Power system contingency classification using machine learning technique

Sandhya Rani Gongada, Muktevi Chakravarthy, Bhukya Mangu

Abstract


One of the most effective ways for estimating the impact and severity of line failures on the static security of the power system is contingency analysis. The contingency categorization approach uses the overall performance index to measure the system's severity (OPI). The newton raphson (NR) load flow technique is used to extract network variables in a contingency situation for each transmission line failure. Static security is categorised into five categories in this paper: secure (S), critically secure (CS), insecure (IS), highly insecure (HIS), and most insecure (MIS). The K closest neighbor machine learning strategy is presented to categorize these patterns. The proposed machine learning classifiers are trained on the IEEE 30 bus system before being evaluated on the IEEE 14, IEEE 57, and IEEE 118 bus systems. The suggested k-nearest neighbor (KNN) classifier increases the accuracy of power system security assessments categorization. A fuzzy logic approach was also investigated and implemented for the IEEE 14 bus test system to forecast the aforementioned five classifications.

Keywords


Contingency analysis; KNN classifier; Newton raphson load flow; Overall performance index

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v11i6.4031

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).