicaksono, E. Nio, and S.-H. Myaeng, “Unsupervised Approach for Sentiment Analysis on Indonesian Movie Reviews,” in CISAK 2013, 2013.
R. Manurung, “Machine learning-based sentiment analysis of automatic indonesian translations of english movie reviews,” Proc. Int. Conf. Adv. Comput. Intell. Its Appl. 2008 (ICACIA 2008, vol. 1, pp. 1–2, 2008.
T. A. Le et al., “Sentiment Analysis for Low Resource Languages : A Study on Informal Indonesian Tweets,” 12th Work. Asian Lang. Resour., no. December, pp. 123–131, 2016.
W. C. F. Mariel, S. Mariyah, and S. Pramana, “Sentiment analysis: A comparison of deep learning neural network algorithm with SVM and naïve Bayes for Indonesian text,” J. Phys. Conf. Ser., vol. 971, no. 1, pp. 1–8, 2018.
Nurkholis, M. Zuwari Negara, G. Fajar Shidik, A. Zainul Fanani, Muljono, and E. Noersasongko, “Sentiment Analysis of Indonesian News Using Deep Learning (Case Study: TVKU Broadcast),” Proc. - 2018 Int. Semin. Appl. Technol. Inf. Commun. Creat. Technol. Hum. Life, iSemantic 2018, pp. 261–265, 2018.
S. J. Putra, I. Khalil, M. N. Gunawan, R. I. Amin, and T. Sutabri, “A hybrid model for social media sentiment analysis for Indonesian text,” ACM Int. Conf. Proceeding Ser., pp. 297–301, 2018.
L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” Data Min. Knowl. Discov., vol. 8, no. 4, pp. 1–25, 2018.
D. Munandar, A. Arisal, D. Riswantini, and A. F. Rozie, “Text Classification for Sentiment Prediction of Social Media Dataset using Multichannel Convolution Neural Network,” in Computer, Control, Informatics and its Applications (IC3INA), 2018 International Conference on, 2018, pp. 104–109.
A. S. M. Alharbi and E. de Doncker, “Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information,” Cogn. Syst. Res., vol. 54, pp. 50–61, 2019.
K. Chakraborty, S. Bhattacharyya, R. Bag, and A. Hassanien, “Sentiment analysis on a set of movie reviews using deep learning techniques,” in Social Network Analytics—Computational Research Methods and Techniques, Elsevier, 2018.
C. Yang, H. Zhang, B. Jiang, and K. Li, “Aspect-based sentiment analysis with alternating coattention networks,” Inf. Process. Manag., vol. 56, no. 3, pp. 463–478, 2019.
X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and recurrent neural network for sentiment analysis of short texts,” Proc. COLING 2016, 26th Int. Conf. Comput. Linguist., pp. 2428–2437, 2016.
F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” 2003.
DOI: https://doi.org/10.11591/eei.v10i4.2790
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).