Strategy to reduce solar power fluctuations by using battery energy storage system for UTeM’s grid-connected solar system

Wei Hown Tee, Yen Hoe Yee, Chin Kim Gan, Kyairul Azmi Baharin, Pi Hua Tan

Abstract


Recent years have witnessed the increasing uptake of solar photovoltaic (PV) installations, ranging from a few kilowatts for residential rooftops to a few megawatts for large-scale solar farms. One of the key challenges for the solar PV systems is its dependency on the solar energy, which is intermittent in nature and highly unpredictable. In this regard, battery energy storage system (BESS) is regarded as the effective solution that can smoothen the output power fluctuation from the solar PV system. Hence, this work utilized BESS that had fast response time with high power and energy density to reduce the solar output fluctuations from a real grid-connected solar system installed at the campus rooftop. The characteristic of the PV power fluctuation and the BESS storage requirement to smooth out the fluctuation within the allowable limit were determined and analyzed. More importantly, actual solar irradiance data with an interval of one minute was utilized in this work. The findings suggest that BESS with 66% of the installed solar capacity and 21% of the average daily solar generation of the installed system are required to smoothen the solar fluctuation that exceeds the ramp rate limit of 10%/min.

Keywords


Battery energy storage system; Power fluctuations; Ramp rate control; Solar photovoltaic system

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v11i6.3862

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).