Fault diagnosis of a photovoltaic system using recurrent neural networks

Reda Djeghader, Ilyes Louahem Msabah, Samia Benzahioul, Abderrezak Metatla

Abstract


The developed work in this paper is a part of the detection and identification of faults in systems by modern techniques of artificial intelligence. In a first step we have developed amulti-layer perceptron (MLP), type neural network to detect shunt faults and shading phenomenon in photovoltaic (PV) systems, and in the second part of the work we developed anotherrecurrent neural network (RNN) type network in order to identify single and combined faults in PV systems. The results obtained clearly show the performance of the networks developed for the rapid detection of the appearance of faults with the estimation of their times as well as the robust decision to identify the type of faults in the PV system.

Keywords


Diagnosis; Fault detection; Fault isolation; Neural networks; Photovoltaic system

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v11i6.4295

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).