Comparative study of BER With NOMA system in different fading channels

Roselin Suganthi Jesudoss, Rajeswari Kaleeswaran, Manjunathan Alagarsamy, Dineshkumar Thangaraju, Dinesh Paramathi Mani, Kannadhasan Suriyan


In today's world, cellular communication is rapidly expanding. One of the most common strategies for assigning the spectrum of users in cellular communication is the multiple access strategy. Because the number of people using cellular communication is continually expanding, spectrum allotment is an important factor to consider. To access the channel in fifth-generation mobile communication, a method known as non-orthogonal multiple access (NOMA) is used. NOMA is a promising method for improving sum rate and spectral efficiency. In this research, we used the NOMA approach to compare the bit error rate (BER) versus signal to noise ratio (SNR) of two users in rayleigh, rician, and nakagami fading channels. A single antenna with two users is used in this NOMA system. Two users can tolerate the same frequency with differing power levels in the power domain using 5G NOMA technology. Non-orthogonality ensures that NOMA users are treated equally to OMA users. According to the MATLAB simulation findings, the BER vs. SNR of two user NOMA in the Nakagami channel is substantially better than the rayleigh and rician channels.


Achievable rate; NOMA; Power allocation; Successive interference cancellation

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).