Real-time multiple face mask and fever detection using YOLOv3 and TensorFlow lite platforms

Ali A. Abed, Alaa Al-Ibadi, Issa Ahmed Abed


COVID-19 has caused disruptions to many aspects of everyday life. To reduce the impact of this pandemic, its spreading must be controlled via face mask wearing. Manually mask-checking for everybody is embarrassing and uncontrollable. Hence, the proposed technique is used to help for automatic mask-checking based on deep learning platforms with real-time surveillance live infra-red (IR) camera. In this paper, two recent object detection platforms, named, you only look once version 3 (YOLOv3) and TensorFlow lite are adopted to accomplish this task. The two models are trained with a dataset consisting of images of persons with/without masks. This work is simulated with Google Colab then tested in real-time on an embedded device mated with fast GPU called Raspberry Pi 4 model B, 8 GB RAM. A comparison is made between the two models to verify their performance in relation to their precision rate and processing time. The work of this paper is also succeeded to realize multiple face masks real-time detection up to 10 facemasks in a single scene with high inference speed. Temperature is also measured using IR touchless sensor for each person with sound alarming to alert fever. The presented detector is cheap, light, small, and fast, with 99% accuracy rate during training and testing.


COVID-19; Deep learning; Google Colab; Infra-red sensor; Raspberry Pi; TensorFlow Lite; You only look once version 3

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).